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Irreducible Tuples Without
the Boundary Property

Sameer Chavan

Abstract. We examine spectral behavior of irreducible tuples that do not admit the boundary prop-
erty. In particular, we prove under some mild assumption that the spectral radius of such an m-tuple
(T1, . . . ,Tm) must be the operator norm of T∗

1 T1 + · · ·+ T∗
mTm. We use this simple observation to en-

sure the boundary property for an irreducible, essentially normal, joint q-isometry, provided it is not
a joint isometry. We further exhibit a family of reproducing Hilbert C[z1, . . . , zm]-modules (of which
the Drury–Arveson Hilbert module is a prototype) with the property that any two nested unitarily
equivalent submodules are indeed equal.

1 Preliminaries

For the set N of non-negative integers, let Nm denote the cartesian product N×· · ·×N
(m times). Let p ≡ (p1, . . . , pm) and n ≡ (n1, . . . , nm) be in Nm. We write |p| :=∑m

i=1 pi and p ≤ n if pi ≤ ni for i = 1, . . . ,m. For n ∈ Nm, we let n! :=
∏m

i=1 ni !.
For a complex, infinite-dimensional, separable Hilbert space H, let B(H) denote

the Banach algebra of bounded linear operators on H. By a commuting m-tuple
T on H, we mean a tuple (T1, . . . ,Tm) of commuting bounded linear operators
T1, . . . ,Tm on H. For a commuting m-tuple T, we interpret T∗ to be (T∗1 , . . . ,T

∗
m),

and T p to be T p1

1 · · ·T
pm
m for p = (p1, . . . , pm) ∈ Nm.

For definitions and basic theory of various spectra including the Taylor spectrum,
the reader is referred to [10]. For T ∈ B(H), we reserve the symbols σ(T), σap(T),
and σe(T) for the Taylor spectrum, approximate point spectrum, essential spectrum
of T respectively. It is well known that projection property holds for Taylor and
essential spectra.

Let q denote the Calkin map from B(H) into the Calkin algebra B(H)/K(H),
where K(H) denotes the ideal of compact operators on H. The symbols r(T) and
re(T) stand for the spectral radius of T and q(T) respectively. Also, ‖T‖ (resp. ‖T‖e)
denotes the operator norm (resp. quotient norm) of T (resp. q(T)).

Given a commuting m-tuple T = (T1, . . . ,Tm) on H, we set

(1.1) QT(X) :=
m∑

i=1
T∗i XTi

(
X ∈ B(H)

)
,

and Q0
T(I) = I. Note that for any integer n ≥ 0, Qn

T(I) =
∑
|p|=n

n!
p! T
∗ pT p.
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10 S. Chavan

Note further that
re(T) ≤ r(T), ‖QT(I)‖e ≤ ‖QT(I)‖.

Let T be a commuting m-tuple of bounded linear operators T1, . . . ,Tm on H. By
the C∗-algebra generated by T (in symbol, C∗(T)), we mean the norm closure of all
non-commutative polynomials in the (2m)-variables T1, . . . ,Tm,T∗1 , . . . ,T

∗
m. By a

unital operator space, we mean a pair S ⊆ B consisting of a linear subspace S of a
unital C∗-algebra B, which contains the unit of B and generates B as a C∗-algebra,
B = C∗(S). An irreducible representation of B is a unital homomorphism r : B →
B(H) such that r(B) is an irreducible subalgebra of B(H). An irreducible repre-
sentation r : B → B(H) is said to be a boundary representation for S if r|S has a
unique completely positive linear extension to B, namely r itself. Recall that φ from
B into another C∗-algebra A is completely isometric if φn : Mn(B) → Mn(A) given
by φn([ai, j]) := [φ(ai, j)], [ai, j] ∈ Mn(B), is isometric for all n ≥ 1.

We find it convenient here to invoke Arveson’s Boundary Theorem for ready ref-
erence.

Theorem 1.1 ([1, Theorem 2.1.1]) Let S be an irreducible set of operators on a
Hilbert space H such that C∗(S) contains the identity and C∗(S) contains the algebra
K(H) of all compact operators on H. Then the identity representation of C∗(S) is a
boundary representation for S if and only if the quotient map q : B(H)→ B(H)/K(H)
is not completely isometric on the linear span of S ∪ S∗.

Definition 1.2 An irreducible commuting m-tuple T has the boundary property if
the identity representation of the C∗-algebra C∗(T) is a boundary representation for
the finite-dimensional operator space spanned by I,T1, . . . ,Tm.

Remark 1.3 Our use of the term boundary property (of tuples) differs from that
of [14, Pg 218, Paragraph 1].

A consequence of Arveson’s Boundary Theorem gives in particular a sufficient
condition ensuring the boundary property for irreducible, essentially normal tuples
[1, Theorem 2.2.1]. We state a rather special case of this result, which provides strong
motivation for this note.

Theorem 1.4 ([1, Theorem 2.2.1]) Let T be an irreducible essentially normal m-tuple
consisting of bounded linear operators T1, . . . ,Tm. If re(Ti) < ‖Ti‖ for some i =
1, . . . ,m, then T has the boundary property.

Remark 1.5 The above result is applicable to tuples that are not necessarily com-
muting.

Given a commuting m-tuple T = (T1, . . . ,Tm), it may happen that T has the
boundary property, but the essential spectral radius and norm of Ti are equal for
every i.

Example 1.6 Consider the positive definite kernel κ1(z,w) = 1
1−〈z,w〉 defined on

the unit ball Bm in Cm. The reproducing kernel Hilbert space H (κ1) is known as the
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Tuples Without the Boundary Property 11

Drury–Arveson space, and the commuting m-tuple Mz of multiplication operators
Mz1 , . . . ,Mzm on H (κ1) is known as the Drury–Arveson m-shift. It is well known
that Mz admits the boundary property [3, Lemma 7.13]. However, since σ(Mz) = Bm

and σe(Mz) = ∂Bm, it follows from the projection property for Taylor and essential
spectra that σ(Mzi ) = B1 = σe(Mzi ), and hence r(Mzi ) = re(Mzi ) = 1 for any
i = 1, . . . ,m. Finally, since each Mzi is hyponormal (that is, M∗zi

Mzi − Mzi M
∗
zi

is
positive), by general theory ‖Mzi‖ = r(Mzi ), and hence we obtain

re(Mzi ) = ‖Mzi‖ (i = 1, . . . ,m).

It is evident that the spectral radius of a commuting m-tuple T can easily be deter-
mined in many situations; for instance, in case the sequence {Qk

T(I)} has polynomial
growth. This and the preceding example suggest a possibility of an analog of The-
orem 1.4 that takes into consideration the joint spectral behavior of T. Indeed, the
main result of this note provides such an analog.

Theorem 1.7 Let T be an irreducible, essentially normal m-tuple of commuting
bounded linear operators T1, . . . ,Tm on H. If re(T) <

√
‖QT(I)‖, then T has the

boundary property.

We shall obtain this result from a slightly general fact (see Proposition 2.5). The
proof of Theorem 1.7 is basically a combination of Arveson’s ideas developed in [1,3]
with a mild dose of multi-variable spectral theory [16], [10]. As far as the utility of
Theorem 1.7 is concerned, we will see that the condition re(T) <

√
‖QT(I)‖ can

be checked quite easily for a subclass of joint q-isometry tuples T that includes, in
particular, the Drury–Arveson shift and the Dirichlet shift.

2 Proof of the Main Result

Recall that a commuting m-tuple T = (T1, . . . ,Tm) on a Hilbert space H is said to
be jointly subnormal if there exist a Hilbert space K ⊇ H and a commuting m-tuple
N = (N1, . . . ,Nm) of normal operators Ni in B(K) such that

Nih = Tih for every h ∈ H and 1 ≤ i ≤ m.

It is possible to give a spaceless or “C∗-algebra” definition of subnormality (see, for
example, [5, Theorem 5.2]).

A commuting m-tuple is a joint isometry if T∗1 T1 +· · ·+T∗mTm = I. It is well known
that every joint isometry is jointly subnormal [4].

In the proof of the main result, we need the following spectral radius formula
for the Taylor spectrum ([9, 15]). Let T be a commuting m-tuple of bounded linear
operators on a Hilbert space. Then

(2.1) r(T) := sup
(z1,...,zn)∈σ(T)

(
|z1|2 + · · · + |zn|2

) 1
2 = lim

n→∞
‖Qn

T(I)‖ 1
2n .

Lemma 2.1 Let T be a commuting m-tuple of bounded linear operators on a Hilbert
space. Then r(T) is at most

√
‖QT(I)‖.
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12 S. Chavan

Proof Note that QT is a positive linear operator on B(H). Now a simple inductive
argument on k shows that

(2.2) Qk
T(I) ≤ ‖QT(I)‖kI for every integer k ≥ 1.

Thus ‖Qk
T(I)‖ ≤ ‖QT(I)‖kI, and hence by (2.1), we get r(T) ≤

√
‖QT(I)‖.

We next compute spectral radii of subnormal tuples.

Lemma 2.2 Let T be a jointly subnormal m-tuple on H with a minimal normal
extension N on K. Then

r(T) = r(N) =
√
‖QT(I)‖ =

√
‖QN (I)‖.

Proof The proof involves repeated applications of the spectral radius formula (2.1).
We divide the proof into a number of small observations:

(a) r(N) =
√
‖QN (I)‖: Since Qk

N (I) = QN (I)k for any positive integer k, by (2.1),

r(N) =
√
‖QN (I)‖.

(b) r(N) ≤ r(T): By the spectral inclusion for jointly subnormal tuples [16], σ(N) ⊆
σ(T). It follows that r(N) ≤ r(T).

(c) r(T) ≤
√
‖QN (I)‖: Let PH denote the orthogonal projection of K on H. Then

Qk
T(I)h = PHQk

N (I)h (h ∈ H)

(see, for instance, [6, Proposition 3.4]). It follows that

‖Qk
T(I)‖ ≤ ‖Qk

N (I)‖ = ‖QN (I)‖k for every positive integer k.

Another application of (2.1) yields r(T) ≤
√
‖QN (I)‖.

(d)
√
‖QT(I)‖ ≤ r(T): It is observed in the proof of [7, Proposition 4.9] that r(T) ≥√
‖QT(I)‖, provided T satisfies

(2.3) 〈Qk
T(I)h, h〉 ≤ 〈Qk−1

T (I)h, h〉 1
2 〈Qk+1

T (I)h, h〉 1
2

for all h ∈ H and for all integers k ≥ 1. However, every jointly subnormal m-
tuple T satisfies (2.3).

By (a)–(c), we obtain r(T) = r(N) =
√
‖QN (I)‖. On the other hand, (d) and

Lemma 2.1 yield r(T) =
√
‖QT(I)‖.

Let T = (T1, . . . ,Tm) be a commuting m-tuple on H and let

q : B(H)→ B(H)/K(H)

be the Calkin map. We say that the m-tuple T = (T1, . . . ,Tm) is essentially normal
(resp. essentially joint isometry, resp. essentially subnormal) if

q(T) :=
(

q(T1), . . . , q(Tm)
)

is normal (resp. joint isometry, resp. jointly subnormal).
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Tuples Without the Boundary Property 13

Remark 2.3 Clearly an essentially normal m-tuple is essentially subnormal. It
follows from [4, Proposition 2] that an essentially joint isometry is also essentially
subnormal.

Lemma 2.4 Let T be a commuting m-tuple on H. If T is essentially subnormal, then
re(T) =

√
‖QT(I)‖e.

Proof Apply Lemma 2.2 to the m-tuple q(T), where q is the Calkin map.

As recorded earlier, the main result of this note may be considered as a joint spec-
tral analog of [1, Theorem 2.2.1].

Proposition 2.5 Let T be an irreducible commuting m-tuple of bounded linear op-
erators T1, . . . ,Tm on H. Suppose that T is either essentially normal or an essentially
joint isometry. If T does not admit the boundary property, then

r(T) = re(T) =
√
‖QT(I)‖ =

√
‖QT(I)‖e.

Proof The irreducible C∗-algebra C∗(T) contains either the compact operator

T∗i Ti − TiT
∗
i or I −

n∑
i=1

T∗i Ti .

By [2, Corollary 2], C∗(T) contains all the compact operators on H. Let S :=
span{I,T1, . . . ,Tm} and let L denote the linear span of S ∪ S∗. In view of Arve-
son’s Boundary Theorem, it suffices to check that if the quotient map q : B(H) →
B(H)/K(H) is completely isometric on L, then r(T) = re(T) =

√
‖QT(I)‖ =√

‖QT(I)‖e.
Assume that q is completely isometric on L. Consider the m × m matrix A in

Mm(S) given by

A :=


T1 0 · · · 0
T2 0 · · · 0
...

...
. . .

...
Tm 0 · · · 0

 .

Note that A∗A =
∑m

i=1 T∗i Ti = QT(I). Since q is completely isometric, we have
‖A‖ = ‖A‖e. This gives ‖QT(I)‖ = ‖A∗A‖ = ‖A∗A‖e = ‖QT(I)‖e. By equation
(2.2), for every positive integer k,

‖Qk
T(I)‖ ≤ ‖QT(I)‖kI = ‖QT(I)‖k

eI.

An application of the spectral radius formula gives r(T) ≤
√
‖QT(I)‖e. Since T

is essentially subnormal, by Lemma 2.4, re(T) =
√
‖QT(I)‖e. Thus we have r(T) ≤

re(T). Since the essential spectrum is a subset of the Taylor spectrum, we have r(T) =
re(T). Finally, since ‖QT(I)‖ = ‖QT(I)‖e, we obtain the desired conclusion.

Remark 2.6 If T is an essentially joint isometry, then ‖QT(I)‖e = 1. It follows that
r(T) = re(T) = 1, and

∑m
i=1 T∗i Ti ≤ I.
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14 S. Chavan

Let H be a Hilbert space and let T be a commuting m-tuple of bounded linear
operators T1, . . . ,Td. Then H can be considered as a Hilbert module over the poly-
nomial ring C[z1, . . . , zd], where the module action is given by

(p, h) ∈ C[z1, . . . , zd]×H −→ p(T)h ∈ H.

In the main result, we used the spectral theory to study boundary representations.
We now reverse this procedure and use boundary representations to get spectral in-
formation (cf. [11, Theorem 4.9(a)]).

Corollary 2.7 Let Ω be a bounded domain in Cm.Consider the Hilbert module H (κ)
associated with the reproducing kernel κ(z,w) (z,w ∈ Ω) and the multiplication tuple
Mz on H (κ). Suppose that Mz is an essentially normal jointly subnormal m-tuple such
that σ(Mz) = Ω. Then

r(Mz) = re(Mz) =
√
‖QMz (I)‖ =

√
‖QMz (I)‖e.

Proof By [14, Theorem 3.2], Mz does not have the boundary property. The desired
conclusion follows from the preceding result.

An m-variable weighted shift T = (T1, . . . ,Tm) with respect to an orthonormal
basis {en}n∈Nm of a Hilbert space H is defined by

Tien := w(i)
n en+εi (1 ≤ i ≤ m),

where εi is the m-tuple with 1 in the i-th place and zeros elsewhere.

Remark 2.8 Let {δk}k∈N be a bounded sequence of positive numbers. Consider
the m-variable weighted shift T : {w(i)

n }n∈Nm with the weight multi-sequence

w(i)
n = δ|n|

√
ni + 1

|n| + m
(n ∈ Nm, 1 ≤ i ≤ m).

If limk→∞ δ2
k − δ2

k−1 = 0 and lim supk→∞ δk < supk δk, then T admits the boundary
property. This is precisely [14, Proposition 4.9]. Alternatively, it may be obtained
from [8, Theorem 3.4(5)] and the main result.

3 Boundary Property for Joint q-isometries

Definition 3.1 Let QT be as given in (1.1). For an integer q ≥ 1, let

Bq(QT) :=
q∑

s=0
(−1)s

(
q

s

)
Qs

T(I).

If Bq(QT) = 0, then T is a joint q-isometry.

A joint 1-isometry is nothing but a joint isometry. The Drury–Arveson m-shift is
a joint m-isometry [12], but it is not a joint isometry unless m = 1.
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Tuples Without the Boundary Property 15

Proposition 3.2 Let T be an irreducible essentially normal commuting m-tuple of
bounded linear operators T1, . . . ,Tm on H. If T is a joint q-isometry that is not a joint
isometry, then T has the boundary property.

Proof Suppose T is a joint q-isometry that is not a joint isometry. By [7, Lemma
4.3], a joint q-isometry T is a joint isometry if and only if

∑m
i=1 T∗i Ti ≤ I. It follows

that ‖QT(I)‖ > 1. On the other hand, the spectral radius of a joint p-isometry is
always 1, as observed in [12, Proposition 3.1]. Hence, by Proposition 2.5, T admits
the boundary property.

We now illustrate the usefulness of Proposition 3.2 by exhibiting a concrete family
of multiplication tuples Mz acting on reproducing kernel Hilbert spaces. We first
recall the definition of complete NP kernels.

A reproducing kernel κ on the unit ball Bm is called a complete Nevanlinna–Pick
(NP) kernel if κ( · , 0) = 1 and if there exists a sequence {an} of analytic functions an

on Bm such that

1− 1

κ(z,w)
=
∑
n≥0

an(z)an(w) for all z,w ∈ Bm.

The Drury–Arveson kernel 1
1−〈z,w〉 and the Dirichlet kernel − log(1−〈z,w〉)

〈z,w〉 are two
important examples of complete NP kernels.

In the application of Proposition 3.2, we need a suitable modification of [14, The-
orem 5.1] (see also [3, Lemma 7.13]).

Lemma 3.3 Let H(κ) denote a reproducing kernel Hilbert space with complete NP
kernel κ(z,w) on the open unit ball Bm in Cm. Assume that there is a set P ⊆ H(κ) ∩
C(B) that is dense in H(κ) and satisfies

(3.1) lim
λ→z

‖pκ( · , λ)‖
‖κ( · , λ)‖

= |p(z)| for all p ∈ P and for [σ]a.e. z ∈ ∂Bm,

where σ denotes the normalized surface area measure supported on the unit sphere ∂Bm.
Let Mz denote the multiplication m-tuple on H(κ) and let M be an invariant subspace
of Mz. Then the m-tuple S := Mz|M is irreducible.

Proof We imitate the argument of [14, Theorem 5.1]. Suppose that there exists an
orthogonal projection PN from M onto a proper subspace N of M such that PNSi =
SiPN.Note that N and its orthogonal complement N′ in M are z-invariant subspaces
of H(κ). It follows that ‖PMκ( · , λ)‖2 = ‖PNκ( · , λ)‖2 + ‖PN′κ( · , λ)‖2 for every
λ ∈ Bm. On the other hand, by [13, Theorem 1.2], for [σ] a.e. z ∈ ∂Bm,

lim
λ→z

‖PMκ( · , λ)‖2

‖κ( · , λ)‖2
= lim

λ→z

‖PNκ( · , λ)‖2

‖κ( · , λ)‖2
= lim

λ→z

‖PN′κ( · , λ)‖2

‖κ( · , λ)‖2
= 1,

(see the discussion prior to [13, Theorem 1.2]). This certainly yields a contradiction,
and hence S is irreducible.

Lemma 3.4 If T is an essentially normal joint q-isometry, then T is an essentially
joint isometry.
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16 S. Chavan

Proof Let q denote the Calkin map. Note that q(T) is a normal joint q-isometry,
and hence q(T) is a joint isometry.

A special case of the following result, in which H (κ) is the Drury–Arveson space,
was first obtained in [14, Theorem 5.1].

Proposition 3.5 Let m be a positive integer bigger than 1 and let {ak}k∈N be a non-
increasing sequence of positive numbers such that

(m+k−1
k

)
/ak is a non-constant polyno-

mial in k of degree at most m. Let κ be a complete NP kernel given by

κ(z,w) :=
∞∑

k=0
ak〈z, w〉k (z,w ∈ B)

and let H (κ) denote the reproducing kernel Hilbert space associated with the kernel κ.
Then for every invariant subspace M of the multiplication m-tuple Mz on H(κ), the
m-tuple S := Mz|M has the boundary property.

Remark 3.6 We note that in case of the Drury–Arveson kernel ak = 1 for all k ≥ 1
and that of Dirichlet kernel ak = 1

k+1 for all k ≥ 1.Thus the conclusion of Proposition
3.5 holds true for the Drury–Arveson m-shift and the Dirichlet m-shift. On the other
hand, in the case of a Szegö kernel, ak =

(m+k−1
k

)
; as expected, Proposition 3.5 is not

applicable.

Proof Let κ(z,w) be a reproducing kernel of the form

κ(z,w) :=
∞∑

k=0
ak〈z, w〉k,

where ak are positive numbers such that
(m+k−1

k

)
/ak is a non-constant polynomial in

k of degree at most m. As noted in [13, Section 4], κ is a complete NP kernel satisfying
(3.1) of Corollary 3.3 provided

∑∞
k=0 ak = ∞ and ak+1

ak
→ 1. By hypothesis, we have

ak = (k+1)(k+2)···(k+m−1)
p(k) for some polynomial p of degree d, where 1 ≤ d ≤ m. It

follows that ak ≈ km−d−1, and hence
∑∞

k=0 ak =∞.
Let Mz denote the multiplication m-tuple acting on the reproducing kernel Hilbert

space H (κ) associated with the kernel κ. It is easy to see that Mz is an m-variable
weighted shift with weight multi-sequence{√

a|α|
a|α|+1

√
αi + 1

|α| + 1
: 1 ≤ i ≤ m, n ∈ Nm

}
.

An application of [7, Lemma 3.1] yields that Mz is a joint q-isometry if and only if
the one-variable weighted shift with weight sequence {

√
ak/ak+1

√
k + m/k + 1} is a

q-isometry. It is well known that a one-variable weighted shift with weight-sequence
{δk : k ∈ N} is a q-isometry if and only if δ2

0δ
2
1 · · · δ2

k−1 is a polynomial in k of degree
less than or equal to q − 1. It follows that Mz is a joint q-isometry if and only if
a0
ak

(m+k−1
k

)
is a polynomial in k of degree less than or equal to q − 1. By assumption,

Mz is a (d + 1)-isometry. By [8, Corollary 5.6], Mz is essentially normal. Hence by the
preceding lemma, Mz is an essentially joint isometry. In particular, ak+1

ak
→ 1. Thus all

hypotheses of Lemma 3.3 are satisfied, and hence we conclude that S is irreducible.
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Tuples Without the Boundary Property 17

If Mz is a joint q-isometry then so is S. Also, if Mz is an essentially joint isom-
etry then so is S. By Proposition 3.2, S admits the boundary property provided
it is not a joint isometry. To complete the proof, it suffices to check that Mz is
not a joint isometry on any non-zero invariant subspace. Suppose that there ex-
ists f (z) =

∑
α≥0 bα

zα

‖zα‖ in H such that
∑m

i=1 ‖Mzi f ‖2 = ‖ f ‖2. Since {zn} is
orthogonal,

m∑
i=1

∑
α≥0
|bα|2

( a|α|
a|α|+1

αi + 1

|α| + 1

)
=
∑
α≥0
|bα|2,

hence ∑
α≥0

b2
α

( a|α|
a|α|+1

|α| + m

|α| + 1
− 1
)

= 0.

Since ak
ak+1
≥ 1 and m ≥ 2, we have bα = 0 for all α, and consequently f = 0.

Remark 3.7 Note that κ(z,w) is a complete NP kernel provided that ak+1
ak
↑ 1

and
(m+k−1

k

)
/ak is a non-constant polynomial in k of degree at most m (the reader

is referred to [13]). The conclusion of the proposition holds even for m = 1 in this
case.

Let κ1 and κ2 denote the Drury–Arveson kernel and Dirichlet kernel respectively
in dimension m ≥ 2. Note that Theorem 3.5 is applicable to the kernel κ1 + ρκ2

for every ρ ∈ N such that ρ ≤ m − 2. In particular, the Hilbert reproducing
C[z1, . . . , zm]-module H (κ1 + κ2) associated with the kernel κ1 + κ2 has nested
rigidity in dimension 3 (see Corollary 3.8).

We conclude the note with an application to function theory, which may be ob-
tained by combining Proposition 3.5 with [14, Corollary 2.5].

Corollary 3.8 Under the hypotheses of Proposition 3.5, the reproducing Hilbert
C[z1, . . . , zm]-module H (κ) has nested rigidity: if for submodules M,N of H (κ) such
that M ⊆ N, Mz|M is unitarily equivalent to Mz|N, then M = N.
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