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Abstract

The problem of an anisotropic elastic slab containing two arbitrarily-oriented copla-
nar cracks in its interior is considered. Using a Fourier integral transform tech-
nique, we reduce the problem to a system of simultaneous finite-part singular in-
tegral equations which can be solved numerically. Once the integral equations
are solved, relevant quantities such as the crack energy can be readily computed.
Numerical results for specific examples are obtained.

1. Introduction

Anisotropic materials have numerous applications in modern technology.
Fibre-reinforced composites which are widely used in engineering can be
reasonably modelled as anisotropic and inextensible along the fibre direc-
tion (see, e.g., Spencer [15]). The determination of elastic displacements and
stresses in cracked anisotropic materials is, therefore, a subject of consider-
able practical importance.

The static displacements and stresses in an infinite anisotropic elastic
medium containing a single planar crack were obtained by Stroh [16]. From
a practical point of view, the usefulness of these displacements and stresses
is necessarily restricted to situations where the crack interacts negligibly with
the outer boundary of the material. Clements [5] and, more recently, Ang
[2, 3] examined the interaction of the crack with the boundary by placing
the crack in an infinitely long anisotropic elastic slab. The plane containing
the crack is perpendicular and parallel to the boundary of the slab in [2]
and [5], respectively, while in [3] it is arbitrarily inclined to the boundary.
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Other related work on cracked anisotropic slabs may also be found in Ang
[4], Clements and Tauchert [6], and Hill and Clements [9].

The problem of two or more coplanar cracks in an infinite transversely-
isotropic material was examined by Konishi [12] and Krenk [13]. Dhaliwal
[7] studied the interaction of two coplanar cracks in an infinitely-long or-
thotropic slab, with the cracks being parallel to the boundary of the slab.

The present paper considers the problem of two coplanar cracks lying on
an arbitrary plane in the interior of a general anisotropic elastic slab. Through
the use of a Fourier integral transform technique, the problem is reduced to
a system of simultaneous finite-part singular integral equations, which can
be solved numerically by using collocation methods described by Loakimidis
[10] and Kaya and Erdogan [11]. Once the integral equations are solved,
quantities of interest such as the crack energy can be calculated readily. Nu-
merical results for specific cases of the problem are obtained by solving these
integral equations.

2. Statement of the problem

Referred to an Oxlx2xJ Cartesian coordinate system, consider an aniso-
tropic elastic material which occupies the region between the planes x2 = h
and x2 — -h , where h is a given real positive number. In its interior, the slab
contains two coplanar cracks a < \xx sin 6-x2 cos 0\< b , x{ cos 8+x2 sin 6 =
0, for all x3, where the angle 8 lies between 0° and 360° , and a and b
are real positive numbers with b\cosd\ < h. That is, a normal vector to
the plane containing the cracks is given by [cos0, sin#, 0] (see Figure 1).
The planes x2 — h and x2 — -h are free of tractions, and the cracks are
opened up by internal stresses which are independent of the coordinate x , .
The problem is to determine the displacements and the stresses throughout
the slab.

3. Equations of anisotropic elasticity

The equilibrium equations for anisotropic elasticity are given by the system
of partial differential equations

c

where the Latin subscripts take the values of 1,2 and 3, xk are the spatial co-
ordinates with respect to a Cartesian coordinate frame, uk are the Cartesian
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FIGURE 1. A pair of arbitrarily-oriented coplanar cracks in an anisotropic slab.

displacements, and cijkp are the elastic moduli of the material. The elastic
moduli cj.. satisfy the symmetry conditions

Cijkp ~ Cjikp ~ Cijpk = Ckpij > (3-2)

and the equality
cufcAAp>0> (3-3)

where hi} (i, j = 1, 2, 3) are any arbitrary real numbers, not all of which
are zero. The usual convention of summing over a repeated index is assumed
here only for Latin subscripts.

If the displacements uk are free of the coordinate x3, then (3.1) admits
solutions of the form (Ang [3])

(3.4)

where Re denotes the real part of a complex number, the sum over a is
from 1 to 3, fa{za) are differentiable functions of za, za = (ajl + raaj2)Xj ,
p is a real parameter, atj - au{p) for our purpose here are taken to be

" sin p cos p 0"

[*„•(/>)] =u
- cos p sinp 0 (3.5)
0 0 1

TQ = Ta(p) are the solutions with positive imaginary parts of the character-
istic equation,

a{x){c
nkl

ci2kl} + a {x)cakl\ = 0, (3.6)
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where <J(T) = (a2i + *a22)/(an + ra12) , and Aka = Aka(p) are the nonzero
solutions of the system

Kki +ff(O(cn*2 + W + ^ J W ^ = 0. (3.7)
Note that the inequality in (3.3) is violated if (3.6) admits a real solution.
Hence, the solutions of (3.6) are complex and occur in conjugate pairs. It is
assumed here that they are distinct.

Using the generalised Hooke's law

^ik = clkmp^, (3.8)
p

we find that the Cartesian stresses er corresponding to the displacements in
(3.4) are given by

= R e (3.9)

where the prime denotes differentiation with respect to za and LjJa =

4. Solution of the problem

Our mathematical objective is to solve (3.1) subject to the conditions

ok2{X\, h) = okl(
x\' -h) = 0 for - oo < x, < oo, (4.1)

and
ap2lfi)akp^-pk(ap\(e)xp) ™ap2(e)xp^0fora<\apl(9)xp\<b, (4.2)

where Pk(x) are suitably prescribed functions of x . For our discussion here,
we assume that the Pk{x) are even functions of x.

Let the displacements and the stresses be respectively given by

M, = Re

+ H{ap2{0)xp)Aka(d)C£(

H(-ap2{6)xp)Aka{8)G-(e) exp(-tf zo(0))} d{, (4.3)

and

°fcm = -

H{ap2{d)xp)Lkma{d)G+
a

(4.4)
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where <f> — n/2, i = (—l)1^2, H(x) is the Heaviside unit-step function and
Ea(£) , G*(£) and G~(£) are arbitrary functions yet to be determined.

Our choice of uk and akj in (4.3) and (4.4) requires us to impose the
continuity conditions

M 0 ) % ] + - K 2 W % r = O for|flpl(0)jg>O, (4.5)

and

K 1 + - [ " J " = O for(Kjap l (0)xp |<a, b < \apl(0)xp\ < oo, (4.6)

where [f(xi , x2)]
+ and [f{x{, x2)]~ denote the limiting values of f(xl, x2)

as aj2(6)Xj approaches 0 from above and below respectively.
From (4.4), it is easy to verify that conditions (4.5) hold if we choose

Gt(O = Map(6)¥p(i) and G~({) = Map(d)Wp(Z), (4.7)

where the bar denotes the complex conjugate of a complex number, y/
are arbitrary functions yet to be determined and [M p(6)] is the inverse
of[aj2(d)Lkja(d)].

Using (4.3) and (4.7), we find that

(4-8)

Since Pk(x) are assumed to be even functions of x, in order to satisfy
conditions (4.6), it is sufficient to let

VPtt) = i I rp{t)ca&{£t)dt, (4.9)
J a

where rp(t) are real arbitrary functions to be found. Then, from (4.8), we
obtain

a

for a < apl(6)xp < b. (4.10)

By using a Fourier inversion theorem which is given in Sneddon [14], we
find that conditions (4.1) are satisfied if and only if

f ° ok2{Z, /t)exp(-itf)d{ = I" °k2{Z, -/Oexp(-iA£)d£ = 0, (4.11)
J—oo J—oo-oo J — oo

where X is some real constant.
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Using the result (Gradshtein and Ryzhik [8])

r°° x sin(a.x) cos{bx) dx n un.o\
Jo x + 0 2x' + fi1

forO<Z><aand Re£ >0, (4.12)

we find that, from (4.4), (4.7) and (4.9), conditions (4.11) can be written as
(for X > 0)

- Zk2a{cj>)Ea

a

x / r(t)cosh[UtDa(d))dt, (4.13)
Ja

i - lwhere Da{0) - [an{6) + xa(d)al?(9)]-1.
Equations (4.13) (together with their complex conjugates) can now be

solved for Ea(X). We obtain (for A > 0)

Ea(X) = cxp[iXhta(<f>)] f Yak(X)Kkp(X, t)rp(t) dt, (4.14)
J a

where [l^Qfc(A)] is the inverse of [Zak(X)] and

:,t) = r

x cxp[-iXhDp(d)(-an(d) + xp{d)an{d)))

~ ^aq^)D2p{e)Lkla{ct>)Lq2p{e)Mfip{d) cosh[M^(0)]

x exp[/AA{Z?/?(e)(-«12(0) + Tfi(e)an(8)) - 2rQ(<f>)}]} , (4.15)

where Safi denotes the Kronecker-delta.
From (4.4), (4.7), (4.9) and (4.14) together with the limit (which can be

worked out using a results in Gradshtein and Ryzhik [8])

l im / 2Zexp{-£y)cos(£t)cos(Zu)dZ = -(t-u)~2-(t + u ) ~ 2 , (4 .16)
y->0+ Jo
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conditions (4.2) give rise to the system of simultaneous finite-part singular
integral equations

/"* r (t) dt rb ( r (t) \

T 7T^2 + [77th^ks(t,u)rs{t))dt = -2Pk{u) fora<u<b,
Ja \t — U) Ja \{t + U) j

(4.17)
where ^ denotes that the integral is to be interpreted in Hadamard finite-part
sense and

x exp[i£hTa(<j))] cosh^t*?!,(6) + a2l {Q)ia

(4.18)

Equations (4.17) can be solved numerically by employing the collocation
techniques described in [10] and [11]. We make the approximation

r*\ /i ( t - a - d \ 2 ^ „ (t-a-d\ . t ,
r.{t) K, \ 1 - -z > a. Un , T for a < t < b,

V V d ) ^ » - ' V d J
(4.19)

where 2d — b — a, Un(x) is the nth order Chebyshev polynomial of the sec-
ond kind and a"k {k — 1, 2, 3 ; n = 1, 2, ... , N) are constant coefficients
to be determined.

Substituting (4.19) into (4.17), we obtain for - 1 < j < 1
N a"

£ -JL{[-nnUn_i{s) + Fn(s)]dkq + Jn
kq{s)} = -2Pk(ds + a + d), (4.20)

where

F (s) — I —

JkAs)= f d2\/7^?Un_l(r)£lk(rd + a + d,sd + a + d)dr.(4.2l)
J-\

The integrals in (4.21) can be accurately calculated using the numerical
quadrature (25.4.40) in Abramowitz and Stegun [1].

Choosing s in (4.20) to be given by

s = s=cos({2p- \}n/{2N)) forp = 1,2, ... , N, (4.22)
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we find that equations (4.20) give rise to a system of 3N linear algebraic
equations in (3N unknowns) an

k . The constants an
k can be determined by

solving these equations.

5. Calculation of crack energy

The crack energy U for the crack a < x{ sin 6 - x2 cos 6 < b, xl cos 6 +
x2 sin 9 = 0, is defined by the integral

(5.1)

where Pk(<f>) give the traction distribution over the crack surface and Auk(<f>)
are the differences between the displacements uk on the top and the bottom
faces of the crack as given in (4.10). On a practical note, the crack energy is
an important quantity for examining the stability of the crack.

The use of (4.10), (4.19) and (5.1) yields
U * \ YAAkWM»pW ~ Ak/l(0)Mpp(d)}id

p / ^ k n x (5.2)

For the special case where Pk(x) = Tk , where Tk are constants, using the
orthogonality relation for Chebyshev polynomials, (5.2) becomes

u « T E ^ V ^ P W " ~Zk,QW»W))id«,Tk . (5.3)

6. Specific examples

In this section, the analysis in Section 4 is applied to solve a problem
involving a particular transversely-isotropic slab which contains two coplanar
cracks.

The elastic behaviour of a transversely-isotropic material is characterised
by five independent constants A, N, F, C and L. If the transverse planes
of the material are parallel to the Ox2xl plane, the only nonzero cjJkp are
related to these five constants by

^ = C ' ^ = C!111> & = C1122 = C2211 = C1133 = C3311 '

(A - N)/2 = c2323 = c3232 = c3223 = c2332, (6.1)

= C1212 = C2121 ~ C2112 = C1313 = C3131 = C3113 -
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Consequently, the system (3.1) reduces to

ex] dx\

d] ldxdxdx\ dx] ldxldx1

and the characteristic equation (3.6) becomes

^{A - N)o2{x) + L\ [ALO\T) - {F2 + 2FL - AC)a2(r) + CL] = 0. (6.3)

If we take
2 A), (6.4)

\P)
i
0

V2(P)
i
0

0
0
1

then T, and T2 can be obtained from the roots of the quartic factor in a(x)
in (6.3). From (3.7), we have

(6.5)

where Vk(p) = -ia{xk{p)){F + L)/{C + La2{tk{p))). Other constants such
as Lija and Map which are of relevance to our computation here can be
calculated directly using (6.5).

Firstly, consider the case where the cracks are subject to an antiplane de-
formation, i.e. we take

Px = 0 , P2 = 0 and P3 = so(sin 6 + cos 0), (6.6)

where sQ is a real positive constant.
For the antiplane case, the coefficients a" and a2 are zero. We solve

(4.20) for dj , and use (5.3) to compute the non-dimensionalised crack energy
LU/(s0d)2 . In our computation, we employ no more than 10 terms in the
series approximation (4.19). For R — 2L/(A — N) = 1.334 (titanium),
a/d = 0.250 and h/d = 2.500, 3.500 and 4.500 as well as for h/d tending
to infinity, we plot LU/(s0d)2 against 6 in Figure 2. From Figure 2, it
is obvious that, for a fixed value of 8, the crack energy increases as h/d
decreases. Also, note that, for a given value of h/d, the crack energy is a
maximum when 6 — 80, where 0 < 8Q < n/2. For the case where h/d
tends to infinity, 8Q = n/4. For the cases considered here, it is apparent
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FIGURE 2. Variations of LU/{sod) with 0 for a/d = 0.25 , R = 1.334 (titanium)
h/d = 2.50, 3.50 and 4.50 as well as hjd tending to infinity.

that decreasing the value of h/d has the effect of decreasing 60. For aid —
0.500, h/d = 5.000 and R = 0.500, 1.000 (isotropic case) and 2.000, the
non-dimensionalised crack energy is plotted against 6 in Figure 3. It is clear
from Figure 3 that the crack energy for R = 1.000 is less or greater than that
for R = 2.000 or R = 0.500 respectively.

We now consider the case where the cracks are opened up by constant
tensile tractions acting on their faces. Specifically, we choose Pk(x) as

Pl = r o cos0 , P2 = To sin 6 and (6.7)

where To is a given positive constant.
To obtain some numerical results, we use the elastic constants for titanium.

These constants are given by A/L = 3.469, N/L = 1.970, C/L = 3.876
and F/L = 1.478. Using these constants, we solve (4.20) and employ (5.3)
to calculate the non-dimensionalised crack energy LU/(TQd)2. The results
for a/d — 0.250 and selected values of 6 and h/d are given in Table 1.
From the table, it is obvious that for a given value of 6, decreasing h/d
has the effect of increasing the crack energy. Note that for h/d = 4.500 as
well as for h/d tending to infinity, the crack energy is an increasing function
of 6 while for h/d = 2.500 it is a decreasing function of 6. In Table
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FIGURE 3. Variations of LU/(sod) with 6 for ajd = 0.25, R = 1.334 (titanium) and
h/d = 2.50, 3.50 and 4.50 as well as h/d tending to infinity.

2, for 6 = n/3 and h/d = 3/2, we examine the effect of changing a/d
(0 < a/d < 1) on the crack energy LU/(T0d)2. There is a critical value of
a/d for which the crack energy is minimum, and as a/d tends to 0 (from
above) or 1 (from below) the crack energy tends to infinity.

TABLE 1. Non-dimensionalised crack energy for a/d = 0.250

and selected values of 0 and h/d (plane problem involving a titanium slab).

LU/(Todf
h/d

e

0°

30°

60°

90°

2.500

1.656

1.584

1.527

1.474

3.500

1.316

1.358

1.398

1.392

4.500

1.243

1.284

1.333

1.341

h/d ->oo

1.157

1.173

1.206

1.223
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TABLE 2. Non-dimensionalised crack energy for 0 = n/3 , h/d = 3/2

and selected values of a/d (plane problem involving a titanium slab).

295

a/d

LU/(Tod)2

0.100

2.300

0.200

2.117

0.300

2.090

0.400

2.150

0.500

2.286

0.600

2.508

0.700

2.823

0.800

3.224

0.900

3.692
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