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1. Introduction. The integral operator which we will consider in this paper is the
operator T denned for suitably restricted functions / o n (0, °o) by

x-t)^f{t)dt, (1.1)

where x>0 and the integral is taken in the Cauchy principal value sense at t = x. This
operator plays a considerable role in Wiener-Hopf theory; see [2; Chapter 5].

Since T is clearly the restriction to (0, <») of minus the Hilbert transformation applied
to functions which vanish on (—«>, 0), it follows easily from the theory of the Hilbert
transformation, as given in say [6; Theorem 101], that T is a bounded operator from
Lp(0, °°) to itself for K p < oo.

The spectrum of T on L2(0, °°) was found, first by Koppelman and Pincus [3] and more
recently, using the Mellin transformation, by Del Pace and Venturi [1] to be the closed
segment of the imaginary axis from —i to i, while its spectrum on Lp(0, °°) was found by
Widom [7] to be the circular arc with endpoints ±i passing through the point —cot nip.

In this paper we shall use the Mellin multiplier technique that we developed in [5] to
study the spectrum of Ton the spaces 3?ttp and S£W4l,p defined in that paper. Our notation
will be that of [5]; other particular notations from [5] that we shall use are ?!,,, M, M and
[X]. We shall show that the spectrum of T on £Stlp, where K p < ° ° , 0 < , u < l , is the
circular arc with endpoints ±i passing through the point - c o t ^ , and that on ifw (jp,
where w e ?Ip, the spectrum is a subset of this arc. This is achieved in section three, and is
consistent with Widom's result since Lp(0,°°) = J£Upp. Naturally we must first study the
boundedness of Ton iE^p and 2£mtlijP and this is done in section two.

The operator T can be transformed by elementary changes of variable into the finite
Hilbert transformation, or Tricomi operator, Tab where for -°°<a<b <°° and suitably
restricted / .

(TaJ)(x) = n~l I (x - 0"'/(0 dt, x e (a, b), (1.2)
Ja

the integral again being a Cauchy principal value at t = x, and in section four we exploit
this fact to determine the spectrum of Tah on a class of spaces.

In section five we make some concluding remarks, trying to put our technique in its
general setting.

2. Boundedness of T. In this section we show that if K p < < » , coe?lp and
O<;U<1, then T is a bounded operator on i ?^ . , , to itself. However, first we need a
Lemma.
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LEMMA. Ifl<p<«>, 0<n<l,Te [Se^J. Iff e i?,,,p where Kp ^ 2 and 0 < n < 1,
then

(MTf )(s) = -cot jrs(Mf)(s), Res = ii. (2.1)

Proof. From [6; Theorem 90], it follows that i f / e L2(0, °°), then for x > 0.

(7]0(JC) = — ^r"1 f /(f)log |1 - */r| dr
ax Jo

But then

(7/)(x) = (In)-1 — /(01og|l-^2/^2 |^+ /W'og|(f-A:)/(r
di Uo Jo

and hence from [4; (3.5) and (3.6)]

or, on L2(0,oo),
\ + H_) . (2.2)

But from [4, Theorem 3.1], if \<p <o°, H+ e [^lyP] for -1<ft < 1 and //_ e [i^>p] for
0</ i<2. Thus from (2.2) if Kp <°°, 0<ju < 1, Te^^J.

Also, from [4; Theorem 3.1 and (3.7) and (3.8)], i f / e [ i ^ J where

(MTf)(s) = - i ( - t a n ( ^ / 2 ) + cot(«s/2))(^/)(j)) = -cot ns{Mf){s),

Res = n, and (2.1) follows, so that the Lemma is proved.

THEOREM 2.1. Suppose Kp < ~, w e 9lp anrf 0 < ,u < 1. T/zen T e [ i ? ^ J .

Proof. If m(s) = -cot ^5, then m is holomorphic in the strip 0 < Re s < 1. It is well
known and elementary that if small circles of equal positive radius are" drawn about the
poles of cot ns, then in the closure of the exterior of those circles |cot ns\ is bounded and
thus if 0 < 0! = a2 < 1, then in o1 ^ Re s ̂  o2, \m(s)\ is bounded. Further, if 0 < n < 1,
\m'(ji + it)\ = \n esc2n(p + it)\ = O(e~2^) = O(\t\~l) as |f|->».

Hence m e si with o"(m) = 0, j8(/n) = l, and thus by [5; Theorem 1], there is a
transformation //m e [ ^ ^ J for K p < ° ° , co e %p and 0 < ju < 1, such that if/eif^p,
K p g 2 , 0 < J U < 1 , then

(MHJ)(s) = /n(5)04O(s) = -cot ns(Mf)(s), Res = ^i

But then, from (2.1) on ££^p for K p ^ 2 , 0 < J U < 1 , Hm = T, and thus extending T to
•£«,,„,, by denning it to be //m, 7 e [ ^ . ^ J for K p < « , co 6 ?Xp, 0 < /i < 1.

3. The spectrum of T. Let us denote the circular arc with end points ±i passing
through the point -cot^rw by o(n). Clearly Xeo{n) if and only if k = ±i or
arg((A - i)l{\ + i)) = 2n\i, so that o{\i) is clearly an arc of the Steiner circle of the second
kind with poles ±i. The Theorem below shows how the spectrum of Tin £M<flJ) is related
to o(fi).
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THEOREM 3.1. Suppose Kp <<*>, co e 2lp and 0< n < 1. 7Vien on •2>
t0,,,,p ^*e spectrum

of T is a subset of o([i), while on A,, p tfie spectrum of T is equal to o(fi).

Proof. Suppose Xio(fi). Then there is a y, 0 ^ y < l , y^ju, so that
arg((A - i)/(X + j)) = 2ny. We show first that if mk(s) = A + cot ;M, then l/mA e si, with
a(l/mA) = y, /3(l/mA) = y + l i f y < f i and with a-(l/mA) = y - 1, f$(llm>) = y if y > ft.

Suppose that O^y<jU. Then mk(s) has no zeros in the strip y < R e s < y + 1. For
mk(s) has a zero on the line Re s = y, namely at the point

s = (2myl log((A - i)/(X + i)) = y + (fcri)"1 log |(A - i)/(A + i)|,
and it is easy to see that cot ns takes on a value only once in a strip of the form r) <
Re 5̂ =17 + 1. Thus (i) l/mk(s) is holomorphic in the strip y < R e s < y + l. Suppose
y < a , ^ a 2 < y + l . Then — cot Jt(o2 +it) = (i cot no2 coth nt + I)/(cot Jto2 —i cothjtt) =
(tanhnt + cot no2)/(cot jzo2tanh M — i), and thus as t increases from — oo to oo,
iv = —cot n(o2 + it) describes the arc arg (w — i)/(w + i)) = 2JIO2 from —i to i. Similarly,
as / runs from °o to -°°, w = -cot n(ox + it) describes the arc arg((w - i)/(w + i)) = 2nox

from i to -i. Thus since -cot n(o + it)—* ±i as f-» ±oo uniformly in a for o^o^ o2,
the values taken on by —cot ns in the strip CT] ̂  Rei = CT2

 n e m the set
W = {w | 2KO^ ^ arg((w - i)/(w + i)) ^ 2no2)

and thus since arg((A — t)/(A + /)) = 2ny and y < ox < o2 < y + 1, A is at a positive
distance from W so that |A + cot JW| is bounded away from zero in o^ ^ Res ^ o2. Hence
(ii) |(l/mA(s)| is bounded in o1^-Res^o2. Finally (Hi) if y < a < y + l and Res =

o, — (mk(s))~l = x(mx(s))~2 csc2 ns and \mk(o + it)\~2 is bounded and |CSC2^(CT + Z7)| =

O(H~') as \t\->°°. Thus, if 0 ^ y < / i , llmk(s)si with <x(llmk) = y, j8(l/mA) = y + 1.
Similarly if fi < y < 1, llmx(s) e ̂  with a-(l//nA) = y — 1 and /3(l/mA) = y.
But obviously mk(s) is the multiplier of XI - T, and hence by [5; Theorem 1] since

a(llmk)<n<P(l/mk), (XI- T)'1 exists and is in [X^p]. Thus if X^o(fi), X is in the
resolvent set of T and hence the spectrum of T is a subset of a(n).

To show that on S£^,p, o(n) equals the spectrum of T, suppose first that l < p ^ 2 ,
0 < jU < 1 and that A e o(n), X4 ±i. Then if A is in the resolvent set of T, for any g e i?MfP

the equation (XI — T)f = g has a solution / e i ^ p . Taking Mellin transforms it follows
that (Mf)(s) = (Mg)(s)/(X - cot ns), Res = fi. Since M maps i^,p into Lp.(-a>, oo), where
p' =p/(p-l), it follows that for any ge^^p, (Mg)(n + it)/(X +cot n(n + it)) e

However since arg((A - i)/(A + i)) = 2np, X + cot ^5 has a simple zero at s =
fi + (2m')~x log |(A - i)/(X + i)\ = n + it0. Choose real numbers a and b so that a<to<b
and let

g(x) = Jt-iJC-»'.-i'-(«+'')i°8* Sin(i(6 -
Then g e t£iUP since

f
\sm(^(b-a)t)/t\pdt<oo
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Also
rR rlogft

lim xfl+i'-lg(x)dx = jz-1 lim cos(/ -±(a + b)u sin^(6 - a)udulu
R-.=c Jl/R R^=c J-\ogR

Hog/?

= (2JT)~1 lim (sin(? - a)u - sin(f - b)u) dulu = {{sgn{t -a)- sgn(f - b))
R^x J-\OgRog/?

!

0, t<a

\,a<t<b

O,t>b

Thus (Mg)(n + it) equals the characteristic function of (a,b) a.e., and hence since, as
noted, {Mg)(ii + ii)l(k + cot n(fi + it)) is in Lp.(-°°, oo); we must have

rb

|A + cot n{n + it)\~"' dt < °°,

a contradiction.
Hence A cannot be in the resolvent set of T and must then be in the spectrum of T,

and since the spectrum is closed a(fi) must be in the spectrum of T, and consequently
that spectrum is o(n).

If p >2 , then the same result follows since T and its adjoint have the same spectrum,
the adjoint of T is —T, the adjoint space of LMP is L[_Mp., p' <2 and CT(1 — fi) = — a(ju).

One might remark that it is easy to see that on i?/ i p , 1< p<°° , O<|U<1, the
spectrum of T consists entirely of continuous spectrum. Also, it is easy to show that if
f(x) =x~i, then Tf = 0. Hence since Qlo(T) on LM ftp, Kp <«>, 0 < ^ < 1, unless JJ. =\,
it follows that flLmilp, Kp<™, 0 < / i < l unless n = \, and thus if v > — §, v =̂  - 1 and
co e %p where Kp < °o, then

f
4. The spectrum and boundedness of Tab. I f / i s suitably restricted and g = Tabf

and if we let F(x) = (x + l)~lf((bx + a)/(x + 1)), and G(x) = (x + l)~'g((6jc + a)/(x '+
1)), then G = TF. The following theorem follows immediately.

THEOREM 4.1. Suppose K p < » , o» e 9(p and 0 < ju < 1. T/ien o« r/ie space of
functions f, measurable on (a,b), and normed by the norm

to itself, Tab is a bounded operator and its spectrum is a subset of cr(ju); if co(x) = 1, the
spectrum of Tab is o([i).

5. Concluding remarks. The technique that we have used here to analyze the
spectrum of T seems to be of considerably more general applicability. Indeed if m e d
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and Tm is the transformation associated with m by [5; Theorem 1], and if mA = A - m ,
where A eC, then clearly XI - Tm is associated with mx and mk e s&, so that if l/mA e .stf
and max(u(m), a(l/m>))<n<mm((x(m), a(l/mk)), then if K p < o o and co e *$lp,
(A/ — Tm)~l e [iPoj.v.pJj so that A is in the resolvent set of Tm.

The only barrier to this method seems to be showing that a(\lm>)<n<fi{\lmx)-
which requires that the range of m([i + it), — °° < t < <», be known. In the case of the T of
sections one to three, it was possible to find this because of the simplicity of the
corresponding m, but for a more complicated m this could be very difficult.
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