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Abstract

We show that for manifolds of dimension m > 5, the flow of a Seiberg—Witten-type functional admits a
global smooth solution.
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1. Introduction

The Seiberg—Witten invariant has proven a very effective tool in four-dimensional
geometry. Its computation involves finding nontrivial solutions to the system of first-
order Seiberg—Witten equations, called monopoles. Monopoles represent the zeros of
the Seiberg—Witten functional (1.1) (see [10]). In [5], the flow for the Seiberg—Witten
functional on a 4-manifold was studied. It was shown that the flow admits a global
solution which converges in C* to a critical point of the functional.

The Seiberg—Witten equations and functional do not generalize immediately to
higher dimensions, since they depend on the notion of self-duality on four-dimensional
manifolds. Nonetheless, a number of generalizations of Seiberg—Witten theory have
been suggested for higher-dimensional manifolds (see, for example, [1, 2, 4]). In this
paper, we extend the global existence result obtained for the Seiberg—Witten functional
in [5] for dimension four to a functional of similar form in higher dimensions.

Let M be a compact oriented Riemannian m-manifold which admits a Spin®
structure s. Denote by S =W ® £ the corresponding spinor bundle, and by £ the
corresponding determinant line bundle. Let A be a unitary connection on £?. Note
that we can write A = Ay + a, where A is some fixed connection and a € iA' M with
i =V—1. Denote by F4 =dA € iA*M the curvature of the line bundle connection A.
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Let {e;} be a local orthonormal basis of the tangent bundle 7M. A Spin(4)°-connection
on the spinor bundle S is locally defined by

Vi=d+Hw+A),

where w = 3, ; wije;e; is induced by the Levi-Civita connection matrix wj and ejey
acts by Clifford multiplication (see [7]). We denote the curvature of V4 by Q4. We
define the configuration space T'(S) x .o, where .27 is the space of unitary connections
on L2, and let (¢, A) eT'(S) x 7. Note that in [5] we took ¢ € ['(S*). However,
the splitting S =S8* €5 S~ is available only if m is even. The exact nature of the
bundle to which ¢ belongs does not affect our results, and we may assume ¢ € I'(S)
for simplicity.

We first recall the definition of the Seiberg—Witten functional on 4-manifolds. The
Seiberg—Witten functional SW: I'(S*) X &/ — R is given by

S 1
SW(p, A) = f IVagl? +F51* + Zw - gw‘ dv, (1.1)
M

where S is the scalar curvature of M. The Seiberg—Witten functional (1.1) is invariant
under the action of a gauge group. The group of gauge transformations is

G ={g:M—->U)}.
The group ¢ acts on elements of the configuration space via

g, A)=(g"p,A+2g " dy).

Using the relation
IFallz = 2IF Il — 4n*ci (L),

where c;(£?) is the first Chern class of £2 (see [11]), one can also write the functional
in the form

1 S 1
SW(e. A) = f Vol + SIEAP + Tl + Sl @V + ey (L (1)
M

Now, consider again the case of an m-manifold M. The functional (1.1) is not defined
here, since self-duality is a phenomenon that occurs only in dimension four. However,
we may use (1.2) to extend the Seiberg—Witten functional to higher dimensions. As
mentioned, we can allow ¢ € I'(S) in the case where m is odd. Note that the constant
term 7r%¢; (L?)? does not affect the Euler—Lagrange equations and so is irrelevant for the
results in this paper. The Euler—Lagrange equations for the Seiberg—Witten functional
are

~ViVap — IS + l¢l*lp =0,
—d*FA - lIIﬂ(VA(p, g0> =0.
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As in [5], we define the flow of the Seiberg—Witten functional by

o . 1
X Vi Vap - <IS +lePle,
E = _d*FA - lIm(VA‘p, <P>,

with initial data
(¢(0), A(0)) = (¢0, Ao)-

Regarding the existence of solutions to the flow (1.3), we prove the following
theorem.

Tueorem 1.1. For any given smooth initial data (¢, Ag) and m-dimensional
Riemannian manifold M for m > 5, equations (1.3) admit a unique global smooth
solution on M X [0, c0).

In proving global existence in dimension four, a blow-up or rescaling argument was
used in order to obtain a contradiction with the assumption of singularity formation.
Importantly, the boundedness of fM |F4l*> dV under the flow was used to imply the

boundedness of the corresponding energy ﬁx‘v |F 51> dy of the limiting curvature F; on
the rescaled space. In higher dimensions, however, this observation is not sufficient
to ensure a bound on the rescaled energy. This necessitates a stronger result through
which to obtain the desired contradiction, along with some modifications to the blow-
up argument.

The main additional estimate needed in establishing global existence in higher
dimensions is a so-called monotonicity formula. This idea was used by Struwe for
the heat flow of harmonic maps in higher dimensions [13], and has also been used to
study the Yang—Mills and Yang—Mills—Higgs flows in higher dimensions [6, 12]. See
also [8, 9] for the harmonic map flow, and [14] for sequences of weakly converging
Yang—Mills connections.

2. Estimates

As in the four-dimensional case [5], we have an energy inequality

d
£ SW(p(), Ar) = - f [ dgf

dt ot
or T 2 2
0 0A
f [2|% 'a— ]=S(W(800,A0) S SWTLATY). Q1)
0 12 1 ll12

The proof of the energy inequality and many other results from [5] do not contain
dimensional considerations, and are also valid in the m-dimensional case. For the
proof of the energy inequality and of the following lemmas, we direct the reader to
that paper.

The first step is to establish the existence of a local solution to the flow.
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Lemma 2.1. For any given smooth initial data (g, Ag), the system (1.3) admits a
unique local smooth solution on M X [0, T') for some T > 0.

In this paper, (¢, A) will typically represent a local solution to (1.3) on M x [0, T)
for some initial value (¢g, Ag). Next, Lemma 2.2 gives us a uniform bound on ¢ under
the flow.

Lemma 2.2. Write So = min{S (x) : x € M} and ko = sup .y, l¢ol- Then for allt € [0, T),

sup |e(x, 1] < max{ko, VISol}.

xeM

The following Bochner formula gives us a constraint on the evolution of the first
derivatives of ¢ and A.

Lemma 2.3. There exist positive constants c, ¢’ such that the following estimate holds:

0
E(IVMDI2 +1Fal’) + A(Va@l* +1Fal)
< =/ (Vagl +[VFAP) + c(IFal + D(Vagl +|Fal + D).
Finally, the following lemma and corollary show that a bound on the first derivatives
of ¢ and A implies a bound on derivatives of all orders.

Lemma 2.4. Suppose that |Vap| < K| and |[Fa| < Ky in M X [0,T) for some constant
Ky > 0. Then for any positive integer n > 1, there is a constant K, independent of T
such that

Ve < Kyt IV Fal <Ky in MX [0, T),

where (n) denotes n iterations of the derivative.

COROLLARY 2.5. Suppose that IVi{)th <K, and IV;{;I)FAI < K, in Pi(xg, ty) for each
1 < j < nand some constant K,,. Then there is a positive constant K, such that

1 .
VO Dol < Kpt, IV FAlS Kui1  in Pyja(xo, fo).

In order to extend the global existence result in four dimensions to higher
dimensions, we begin be deriving a monotonicity inequality for the flow (1.3). We
define

1 S 1
el A)x, 1) = IVagl” + SIFAP + Zlel* + 2ol
Let z = (x, 7) denote a point of M X R, with zg = (xg, o) € M X [0, T]. We define
Tr(z0) = M x [ty — 4R, 1o — R*]

and
Pr(z0) = Br(x0) X [to — R, 1],

where Bg(xg) C M denotes a ball centered at x, with radius R. Note that in constructing
Tr(zo) we require that fo —4R?>>0 or R<+/fo/2. We abbreviate Tg(0,0)= Tk
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and Pg(0,0) = Pg. The fundamental solution to the backward heat equation with
singularity at zg is
(x — xp)?
G = (_ )7
2= Gt — oy "N 2 - 0

where t <t). We also write G =Go). Let i(M) be the injectivity radius of M,
and suppose that (¢, A) is a solution to the flow (1.3) on M x [0, T). Let ¢, be a
smooth cut-off function with |¢,| < 1, ¢, = 1 on Bjuy)2(x), ¢, = 0 outside B (x) and
[Vo,| < c/i(M) for some constant c. We also abbreviate ¢ = ¢,,,. We define

O(R; ¢, A) = R* f e(p, A)2)$*G dV dt

Tr(z0)
and
FR; p,A) = f Rt(la—A + ﬁiJFA ’ + 2‘6_*0 + ﬁvlfw 2)¢2G\/§ dz.
Tx(z0) ot 2t 0x or 2t
where
C{)ikaFA = FA(aixk’ ) = FN ax/

defines a 1-form.

Lemwma 2.6. Let (¢, A) be a smooth solution of (1.3) on M x [0, T) with initial data
(¢0, Ag). Then for zo € M X [0, T] and any R, and R), satisfying 0 < R, < R, < Ry for
some Ry < min{i(M), \fo/2},

Ry,
D(R,: @, A) + f e®.Z (R) dR < &P RIDR,; ¢, A) + (R} — R)SW (o, Ao),

R,
where c depends only on the geometry of M.

Proor. We show that

d
ECD(R; 0, A) + Z(R; ¢, A) > —cD(R; ¢, A) — cRSW gy, Ap). (2.2)

The required result then follows by multiplying (2.2) by €% for some sufficiently large
a >0, and integrating from R, to R,. To show (2.2), we may assume that zy = (0, 0),
which implies that 7 < 0 on Tk. We rescale the coordinates to x = R, t = R*7. In these
coordinates,

O(R; p, A) = f R'e(p, A)(RZ, R*)¢*(RX)G(Z)\/2(RX) dz,
T,
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where dZ = dx df. For some R < R,, we compute

%@(R; @, A) = f % [Re(p, A)Y(RZE, R*D)¢*(R)V(RF)IG() dz
T,

= fT 4R%e(p, A)RE, RD$*(RDG(Z)\/g(RY) dz
+ fT | R4xka%e(<p, A)(R%, RPN (RHG(Z)/2(RF) dZ
+ fT | ZRngte(go, AR, RN (RDG()/2(RX) dZ
+ fT | R*e(p, A)(RX, Rzi)ik%@z\@)(Ri)G(Z) dz

=L+L+1+ 1

Rescaling coordinates back to (x, 1),
I = f 4Re(p, A)p*Gg dz
Tr

and

d
I = f Re(tp,A)xka—Xk((ﬁz\/g)G dz.

Tg

For the second term,

0
12=f ka—e(go,A)gbzG\/Edz.
Tr

8xk

This simplifies as follows:
d 1 S 1
—||Vagl* + =|F 2+(— 24 - 4)]
o [Vagl 2| al 4It,DI 8Isol
k k7 J 1 2 k
=(VFa, Fa) + 2Re(V, Vi, Vi) + E(S + lol”) Re(Vy e, ).
Note that
2 Re(VE V)0, V) = 2 Re(VAVA 0, Vag) — 2 Re(Q o, V) 0).

Using the fact that

9G _ %
(9xj B 2t
we have
2
-2 f Rx; Re(d(G) A Vi, Vap)d* g dz = —4 f Rt %Vfﬁp ¢*Gg dz.
Tr Tg
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For the curvature term, we recall the Bianchi identity dF4 = 0 which implies that
. ‘i ki
O F" = 0;F" — 0;F",
and we compute in local coordinates

X0 Z (FYGe? = 2x, Z Flo,FliGg?
i<j i<j
=2 Y FU@FY - 0;F*)G¢?
i<j
= 0 FU9,FNG¢?
= 0;,(x FUFNG¢?) — i, FHO.FIG¢* — FNFI;(xiGo?).

Observe that the first term will integrate to zero by Stoke’s theorem, and for the second
term we have (d*F4); = 8;F". To deal with the third term, we see that

2

—xka’x,F” 5,G¢° = | 9 JF G,

21‘8

Note that |d¢|G < c since |d@| = 0 on Bjr)2(x0). Then

1 . ;
L = f ka[§6k|FA|2 +2Re(V4VE @, Vap) — 2 Re(Q 0, Vi)
Tr

+ (S+I90I ) Re(VAo, 0)|¢°G g dz
_ f ka[ LoFAR + 2 Re(VEg, ViV a0
Tr
—2Re(Q, Vig)+ 2 (S+|¢|>Re<vA¢,¢>]¢2Gv§dz

) f R Re(d(@*Gx)V o, VaeE d
Tr

> - f Rlxl( Fal+2| 2% |VA¢|) 2Gg dz
Ty
—4f Rtﬁvlj\tp ¢2G\/§dz—f Ri| % G¢ Vg dz
Tk 2t Tx 2t(9x

— cO(R; ¢, A) = cRSW (g0, Ao),

where we note that Q4 = Q, + %F 4, and we also recall from [5] that

0A 0A
oV (= .
Re< % ®, A(,D> <6t,llm<VAgo, go)>,
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note that dA/0t can be replaced by any 1-form. For the third term,

I = f 2Rt[<daA FA>+2Re<VA 9 VA¢>+Re<8A¢, VA¢>
, p) or or

R

+ (315 + P Re(‘zﬁ, o))|#Gve d:
f 2r]| 24"+ o 2] |2 va e

f 2Rt<d(¢ G) A —A FA>\/_ dz

Tr

f 4Rt Re<d(¢ G) /\ - VA(,0>\/_ dz.

Tr

+2

Next we obtain
<dG/\a—A FA> <x" axn 24 FA>G <8A X 0 JF >G

ot’ ot’ at’ 2t Ox;
and p p p
9y _ (MK 9P _ (9% Xkgk
<dGA 8t’VA<p>_<2tdx A at’VA<p>G <at’ 2tVA(’0>G'
Thus
A 2
hz—f 2Rt”a— ‘9“’ ] 2Gyg dz
Tr

0A Xk a 2 ‘
- 2R R .
f t<8t 21‘(’)ka A>¢ G‘/gd“cf“ = {IF Al V2 d
f4RtR <6_ _Vk >¢ G\/_dz+cf 4Rt‘ IVaglpg dz
Tx ot 2t .
0A Xi (9 2 ,
> — Re(|22 4 2k dp  x
B fr t(‘ o 6xk ’ + Vi )¢ Gz dz
f Rt( 0 JFA +2ﬂvk¢ )¢2G\/§dz
Tk 2t Oxy, 2 A

0A|? Ao’ .,
R 2|—
f tH ot 0 ]¢ GVg dz
- CRS(W(QD(), Ao)

Here we have used Young’s inequality and the energy inequality (2.1). We also recall
that |f| < 4R? on Tk, and that R < R,. Finally, since, as in [12], R™![x]*’G < c¢(1 + G),
combining the working above (and recalling that # < 0 on T), one obtains (2.2). O

CoRrOLLARY 2.7. There exists a constant a > 0 such that
eRO(R; @, A) + cR*SW(¢y, Ag)

where ¢ here represents the same constant as appears in (2.2).
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Proor. The result follows from (2.2) by multiplying by e“® for some sufficiently large
a > 0, and integrating from R, to R;. O

Lemma 2.8. Suppose that (¢, A) € C*(Pg(y, s)) satisfies (1.3). Then there exist
constants & and Ry such that if R < R, and

O<t<s

sup R*™" f (IVagl + [Fal?) dV <6,
Br(y)

then
sup (|Vagl® +|Fal?) <256R™.
Prp2(y,s)

Proor. We begin by choosing ry < R so that

(R=r)* sup (Vagl” +IFal") = max| (R = )" sup (Vagl +IFaP)].  23)

Py (3.5) PG,

Let

eo = sup (IVagl® +|Fal®) = (Vagl* + [Fal*)(x0, t0)
Py (.9)

for some (xo, #9) € P,,(y, s). We claim that
eo < 16(R — o)™, (2.4)
Then

(R—1)* sup (Vagl® +|Fal®) < (R —ro)* sup (Vagl® +[Fal)

Pr(y,s) Pry(y:5)

<16(R-rp)*(R-ry)™* =16

for any r < R. Choosing r = %R in the above, we have the required result. We now

prove (2.4). Define pg = ¢, 4 and suppose by contradiction that pg < %(R —1p). We
rescale variables x = xy + poX and 1 = 1o + pgf and set

WX, 1) = p(xo + pok, to + pgh),
B(%, 1) = poA(xo + pok, fo + pg),

giving
IVsyl® = pgIVael’,
|Fsl* = pglFal’.
We define
e (%, 1) = |Fl* + Vsl = pg(IVagl* + [Fal),
so that

e (X,1) < e,,(0,0)=1.
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We compute
~ _ 4 v 2 F 2
sup e, (%, 1) =p; sup (IVagl” +[Fal")
P1(0,0) Pp, (x0,t0)

<pg  sup  (IVagl +IFaP)
PRerg)2(3,5)

R—ry\™* R+ rp\*
=ol(552) (R-ZZ2) s (Vagl +IFaP)
PRerg)2(355)

R—ry\™
Spg( > 0) (R - ro)'eq = 16,

where we have used that P, (xo, ) C Pgyr,2(y, ), and to get to the last line we have
used (2.3). This implies that

ep, = po(IVagl* +IFal") < 16
on P;(0, 0). By Lemma 2.3,
(2 +A)(|V P+ |Fal? + 1) < c(|Fal + D(Vagl? + |Fal*> + 1)
ot AP A Sc([r'g AP A .
Then

0 - 0
(5 + &), +0b) = (5 + A)JAVagl + IFaP)

< cpQ(Fal + D(Vagl + [Fal> + 1)
on P(0,0). Note that by assumption py < R, p(2)|F 4| is thus bounded by a constant.
Then
(c’% + A)(ep0 + pg) < c(ep, + pg)
for a constant ¢ > 0. We apply Moser’s Harnack inequality to give

1+p3:ep0(0,0)+péscf ey, dX di + cpg
P1(0,0)

= Cp(z)_m f (Vagl? + |Fal®) dV dt + cpg
P

0o (X010)

0<t<s

<c sup R*™ f (IVag? + [Fal®) dV + cR*
Br(y)
<co+ cR4,

where we have used the fact that py < R. Now if we choose R; and ¢ sufficiently small,
we have the desired contradiction. ]
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3. Singularity analysis

Let (¢, A) be a smooth solution on [0, 7). Suppose that there exists some R < R
such that

R*™ f (IVapl* + [F4?) dV <3,
Br(y)

for all xo € M and fy = T. Then by Lemma 2.8, [V 4¢|* and |F 4| are uniformly bounded
on M x [0, T). As in [5], using Lemma 2.4 we can show that ¢ and A are smooth at
t =T. In conjunction with the local existence result, we can extend (¢, A) to a global
smooth solution.

We define the singular set

T= ﬂ Xo € M : lim sup R*™ f (IVa@l* + [Fal») dV > 5}.
0<R<R; =T By (x0)

By the above discussion, (¢(T'), A(T)) is smooth on M\Z. Let £’ be defined as for X,
but with ¢ replaced by a smaller constant. Clearly ¥ C ¥’. Furthermore, if x € M\Z
then by smoothness at x, x € M\X’. Thus replacing ¢ with with any smaller constant
defines the same set. If x € M\X, then by Lemma 2.8, Bg(x) € M\X for some R. Thus
X is closed. Unlike in the four-dimensional case [5], we cannot conclude at this point
that the singular set is finite. We can instead show that X has finite (m — 4)-dimensional
Hausdorff measure H™*. Explicitly, for xy € Z,

6 < lim sup R*™ f e(p, A) dV (3.1
Br(x0)

t—T

for any R. The family ¥ = {Bg(xq) : xo € X} covers Z, and by Vitali’s covering lemma,
there exists a finite subfamily ¥’ = {Bg(x;)} such that any two balls in ¥ are disjoint
and {Bsg(x;)} covers X. Then using (3.1),

5m
TRy < == Tim sup f (Vagl + [Fal) dV
> 0 & Br(x))

t—T
< CSW(go, Ao),

where {Bsg(x;)} covers X. It follows that H"4(Z) is finite, as claimed.

To establish Theorem 1.1, we show that £ = (. Suppose by contradiction that X is
nonempty. Since the flow is smooth on [0, T), we can find sequences x, € M, t, — T,
R, — 0 such that

§ > RE"SW i, (o (@(tn), Alty))

0
= sup  R7SWa, (o(9(0), AD) > 5 (32)

0<t<t,,xeM

for each n, where SWg, (. is defined by

SWi(p, A) = f

1 S 1
IVagl® + SIFal + Zlol + Zlel* dV.
Ba(o) 2 4 8
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By the compactness of M, passing to a subsequence we have x,, — xy where x( € £ by
Lemma 2.8. We define the region

D, ={(y, 8) : Ryy + X, € Biany2(x), 8 € [=R; 1, 01} =: U, X [-R},*1,,, O].

Note that as n — co, D,, = R™ X (—c0,0]. Furthermore, truncating the sequence if
necessary, we can arrange that Bj/2(x,) C Biar(xo). We rescale to

@n(y, 8) = Ry + Xy, Ras + 1),

An (D, $) = RyAR,Y + Xy, Ros + 1),

which are defined on D,,. We have

IVa,¢0* = R2V 40,
|Fa,l* = RYFAI.

If we choose our local coordinates on B (xp) to be orthonormal coordinates, then
the metric on the rescaled space is simply g;; = d;;. From (3.2),

S 1 o
f RV ou* + [Fo P + R;‘(—|son|2 + —mr‘) dy> 2 (3.3)
B1(0) 4 8 2

for each n and s = 0. Next, from Lemma 2.8 and (3.2),

sup(IVa, Rugal® + |F 4,19 < K1, (3.4)
Dn

where K is independent of n. We consider the rescaled equations

OR,p 0p y 1
o =Raos ==V, Va,Ragn = 7 (RS + IRupal* IRuon,
0A 0A
L =Ry = —d'Fy, — iIm(Va,Ru@n, Rupn). (3.5)
s ot

Noting the similarity of these equations to (1.3), we use (3.4) and results identical to
Lemma 2.4 and Corollary 2.5 to find that

sup(V Ryl + V) Fa, ) < Kias
D,

for each k > 0. Thus by a result of Uhlenbeck ([15, Theorem 1.3]; see also [6]), passing
to a subsequence and using an appropriate gauge, we have C* convergence R,¢, —
@ = 0 (since ¢, is bounded), A, — A where @ and A are defined on R” X (—co, 0]. Then

as n — oo in (3.3),
0
f Fal dy> 2 (3.6)
B>(0) 2
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for s = 0. Since R,¢, — 0, from (3.5), A satisfies the equation

0A
— =-d'F;
Os A

on R™ X (—co, 0]. Using the Bianchi identity dF ; = 0, this implies that

org
s

on R” X (—o0,0], where A=d"d +dd*. Since the solution to the heat equation
converges to constant data in infinite time, the only possible solution to this equation
satisfying (3.4) is F; = constant. See, for example, [3, Theorem 9 of Ch. 2]. In the
notation of [3], choose k=1 and ¢ =0, note that for us [lullL () < cr"™?, and let
r — oo.

= —AF;

4. Proof of Theorem 1.1

As in [9, 14], the term .% (R; ¢, A) in Lemma 2.6 can be used to further analyze
the singularity (see, for example, [14, Lemma 3.3.2]). However, we are already in a
position to show that the existence of a singularity implies a contradiction. Noting that
Gx,1,) = CR™on Byg (x,) X [t — 4(rR,)?, t, — (rR,)*], we consider for any r € (0, o),

r f |F4* dy ds
B, (0)x[—4r2,—12]

= lim (rR,)*™ f |Fal? dV dt
=00 Bar (xp)X[1, _4(ar)2stn_(ar)2]
<c lim(rR,)* f |FAPPG(y,.,) dV dt
n—eo Bar (X,,)X[ln*4(ar)2,l,,*(ar)2]
<c lim (rR,)’ e(p, A)G y.1yd* dV dt.
n—eo Tyr, (x0,T)

However, the latter expression is bounded by Lemma 2.6. Thus

f |F/;|2 dyds < o2,
B O)x[~412,—12]

But since |Fj| is constant and nonzero by (3.6), this implies that r* <c. This is
impossible for r sufficiently large. This proves Theorem 1.1. O
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