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Abstract

We construct global solutions of the minimal surface equation over certain smooth annular domains and
over the domain exterior to certain smooth simple closed curves. Each resulting minimal graph has an
isolated jump discontinuity on the inner boundary component which, at least in some cases, is shown to
have nonvanishing curvature.
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1. Introduction

The boundary value problem

div
(

Du√
1+ |Du|2

)
= 0 on �, (1)

u|∂� = u0 (2)

for the minimal surface equation on a smooth bounded domain �⊆R2 is solvable for
arbitrary continuous boundary values u0 if and only if � is convex [JS68]. On the
other hand, solutions to Equation (1) may be obtained by minimizing the functional

F [u] =
∫
�

√
1+ |Du|2 +

∫
∂�

|u − u0| d H1. (3)

A minimizer always exists in C∞(�) ∩W 1,1(�) even if � is not convex and even
if u0 is only in L1(∂�); see [Giu84]. It follows that the trace of such a minimizer
u is always well defined, and it makes sense to ask for conditions under which the
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FIGURE 1. A helicoidal jump discontinuity.

boundary condition (2) will also hold. Many authors have addressed this and related
questions [Mir71, Sim74, Sim82, Wil84, Wil86a, Wil86b, Wil87, ET99]. We mention,
in particular, that if x0 ∈ ∂� is a point of positive curvature with respect to the normal
pointing into � and u0 is continuous at x0, then

lim
�3x→x0

u(x)= u0(x0). (4)

Furthermore, if the curvature of ∂� has a nondegenerate change of sign at x0, u0 is
continuous at x0 and u0 is globally bounded, then (4) holds [Sim74, Wil86b]. In the
case of negatively curved boundary and Lipschitz u0, it is known that minimizers of
(3) may differ in trace from u0. Even in this situation, however, the trace of u will still
be Lipschitz.

It is also possible for minimizers of (3) to have discontinuous boundary values when
u0 is continuous, but this is only known to occur when the curvature of ∂� vanishes to
first order. Of course, one may also consider the boundary value problem (1) and (2)
or the minimization problem in (3) with specific discontinuous u0, and presumably
there are many solutions taking prescribed discontinuous boundary values. We are
unaware, however, of any general result to this effect. One particularly interesting
solution of this sort over a convex domain appears in [Fin63]. Also in the convex case,
Lancaster’s recent resolution of the Concus–Finn conjecture [Lan06] should provide
many examples simply by taking capillary data with a jump discontinuity.

The possibility of discontinuities occurring locally on a portion of smooth boundary
of any curvature is easily verified by cutting out a portion of a helicoid as follows. Let

u(x, y)= arg(x, y) :=

{
tan−1(y/x), x > 0,

±
π

2
− tan−1(x/y), ±y > 0, x ≤ 0,

for (x, y) either in the ball Br (r, 0), for positive curvature κ = 1/4, or in the domain
bounded by the limaçon

γ (t)= (r + b cos t)(cos t, sin t)+ (r − b, 0)

where 0< b < r (see Figure 1). In fact, if we consider 0≤ b < r , we obtain both kinds
of domains and the curvature at the origin (below the vertical axis of the helicoid) is
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[3] Minimal graphs with discontinuous boundary values 77

found to be

κ =
r − 2b

(r − b)2
.

It is also evident that the helicoid in this example may be scaled to give a jump
discontinuity of arbitrary height. It is not possible, however, to modify this example
in such a way that the discontinuity is located on the inner boundary of a doubly
connected domain. A particularly elusive global question, as posed by John Urbas,
turns out to be the following:

‘Is it possible to find a minimal graph over a smooth annular domain of
nonvanishing curvature with an isolated jump discontinuity occurring on
the inner boundary component?’

We answer this question as the following result.

THEOREM 1. For each θ ∈ [0, π/2), there exists an annulus Aθ , whose inner
boundary component, except at possibly two points a1 and a2, has strictly negative
curvature with respect to the inward pointing normal, and a minimal graph Mθ =

Graph(uθ ) over Aθ such that the function uθ has a finite jump discontinuity at a1 and
a2. The curvature k at the points a1 and a2 is as follows:

(i) if 0≤ θ < π/4, then k(a1)= k(a2)= 0;
(ii) if θ = π/4, then −∞< k(a1)= k(a2) < 0;
(iii) if π/4< θ < π/2, then k(a1)= k(a2)=−∞.

It is also of interest to construct minimal graphs with inner boundary component as
described above and extending over an entire exterior domain. A technical difficulty in
this case is controlling the asymptotic behavior of the surface at infinity. Nevertheless,
we have the following result.

THEOREM 2. For each θ ∈ [0, π/2), there is an annular exterior domain with inner
boundary as described in Theorem 1, which supports a minimal graph with jump
discontinuities at two points.

It should be possible to obtain these ‘entire’ solutions as limits of the graphs in
Theorem 1, but we have been unable to show that.

2. Basic ingredients

This section describes the tools we use to prove Theorems 1 and 2.

2.1. The Weierstrass representation Given a domain �⊂C, the Weierstrass
representation theorem says that any (orientation-preserving) conformal minimal
immersion

X = (X1, X2, X3) :�→R3
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can be expressed, up to translation, in terms of a meromorphic function g and a
holomorphic one-form dh by the formula

X (z)= Re
∫ z

·

(
1
2
(g−1
− g) dh,

i

2
(g−1
+ g) dh, dh

)
, (5)

where g is the stereographic projection of the Gauss map and

dh =

(
∂X3

∂x
− i

∂X3

∂y

)
dz

is called the complex height differential (note that Re(dh)= d X3). Conversely, the
theorem states that if g is a meromorphic function and dh a holomorphic one-form on
� such that dh has a zero of order n at z if and only if g has a zero or pole of order
n at z, then (5) gives an (orientation-preserving) conformal minimal immersion on �
that is well defined provided that

Re
∫
γ

(
1
2
(g−1
− g) dh,

i

2
(g−1
+ g) dh, dh

)
= 0 (6)

for every simple closed curve γ ⊂�. (Note that (6) is satisfied automatically if � is
simply connected.) For a more extensive introduction to the Weierstrass representation
see [HK97].

2.2. Determining dh via the second fundamental form For a minimal surface
given by Weierstrass data g and dh,

dg(v) dh(v)

g
= I I (v, v)− i I I (v, Rotπ/2(v)), (7)

for a tangent vector v, where I I is the second fundamental form on the surface. In
particular, from (7) it follows that

γ is a principal curve ⇔
dg(γ̇ ) dh(γ̇ )

g
∈R (8)

and

γ is an asymptotic curve ⇔
dg(γ̇ ) dh(γ̇ )

g
∈ iR. (9)

Thus, we see from (8) and (9) that the function ζ given by

ζ(z)=
∫ z

·

√
dg dh

g
(10)

maps principal curves into vertical or horizontal lines and asymptotic curves into lines
in one of the directions e±iπ/4. The map ζ is called the developing map of the one-
form
√

dg dh/g. It is a local isometry between the minimal surface equipped with the
conformal cone metric |dg dh/g| and R2 equipped with the Euclidean metric.
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[5] Minimal graphs with discontinuous boundary values 79

Each surface considered in this paper will have boundary consisting of principal
and asymptotic curves, which will allow us to determine the function ζ . Once this is
done, we can use (10) to conclude that

dh =
g(dζ )2

dg
.

2.3. Extremal length The developing maps considered in this paper will turn out
to be biholomorphic, edge-preserving maps between curvilinear polygons (polygons
whose edges are arcs of circles or Euclidean line segments). Our proof of existence
for these maps relies on the conformal invariant extremal length, some properties of
which we now describe. For more details, see [Ahl73].

Given a curvilinear polygon 1 and a conformal metric ρ(dx2
+ dy2) on 1, we

denote the length of a curve γ ⊆1 with respect to this metric by `ρ(γ ). Similarly,
we denote the ρ-area of a subset U ⊆1 by Aρ(U ). Using this notation, the extremal
length between two connected subsets, A and B, of ∂1 is defined by

Ext1(A, B)= sup
ρ

infγ [`ρ(γ )]2

Aρ(1)
,

where the infimum is taken over all curves γ : [0, 1] →1 such that γ (0) ∈ A,
γ (1) ∈ B, and γ (t)⊆ interior(1) for t ∈ (0, 1); the supremum is taken over all
positive Borel measurable functions on 1.

Furthermore, we define the symmetric measure between sets of Hausdorff
dimension k by µk

[S1, S2] =Hk
[(S1 ∪ S2)\(S1 ∩ S2)], and, given A, B ⊂ ∂1 and

Ã, B̃ ⊂ ∂1̃, we define the dilation distance by

dila[(1, A, B), (1̃, Ã, B̃)] = inf
h
{µ2(h(1), 1̃)+ µ1(h(A), Ã)+ µ1(h(B), B̃)}

where the infimum is taken over all compositions h of dilations and translations.
Having noted these preliminaries, the properties of extremal length used below are

as in the following result.

PROPOSITION 3.

(i) Extremal length is invariant under biholomorphisms.
(ii) Extremal length is continuous with respect to all three arguments in the sense that

for any ε > 0, there is some δ such that dila[(1, A, B), (1̃, Ã, B̃)]< δ implies

|Ext1̃( Ã, B̃)− Ext1(A, B)|< ε.

(iii) If A and B are adjacent, that is, dist(A, B)= 0, then Ext1(A, B)= 0.
(iv) If B is degenerate (that is, B is a point) and dist(A, B) > 0, then

Ext1(A, B)=∞.
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(v) If1 is a rectangle with edges {Bk}, k = 1, 2, 3, 4, such that |B1| = |B3| = a and
|B2| = |B4| = b, then

Ext1(B1, B3)= 1/Ext1(B2, B4)=
b

a
.

(vi) If 11 ⊂12 are such that Ak, Bk ⊂1k , k = 1, 2, satisfy A1 ⊂ A2 and B1 ⊂ B2,
then

Ext12(A2, B2)≤ Ext11(A1, B1),

where the inequality is strict if dist (A2, B2) > 0 and either A1 6= A2 or B1 6= B2.
(vii) If 11 ⊆12 are simply connected domains such that Ak, Bk ⊆ ∂1k , k = 1, 2,

such that every path γ connecting A2 to B2 must pass through A1 and B1, then

Ext11(A1, B1)≤ Ext12(A2, B2). (11)

3. Construction of examples

Our initial goal is to find, for each θ ∈ [0, π/2), an annulus A=Aθ and a
function u = uθ defined on A such that Graph(u) is minimal and u has a finite jump
discontinuity at some point p on the inner boundary component of the annulus. This
last assertion means that

−∞< a := lim
A3q→p

u(q) < b := lim
A3q→p

u(q) <∞

and that, for each x ∈ [a, b], there is a sequence {p j } ∈A converging to p such that

lim
j→∞

u(p j )= x .

We will achieve our goal by constructing a parametric minimal immersion in R3

that turns out to be a graph over an annular domain in the x1x2-plane. The jump
discontinuity will be realized as a vertical line segment contained in the boundary of
the surface and lying over a point on the inner boundary component of the annulus.

3.1. Basic geometry of the surface; proposed Gauss image We begin by assuming
the existence of a minimal graph over some annulus centered at the origin and with a
finite jump discontinuity located at the intersection of the inner boundary component
with the positive x1-axis. To simplify things, we assume that:

(S1) the graph is symmetric with respect to reflection through the x2x3-plane.

(Note that this adds a second jump discontinuity to the graph.) Additionally, we
assume that the portion of the x1-axis contained in the annulus is also contained in
the graph. By the Schwarz reflection principle for minimal surfaces, it then follows
that:

(S2) the graph is symmetric with respect to 180 degree rotation around the x1-axis.
To describe the boundary of our graph, we partition the annulus boundary into the

following four disjoint components:
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[7] Minimal graphs with discontinuous boundary values 81

FIGURE 2. Boundary of annular domain and proposed boundary of minimal graph.

(1) the outer boundary component;
(2) the two points where the jump discontinuities occur;
(3) the (open) upper arc of the inner boundary component;
(4) the (open) lower arc of the inner boundary component.

Then we assume that the boundary of the graph consists of five curves: one over each
of the components (1), (3) and (4), and two vertical line segments comprising the jump
discontinuities (see Figure 2).

Additionally, we assume that the two curves over the upper and lower halves of the
inner boundary component are tilted at an elevation angle of θ , where θ ∈ [0, π/2).
More precisely, we assume that these curves lie in planes orthogonal to the vector
Nθ = (0, sin θ,− cos θ). Then, so that these two curves will be principal curves, we
assume that:

(GI) The Gauss map on the surface makes a constant angle of π/2 with the vector Nθ
along the boundary of the graph lying over the upper and lower halves of the inner
boundary component.

The primary purpose of the curve over the outer boundary component, in this initial
construction, is to complete the global graph. For simplicity, therefore, we assume that
this curve lies in the horizontal plane x3 = 0 and satisfies the following requirement:

(GO) The Gauss map on the surface makes a constant angle of φ ∈ (0, π/2) with the
positive x3-axis along the outer boundary curve of the annulus, where

Rφ :=
sin φ

1+ cos φ
<

cos θ
1+ sin θ

. (12)

The seemingly mysterious inequality (12), as we will see below, ensures that the Gauss
image of our surface makes sense. For the moment, we simply note that, given θ , the
condition (12) will always be satisfied for φ small enough.

In order to simplify the existence proof, we note that, from assumptions (S1) and
(S2), it suffices to prove the existence of the portion of the graph lying over the
first quadrant of the x1x2-plane. Such a fundamental piece is simply connected and
bounded by a simple closed curve 0 = 00 ∪ · · · ∪ 04 (see Figure 3), where 00 is a
curve in the plane x3 = 0 along which (GO) holds, 01 is a horizontal line segment
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FIGURE 3. The boundary and a sketch of the fundamental piece.

FIGURE 4. The Gauss image of the fundamental piece.

contained in the x1-axis, 02 is a vertical line segment, 03 is a planar curve with
elevation angle θ along which (GI) holds, and 04 is a symmetry curve with respect
to the x2x3-plane.

Under stereographic projection, the image of the Gauss map restricted to this
boundary is shown in Figure 4. Here, s0 is the half of ∂BRφ(0) in the second and
third quadrants, s1 is the segment [i Rφ, i], s2 is the quarter of ∂B1(0) in the second
quadrant, s3 is the portion of ∂Bsec θ (i tan θ) in the third quadrant, and s4 is the
segment [−i(sec θ − tan θ),−i Rφ]. Since sec θ − tan θ = cos θ/(1+ sin θ), we see
from the last segment s4 that the mysterious condition (12) is precisely what is required
for this image to bound a domain in C. (Actually, equality in (12) also results in a
well-defined domain; the resulting cusp, however, leads to integrability problems later
which we wish to avoid.)

It is natural, moreover, to assume the Gauss image of the entire fundamental
piece G0 is precisely the domain �=�θ ⊆C just described and that the mapping
g : G0→� is one-to-one.

https://doi.org/10.1017/S1446788708000335 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788708000335
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FIGURE 5. The Gauss image as parameter domain and the developing map.

FIGURE 6. Other possible developing images.

At this point, we change our point of view and take the Gauss image � as a
parameter domain for the surface. Thus, X :�→R3 defined by (5) gives the surface
with g :�→C given by g(z)= z. It remains only to determine dh.

3.2. The developing map and height differential We seek now to determine the
image of the developing map ζ = ζθ,φ given by (10). To accomplish this, we first note
that each curve 0 j is either an asymptotic curve or a principal curve. Indeed, it follows
immediately that 01 and 02 are asymptotic. For 00, 03, and 04, we have that each is a
planar curve along which the surface meets the plane of the curve at a constant angle.
By Joachimstahl’s theorem, such curves are principal. Thus, by (9), the curves 01 and
02 are mapped by ζ into lines in one of the directions e±iπ/4, while 00, 03, and 04
are mapped into horizontal or vertical lines. Based on this information, we conclude
that the image of ζ is a Euclidean pentagon P = Pθ with edges oriented and labeled
as in Figure 5.

There are, of course, other nominal possibilities for the image of ζ restricted to ∂�;
see Figure 6. Some of these can be used to obtain a piece of the surface we desire to
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FIGURE 7. Parameter space for pentagonal developing images.

construct—but in a different orientation than suggested in Figure 5. Others produce
different surfaces altogether. Each, and the properties of each, may be checked via
calculations similar to those below. Nevertheless, it is clear that there are finitely
many possibilities.

A certain amount of trial and error leads us to the image indicated in Figure 5. We
wish, furthermore, to obtain an invertible edge-preserving conformal map ζ from the
pentagon � to a pentagon of the shape P indicated.

Normalizing so that |σ0| = 1, we note that each such pentagon is uniquely
determined by the lengths |σ1| and |σ4|. More precisely, the pentagons of interest
are in one-to-one correspondence with

P = {(|σ1|, |σ4|) : |σ1|> 0 and |σ1|/
√

2< |σ4|< 1+ |σ1|
√

2} (13)

which we use to conveniently index this particular family of pentagons. The following
existence result is crucial.

PROPOSITION 4. For each θ ∈ [0, π/2) and each φ small enough to satisfy (12), there
exists a unique edge-preserving conformal map ζ = ζθ,φ from � onto some pentagon
P corresponding to (|σ1|, |σ4|) ∈ P .

PROOF. The parameter domain P is shown in Figure 7, and restricting extremal length
to any two sides of a pentagon corresponding to (|σ1|, |σ4|) ∈ P , we obtain a function
which is continuous on P . For example, we may consider Ext1(σ2, σ4); since the
entire pentagon (including σ2) is determined by (|σ1|, |σ4|) ∈ P , we may consider this
as a function defined (and continuous) on P . Let us slightly abuse notation by writing
Pσ1,σ4 ∈ P and temporarily denoting both side lengths and sides by σ j = |σ j |. We fix
σ1 and consider the ‘segment of pentagons’

1= Pσ1,σ4 with |σ1|/
√

2< |σ4|< 1+ |σ1|
√

2. (14)

See Figure 8. By continuity and Proposition 3(iv), we see that

lim
|σ4|↘|σ1|/

√
2

Ext1(σ2, σ4)=∞, (15)
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FIGURE 8. A segment in P with the lower and upper endpoint pentagons.

and by assertion (iii) of the same proposition,

lim
|σ4|↗1+|σ1|/

√
2

Ext1(σ2, σ4)= 0. (16)

It follows from the intermediate value theorem that there is some

|σ ∗4 | ∈ (|σ1|/
√

2, 1+ |σ1|
√

2)

such that
Ext1(σ2, σ

∗

4 )= Ext�(s2, s4) (17)

where 1= Pσ1,σ
∗

4
. We have used here the fact that, since all the sides of �=�θ,φ

have finite, nonzero length, the strict inequality of Proposition 3(vi) implies that all
nonadjacent sides of the Gauss image � have finite, nonzero extremal length. We
sharpen this last observation as follows.

LEMMA 5. For σ1 fixed and 1= Pσ1,σ4 as above, Ext1(σ2, σ4) is a decreasing
function of |σ4|. Consequently, σ ∗4 = σ

∗

4 (|σ1|) is uniquely defined and continuous.
Furthermore, σ ∗4 is increasing and lim|σ1|↘0 σ

∗

4 (|σ1|) > 0.

PROOF. The monotonicity of Ext1(σ2, σ4) as a function of σ4 follows immediately
from Proposition 3(vi); see Figure 9 (left). Thus, σ ∗4 = σ

∗

4 (|σ1|) is uniquely defined.
The continuity follows from the continuity of extremal length, the monotonicity, and
the defining condition (17). In fact, if we assume σ̃4 = lim supσ̃1→σ1

σ ∗4 (σ̃1) > σ
∗

4 (σ1),

then (σ1, σ̃4) ∈ P (by continuity, σ̃4 < 1+ σ1
√

2). By the monotonicity,

Ext1̃(σ̃2, σ̃4) < Ext1(σ2, σ
∗

4 (σ1)) (18)

where σ̃2 is the second side of 1̃= Pσ1,σ̃4 . On the other hand, both sides of (18) are
equal to Ext�(s2, s4) by (17). It follows similarly that lim infσ̃1→σ1 σ

∗

4 (σ̃1)≥ σ
∗

4 (σ1).
In order to see that σ ∗4 is increasing, assume the contrary, that is, assume that, for

some |σ̃1|> |σ1|, we have σ ∗4 (|σ̃1|)≤ σ
∗

4 (|σ1|). We see then (see Figure 9 (middle))
that 1̃ := Pσ̃1,σ

∗

4 (|σ̃1|) may be dilated (which does not change extremal length) so that
the dilated pentagon has sides 2 and 4 strictly contained in the corresponding sides of
1= Pσ1,σ

∗

4 (|σ1|). It follows from Proposition 3(vi) that

Ext�(s2, s4)= Ext1̃(σ̃2, σ
∗

4 (|σ̃2|) > Ext1(σ2, σ
∗

4 (|σ1|))= Ext�(s2, s4), (19)

which is a contradiction to the above assumption.
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FIGURE 9. Proposition 3(vi) and the monotonicity of σ ∗4 .

Finally, we consider values of σ1 tending to zero and assume, by way of
contradiction, that σ ∗4 (σ1)↘ 0. Each corresponding pentagon must contain a rectangle
having one side coincident with σ ∗4 and other side of length

min{1, 1+ σ1/2− σ2/
√

2}> 1− σ ∗4 (since σ ∗4 > σ2/
√

2).

Applying Proposition 3(vii) to this rectangle and 1, we find that

Ext�(s2, s4)= Ext1(σ2, σ4)≥
min{1, 1+ (σ1 − σ2)/

√
2}

σ ∗4
>

1
σ ∗4
− 1→+∞,

(20)
which is a contraction. This completes the proof of Lemma 5.

Returning to the proof of Proposition 4, we consider Ext1(σ1, σ4) where
1= Pσ1,σ

∗

4 (σ1) and σ4 = σ
∗

4 (σ1).
From Lemma 5, we find that the pentagons 1 are nested with increasing σ1

as indicated in Figure 9 (right). It follows, moreover, from Proposition 3 that
Ext1(σ1, σ4) is decreasing in σ1, and

lim
σ1↘0

Ext1(σ1, σ4)=+∞ (21)

(since σ4 = σ
∗

4 remains bounded away from 0).

LEMMA 6. With σ4 = σ
∗

4 (σ1) as just described,

lim
σ1↗∞

Ext1(σ1, σ4)= 0. (22)

PROOF. We know the limit exists by monotonicity. We can see the actual value by
rescaling so that side σ̃1 of the rescaled pentagon 1̃ has length 1. Since

σ1/
√

2≤ σ4 ≤ 1+ σ1
√

2,

we see that
σ̃4 ≤ 1/σ1 +

√
2→
√

2

so σ̃4 is bounded and may be assumed to converge to a finite nonzero limit—at least
in a subsequence. The σ̃0 side clearly has length zero in the limit and

Ext1(σ1, σ4)= Ext1̃(σ̃1, σ̃4)→ 0. (23)
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This completes the proof of Lemma 6 and establishes that there is a unique pentagon
P ∈ P for which

ExtP(σ1, σ4)= Ext�(s1, s4) (24)

and

ExtP(σ2, σ4)= Ext�(s2, s4). (25)

By the Riemann mapping theorem, there is a conformal map ζ from � onto P with

ζ(v04)= w04, ζ(v34)= w34 and ζ(v23)= w23

where vi j = si ∩ s j and wi j = σi ∩ σ j . If we assume ζ(v12) ∈ interior(σ2), then
Proposition 3(vi) implies

Ext�(s2, s4)= Ext1(ζ(s2), σ4) > Ext1(σ2, σ4)= Ext�(s2, s4)

by (25). If we assume ζ(v12) ∈ interior(σ1) ∪ σ0, then we see similarly that

Ext�(s2, s4) < Ext1(σ2, σ4)= Ext�(s2, s4).

Thus, we conclude that ζ(v12)= w12. Knowing this, we may apply the same method
to show that ζ(v01)= w01. This completes the proof of Proposition 4.

3.3. Understanding the image In view of Proposition 4, we may set

dh = z

(
dζ

dz

)2

= zζ ′2 dz

for z ∈� and consider the minimal immersion

X (z)= (X(1), 0, 0)+ Re
∫ z

v12

(
1
2
(1− z2),

i

2
(1+ z2), z

)(
dζ

dz

)2

(26)

where X(1) > 0 is the x1 coordinate of the proposed jump discontinuity (to be
determined later).

The first observation we make is that

X is finite valued and continuous on �̄. (27)

The only points at which this could fail are the vertices v jk = s j ∩ sk of �. An
inspection of (26), moreover, indicates that the only way this assertion could fail is if
boundary nonconformality (angle change) in the mapping ζ produces nonintegrability.
More precisely, if φ jk denotes the angle interior to � at v jk and ψ jk denotes the angle
interior to P at w jk = σ j ∩ σk , then

ζ = (z − v jk)
ψ jk/φ jk ζ0(z)

in a neighborhood of v jk where ζ0 is holomorphic and nonzero at v jk . Thus,

ζ ′
2
= (z − v jk)

2(ψ jk/φ jk−1)ζ̃0(z) (28)
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where ζ̃0 is holomorphic and nonzero at v jk . We see, in fact, that ζ is conformal at
v12, v34 and v04. At v01 we find that ψ01/φ01 = (3π/4)/(π/2)= 3/2. Also, since
φ23 = π − θ < π , ψ23/φ23 = (3π/4)/(π − θ) > 3/4. In every case, ψ jk/φ jk > 1/2
so that 2(ψ jk/φ jk − 1) >−1 and ζ ′2 is integrable. This proves (27).

We will need somewhat more precise information near v23 later, and we take this
opportunity to note that in that case (28) becomes

ζ ′
2
= (z − v23)

4θ−π/2(π−θ)ζ̃0(z).

From this we see that:

(Z1) ζ ′(v23)
2
=∞ for 0≤ θ < π/4;

(Z2) ζ ′(v23)
2 is finite and nonzero for θ = π/4; and

(Z3) ζ ′(v23)
2
= 0 for π/4< θ < π/2.

These observations will be used to verify the assertions of Theorem 1 concerning the
curvature of the inner boundary component.

Since, up to a nonvanishing conformal factor, the image X is obtained by integrating
ζ ′

2 dz, we may also determine from (28) the image angles α jk interior to the immersed
minimal image at the boundary points X jk = X (v jk). We find that

α12 = α34 = α04 = π/2,

α01 =
π

2

[
2
(

3
2
− 1

)
+ 1

]
= π and

α23 = (π − θ)

[
4θ − π

2(π − θ)
+ 1

]
= θ + π/2.

Each of these angles, with the exception of α01, might have been anticipated from
Figures 2, 4 or 5 and the attendant discussion. We will find, contrary to what was
anticipated, that the outer boundary curve will resemble the curve in Figure 10. In
order to obtain a smooth annular domain as described in Theorem 1, we need only
take as outer boundary a convex curve lying between the inner and outer boundary
curves initially obtained.

We now proceed to verify the anticipated features of the image surface in Figure 4
(in light of this minor modification). We may parameterize s1 from v12 to v01 by

z1(t)= i(1− t), 0≤ t ≤ Rφ .

Then we have dz(ż1)=−i and dζ(ż1)
2
=−i |dζ(ż1)|

2. Thus,

d X1(ż1) = Re
[

1
2
(1− z2

1)
dζ(ż1)

2

dz(ż1)

]
=
|dζ(ż1)|

2

2
[1+ (1− t)2]> 0,

d X2(ż1) = Re
[

i

2
(1+ z2

1)|dζ(ż1)|
2
]
= 0 and

d X3(ż1) = Re[z1|dζ(ż1)|
2
] = 0.
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FIGURE 10. The initial annular domain and an alternative inner boundary.

These calculations imply that the image of s1 is a horizontal line segment on the
positive x1-axis (as desired).

Next, we parameterize s2 by

z2(t)= ei t , π/2≤ t ≤ π.

Then dz(ż2)= iei t and dζ(ż2)
2
= i |dζ(ż2)|

2, so that

d X1(ż2) = Re[ 12 (1− e2i t )|dζ(ż2)|
2/ei t
]

= Re[−i sin t |dζ(ż2)|
2
] = 0,

d X2(ż2) = Re
[

i

2
(1+ e2i t )|dζ(ż2)|

2/ei t
]

= Re[−i cos t |dζ(ż2)|
2
] = 0 and

d X3(ż2) = Re[ei t
|dζ(ż2)|

2/ei t
] = |dζ(ż2)|

2 > 0.

This shows that 02 is a vertical segment.
For s3,

z3(t)= i tan θ + sec θei t , π + θ ≤ t ≤ 3π/2; (29)

dz(ż3)= i sec θei t and dζ(ż3)
2
=−|dζ(ż3)|

2 < 0.

Thus, we find that

d X1(ż3) = Re
[

1
2
(1+ tan2 θ − 2i tan θ sec θei t

− sec2 θezi t )
dζ(ż3)

2

(i sec θei t )

]
= −

dζ(ż3)
2

2
Re[i(sec θe−i t

− 2i tan θ − sec θei t )]

= −dζ(ż3)
2 Re[sec θ sin t + tan θ ]

= −
dζ(ż3)

2

cos θ
(sin t + sin θ)≤ 0
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with strict inequality for π + θ < t < 3π/2 since sin t < sin(π + θ)=− sin θ on this
interval. Also,

d X2(ż3) =
dζ(ż3)

2

2 sec θ
Re[(1− tan2 θ)e−i t

+ 2i tan θ sec θ + sec2 θei t
]

=
dζ(ż3)

2

2 sec θ
(1− tan2 θ + sec2 θ) cos t

= dζ(ż3)
2 cos θ cos t ≥ 0

with strict inequality unless t = 3π/2, and

d X3(ż3) =
dζ(ż3)

2

sec θ
Re[tan θe−i t

− i sec θ ]

= dζ(ż3)
2 sin θ cos t ≥ 0

again with strict inequality unless t = 3π/2.
To see that 03 lies in a plane orthogonal to Nθ = (0, sin θ,− cos θ), we compute

Nθ · d X (ż3)= sin θdζ(ż3)
2 cos θ cos t − cos θdζ(ż3)

2 sin θ cos t = 0.

Furthermore,
d X1(ż3)

d X2(ż3)
=−

1

cos2 θ
(sin t + sin θ) sec t (30)

which is negative and decreasing in t with d X1/d X2 = 0 at t = π + θ and
d X2/d X1 = 0 at t = 3π/2. This shows that 03 projects (simply) onto one fourth of a
convex C1 curve in the x1x2-plane. If we now select

X(1) =− Re
∫

s3

1
2
(1− z2)ζ ′

2 dz > 0,

then the projection of X (v14) will lie on the positive x2-axis and this convex C1 curve
may be assumed symmetric with respect to the x1-axis and the x2-axis. We have thus
verified the basic assertions concerning 03 and the inner boundary component of the
annulus. (The question of curvature will be taken up in the next section.)

We next parameterize s4, and hence 04:

z4(t)= i t, tan θ − sec θ < t <−Rφ .

Thus,

dz(ż4) = i, dz(ż4)
2 > 0;

d X1(ż4) =
dζ(ż4)

2

2
Re[(1+ t2)/ i] = 0,

d X2(ż4) =
dζ(ż4)

2

2
Re[1− t2

]> 0 and

d X3(ż4) =
dζ(ż4)

2

2
t < 0.
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Thus, 04 has the properties prescribed in Section 2.1. We also see that

d X3(ż4)

d X2(ż4)
=

t

1− t2

and
d

dt

(
t

1− t2

)
=

1

1− t2 +
2t2

(1− t2)2
=

1+ t2

1− t2 > 0,

so that 04 is convex when considered as a graph over the positive x2-axis. The actual
final height

X3(v04) = Re
∫

s2∪s3∪s4

zζ ′2 dz

=

∫ π

π/2
|dζ(ż2)|

2 dt −
∫ 3π/2

π+θ

sin θ cos t |dζ(ż3)|
2 dt

+
1
2

∫
−Rφ

tan θ−sec θ
t |dζ(ż4)|

2 dt

is not clear at this point. We know by continuity, however, that

X3(v04)= Re
∫
−s0

zζ ′2 dz

where the integration along −s0 indicates the clockwise direction with respect to �.
This, and the other basic properties of 00, we now compute. Set

z0(t)= Rφei t , π/2≤ t ≤ 3π/2.

Then dz(ż0)= i Rφei t and dζ(ż0)
2
=−|dζ(ż0)|

2, and so

d X1(ż0) =
|dζ(ż0)|

2

2Rφ
Re[i(1− R2

φe2i t )/ei t
]

=
|dζ(ż0)

2
|

2Rφ
(1+ R2

φ) sin t,

d X2(ż0) = −
|dζ(ż0)|

2

2Rφ
Re[(e−i t

+ R2
φei t )]

= −
|dζ(ż0)|

2

2Rφ
(1+ R2

φ) cos t ≥ 0

with strict inequality away from the endpoints. Also,

d X3(ż0)= Re[i |dζ(ż0)|
2
] = 0.
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Thus, we see that x3(v04)= 0. Furthermore, 00 is concave down as a graph over the
x2-axis since

d X1(ż0)

d X2(ż0)
=− tan t

decreases from +∞ to −∞ with t ∈ (π/2, 3π/2).
We have shown that the boundary of X (�) determines two initial boundary curves

as indicated in Figure 10. Since the image of the Gauss map, �, has interior in the
unit disk, we see that X (�) is an embedded graph over the resulting projection in the
first quadrant. Furthermore, X (�̄) may be extended by reflection in the x2x3-plane
and 180 degree rotation about the x1-axis to yield a graph of a function u = uθ over
the entire annulus. Clearly uθ has jump discontinuities on the inner boundary curve at
(±X(1), 0). We next investigate the curvature of ∂A at these points.

3.4. Curvature calculations Consider the projection C of 03 into the x1x2-plane.
This is one fourth of the inner boundary curve of the annulus A, and we wish to
compute the curvature of C at the point p = (X1(v23), X2(v23))= (X1(v12), X2(v12))

where the jump discontinuity occurs.
Since C is the graph of some function f over an interval of the x2-axis, we can

write

X1 = f (X2)

where (X1, X2)= (X1(z3(t)), X2(z3(t))) and the parameterization z3 = z3(t) of s3 is
given in (29) above. The curvature κ at p is found by evaluating

κ(t)=
f ′′

(1+ f ′2)3/2

at t = π + θ . We recall from (30) that

f ′ =− sec2 θ sec t (sin t + sin θ).

We may also compute

f ′′ =
d

dt
[− sec2 θ sec t (sin t + sin θ)]

1
d X2(ż3)

= −
sec2 θ [sec t tan t (sin t + sin θ)+ 1]

cos θ sec t dζ(ż3)2

= −
sec2 θ sec2 t (1+ sin θ sin t)

cos θ cos t dζ(ż3)2

= −
sec3 θ sec3 t (1+ sin θ sin t)

dζ(ż3)2
< 0.
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FIGURE 11. Dependence of the Gauss image on the outer angle parameter φ.

In particular, evaluating at t = π + θ ,

κ(p)= f ′′(0)=
sec4 θ

dζ(ż3(π + θ))2
< 0. (31)

Since dζ 2
= ζ ′

2 dz, we see from (Z1), (Z2), (Z3) of Section 3.3 that:

(K1) κ(p)= 0 for 0≤ θ < π/4;
(K2) −∞< κ(p) < 0 for θ = π/4; and
(K3) κ(p)=−∞ for π/4< θ < π/2.

This completes the proof of Theorem 1.

3.5. Extensions and generalizations We consider here the limit as φ↘ 0 of the
surfaces constructed above. For φ̃ < φ, the Gauss image changes as indicated in
Figure 11. Let us denote these Gauss images by� and �̃. Next, we scale the pentagons
associated with φ and φ̃ from Proposition 4 so that the σ4-sides have unit length and we
denote these pentagons by P and P̃ . We claim that the pentagon P̃ associated with the
smaller value φ̃ must be nested inside the pentagon P associated with φ as indicated
in Figure 12 (left). The remaining possibilities are shown also in Figure 12; in each
case P̃ is shaded. We know, however, from the monotonicity of extremal length, that

Ext�̃(s2, s̃4) < Ext�(s2, s4) (32)

and
Ext�̃(s̃1, s̃4) < Ext�(s1, s4). (33)

Thus, in the second possibility, we can shrink P̃ further so that the σ̃2-side falls into
σ2, and we find a contradiction of (32). In the third possibility, we can shrink P̃ so that
the σ̃2-side falls into σ1 and (33) is contradicted. At least one of these arguments rules
out the fourth possibility, and our claim is established.
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FIGURE 12. The associated pentagons.

FIGURE 13. The developing map for the entire graph.

Thus, using the continuity of extremal length, we find that the limit as φ↘ 0
corresponds to a well-defined quadrilateral Q with extremal lengths corresponding to
the curvilinear quadrilateral �0 obtained as the limit of �θ,φ as φ↘ 0; see Figure 13.

The Riemann mapping ζ0 with ζ0(v jk)= w jk for j = 1, 2, 3 and k = j + 1 is easily
seen to satisfy also ζ0(v24)= w14. The resulting immersion X , however, does not
extend continuously to �̄0 since at the origin

ζ = z(π/4)/πζ1 = z1/4ζ1,

where ζ1 is conformal at z = 0, and

ζ ′
2
= z−3/2ζ̃1

is not integrable at z = 0. We thus obtain a minimal graph u0 over the domain
A exterior to a convex domain whose boundary has curvature dependent on θ as
described by (A), (K1), (K2) and (K3). This is the content of Theorem 2.

We remark, finally, that certain values of an additional angle ψ can be introduced
into the basic construction, so that the condition on the Gauss map restricted to the
outer boundary (GO) is replaced with the condition that the outer boundary component
lies in the plane through the origin orthogonal to the vector Nψ = (0, sin ψ,− cos ψ)
and the angle between the Gauss map restricted to this outer boundary component
with Nψ is φ. In this way, we can generalize the outer boundary condition along the
lines used in the construction of the inner boundary. Since this last observation is not
obviously of enough immediate interest to justify recording the somewhat complicated
details associated with it, we omit them.
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