Can. J. Math., Vol. XXIX, No. 4, 1977, pp. 794-805

RICE THEOREMS FOR z,-' SETS
NANCY JOHNSON

1. Introduction. In [3] Hay proves generalizations of Rice’s Theorem and
the Rice-Shapiro Theorem for differences of recursively enumerable sets (d.r.e.
sets). The original Rice Theorem [5, p. 364, Corollary B] says that the index
set of a class C of r.e. sets is recursive if and only if C is empty or C contains
all r.e. sets. The Rice-Shapiro Theorem conjectured by Rice [5] and proved
independently by McNaughton, Shapiro, and Myhill [4] says that the index
set of a class C of r.e. sets is r.e. if and only if Cis empty or C consists of all r.c.
sets which extend some element of a canonically enumerable class of finite sets.
Since a d.r.e. set is a difference of r.e. sets, a d.r.e. set has an index associated
with it, namely, the pair of indices of the r.e. sets of which it is the difference.
Thus we may speak of the index set of a class of d.r.e. sets. When generalized
to d.r.e. sets, Rice’s Theorem (3, p. 354] becomes: The index set of « cluss of
d.r.e. sets 1s r.e. of and only if C is emply or C consists of all d.r.e. sets. The
Rice-Shapiro Theorem [3, p. 355] becomes: The index sel of « cluss Cof d.r.c.
sets 1s d.r.e. if and only if C is empty or C consists of all d.r.e. sets which extend
a single finile set.

Since both the r.e. and d.r.e. sets occur as levels 1 and 2 of the hierarchy
generated by Boolean combinations of r.e. sets (the finite Ershov hierarchy,
see Ershov [1]) we prove in Sections 3 and 4 of this paper generalizations of
the Rice Theorems for the higher levels of this hierarchy. The first Rice
Theorem generalizes in the expected way and hold for all levels n = 1. The
generalized Rice-Shapiro Theorem on the other hand cannot be stated in such
a uniform fashion, but does hold for » = 3. In Section 2 we explicitly define
this hierarchy and the index sets at each level and state some properties which
are necessary for the proofs in the later sections. In Section 5 we give an
example of a single fixed class whose index sets are complete at each level of
the hierarchy, and prove that if the index sets of a class C are complete at
the first # levels of the hierarchy where # > 2, then fail to be complete, the
index sets for levels greater than # jump to degree at least 0.

2. Preliminaries. Ershov [1] defines a hierarchy on the finite Boolean
combinations of r.e. sets. The levels of the hierarchy may be defined in several
ways. The following definition is the characterization given by Ershov in
Proposition 1 of [1, p. 29].

Reecived August 24, 1976 and in revised form, February 22, 1977. This paper consists of a
part of the author’s Ph.D. thesis, University of Illinois at Chicago Circle, 1976, written under
the supervision of Professor Louise Hay.

794

https://doi.org/10.4153/CJM-1977-082-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-082-3

RICE THEOREMS 795

Definition. a) X € Z,7',n = 1,if and only if there exist r.e. sets Ry, Ry, . . .,
R, such that

[(n+1) /2]
X= U (Ry-1— Ray), Ry =0).

i=1

b) X ¢ II,7,,» =2 1,ifand only if X € T, .
These classes of sets satis{y the usual hierarchy properties, e.g.
Zn_l . Hn_l g Z:n-i—l—l N Hrz+1—1r En_l - Hrz_l # 0

(see Ershov [1]), and we also may make the following definition of a complete
Z,.7t set.

Definition. Let n =2 1. A set S € 2,71 is 2, -complete if for each X € Z,7!
there exists a recursive function [ such that x € X < f(x) € S. If such a
function exists we write X <, Sand if fis one-one we write X =, .S.

It has been shown by Ershov [1] that for each » = 1 there exist X, !-

complete sets, and if S € 2,7'is Z,7!-complete then X € Z,7! if and only if
X =<,S.

Definition. Let K = {x|x € W,}, the complete Z,° set. For each n = 1, let
K, = {{x1,%2,...,%,) | card {x; | x; € K} is odd}.

Facr 2.1 (Hay [2]) For each n = 1, K, is Z, '-complete.

Facr 2.2 (Hay [2]) For each n 2 1, K, £, K,.

Facr 2.3 (Hay (2]) Foreachn = 1,4f X € I,/ then K, £, X.

Facr 2.4 (Hay [2]) For each n > 1, K,_; =, K,

(These facts also follow from the first fact and the Ershov properties of the
hierarchy.)

Let {W,} ;=0, be a fixed acceptable enumeration of the r.e. sets. This may be
used to define an enumeration of the Z,~! sets as follows:

Definition. Let n = 1 and let X € 2,7 Suppose

(1) /2]
X = L;)l (Wrzi—1 - szi)v (Wa:n+1 = ﬂ)
Ifx = {x1, %2, ...,%,), thenxisa Z,"!index of X, and if we write V', (or V,,)

to indicate the xth element of X,~!, then {V,},>0 is an enumeration of Z,~ .
Now we may define the Z,7! index set of a class C.

Definition. Let C be a class of sets. For n 2 1, 6,(C) = {x|V, € C M Z,7}
is the =, index set of C.
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We say a class C of 2,7t sets is trivial if C is empty or C consists of all 2,1
sets. 0,(C) is trivial if 6,(C) is empty or is equal to the set of natural numbers.

We denote by D, the finite set with canonical index #. K’ denotes the
complete Z,° set and Fin denotes {x|WW, is finite}; as is well known, Fin is
recursively isomorphic to K'.

Finally, if S £,,0,(C) via f, then since f(x) = (fi(x), ..., f.(x)) where f;(x)
is an index of an r.e. set, each f; may be made one-one using the standard
technique [6, p. 133], thus S =<,, 6,(C) implies S =, 6,(C).

3. The first Rice theorem. In this section we prove the generalization of
Rice’s Theorem. It is obtained as a corollary (Corollary 3.5) of the following
theorem.

TaeEOREM 3.1. Let n = 2. If C is a mon-trivial class of Z,”' sets then

Kn él 0n(C) or Kn él on(c)
For the proof we will require the following two lemmas.

LeEMMA 3.2. Suppose there is some D, € C and some r.e. set B ¢ C such that
D, C B. Then K, £10,(C). (This holds for n = 1.)

Proof. We will show that there is a recursive function f such that x € K,
if and only if f(x) € 6,(C). We wish to define f so that

x €K, > Vipy=B¢C

and
x ¢ K,— Vs =D, € C.
Since x € K, if and only if card {x,jx; € K} is odd we want:
card {x;/x;, € K} odd > V,y = B¢ C
and
card {x;]x; € K} even — V, = D, € C.

Since 0 = card {x;jx; € K} < n, we want to define f so that we may
““change our minds’’ » times, beginning with V4 = D, if card {x,|x; € K} =
0, and ending with V,,y = D,if nisevenand V, = B if nis odd.

So, for1 =4 = [(n + 1)/2)], we define f2,_; and f»; by:

W _§D, ifcard {x,x; € K} <20 — 1
1@ T\ B otherwise

0 if card {x,|x; € K} < 2
Wi B — D, ifcard {x,}x; € K} = 2
B otherwise.

(If » is odd, we do not define f,;.)
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Thus:

yhihmﬂmmEK}<%—l
_ _)B ifcard {x)x; € K} = 20— 1
Wi = Whiw = lDu if card {x;]x; € K} = 21

{4 otherwise.

Letf = (f1,...,fa)

1. Suppose x € K,. Then card {x,|x; € K} = 2¢, — 1 for some 75, 1 < iy <
[(n 4+ 1)/2]. From the above we then have:

D, ifi,<1
szi—l(r) - szi(a:) =<B if /L-O =1
g if i > 1.
Since D, C B we have:
[(n+1) /2]
E)l (th'—l(l) - th‘(x)) = B.

Thus x € K,L—? Vf(z) =B¢C.
2. Now suppose x ¢ K,. Then card {x,|x;, € K} = 24, for some 7y, 0 < 7, <
[(n + 1)/2]. From the above we then have:
D, ifi=57
Wf2i—1(z) - szi(x) = {ﬂ if i(; > g
So

[(n+1) /2]
U (szi—x(x) - szi(l‘)) = D,.

i=1

Thus x ¢ K, = Vi = D, € C. Hence we have x € K, & f(x) € 6,(C).

LEmMMA 3.3. Let n = 2. Suppose there is some D, € C such that every r.e.
extension of Dy is in C but there is some V, D D, such that V, € 2,7 — C.
Then K' £,6,(C).

Proof. It suffices to show that Fin <,6,(C). Let

[(n+1) /2]
Vo= i\_Jl (Wu2i—1 - Wau‘)y (Wlln+l = ﬂ)
For each 4,1 £17 £ [(n + 1)/2], we define fy;_; to be the constant function
feim1(x) = a1 and fo; by:

W _ JWa,, if W, is infinite
2@ T, if W, is finite

where W,,, is a finite subset of W,,,. (If 7 is odd we do not define f,..)

Let f = <f1, R 2
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1) Suppose W, is infinite. Then:

[(nt+1) /2]

Vim= U Wpiciw — Wriw)

i=1
[(n+1) /2]

= U (VVazi—l — W) = Vo & C.

i=1

Thus W, infinite — f(x) ¢ 6,(C).
2) Suppose W, is finite. Then:

[(n+1) /2] [(n+1) /2] R
Vf(:r) = Ul (WfQi—l(I) - szi(x)) = Ul (I/Vmi—l - Wﬂ'zi)'
i= i=

Since W, is finite, Wayi_, — W, is re. so Vi is ree. But V, C Vy and
D, C V, s0 V;u € Csince it is an r.e. extension of D,. Thus W, finite — f(x)
€ 6,(C).

We thus have Fin £,6,(C), and hence K’ £,6,(C).

Proof of Theorem 3.1. Either @ ¢ Cor @ ¢ C. Since 6,(C) is non-trivial we
apply Lemma 3.2 or 3.3 to whichever of C or C contains @. If Lemma 3.3 is
applied, note that the result follows from the fact that K, <; K’ since K, € 2,°.

COROLLARY 3.4. Let n > 2. If Cis a class of Z,7 sets such that 6,(C) € 2,7,
then either 0,(C) is trivial or 0,(C) = K,.

Proof. Suppose 6,(C) € 2,7'. By Fact 2.1, 6,(C) = K, and by Fact 2.3,
K, £.:0,(C). If 6,(C) is non-trivial, then by Theorem 3.1 either K, <,6,(C)
or K, £:6,(C). But K, £,6,(C), so we have K, <,60,(C) <. K,, hence
6,(C) = K,.

COROLLARY 3.5. Let n > 2. If Cis a class of 2,7 sets then 6,(C) € Z,_171if
and only if Cis trivial.

Proof. If Cis trivial then 6,(C) € Z,_,71. Conversely, if ,(C) € Z,_,7!, then
6,(C) € 2,71, so by Corollary 3.4 either 6,(C) is trivial or 6,(C) = K,. Now
if 6,(C) = K, then 6,(C) ¢ Z,_17! else we would have K, <, K,_;. Since
K,.1 =1 K, by Fact 2.4 we would then have K, <; K,, a contradiction to
Fact 2.2.

Notice in Theorem 3.1 and Corollary 3.4 we may replace n > 2 by n = 1
and in Corollary 3.5 if we understand Z,~! to mean recursive sets, we may also
replace n > 2 by n = 1. Thus the ‘“first Rice Theorem’ may be stated for
allm > 1.

4. The Rice-Shapiro theorem. The following theorem is the generalization
of the Rice-Shapiro Theorem and it holds for all n > 2.

THEOREM 4.1. For each n > 2, if C is a class of Z,7! sets, then 6,(C) € 2,
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if and only if C is trivial or there exisis a natural number a such thal
C= {V:c,nla € Vz,n}'

Proof. If C is trivial then 6,(C) € 2,71 If C = {V,,]la € V,,} then:

[(n+1) /2]
Hn(C) = {x]a € Vx,n} = {xla € Ul (WI‘.’.i—l - szi)}
1=
[(n+41) /2]
= LJI {x|a S W121'—1 - szi}
1=
[(n+1) /2]
= le ({x!a € er«'-l} - {x](z € szi})-
=

Thus 6,(C) € =,~L
Conversely, suppose 6,(C) € 2,71 1f 6,(C) is not trivial then we must show

there exists a such that C = {V,,|a € V,,}. For this we will need the following
sequence of lemmas.

LeMmA 4.2, Let w =2 1. If V, € 2,71 is infinite then there exists a recursive
function f such that

W, infinite = Vi = V,y
and
W, finite = V@ 15 a finite subset of V.

Proof. For n = 1 this is well known. For # = 2 this appears in the proof of
Lemma 5.3 [3, p. 356].
Let # be the least # such that V, € Z,7% Let

[(n+1) /2]
Vb = U (Wb‘l'i—l - Wb2i)y (an+1 = ﬂ)

i=1

Since # is the least, we may assume each of the sets W,,,_., — W,,; is infinite,
hence Wh,,_, is infinite for each 1.

Thus we may use the well known construction to obtain for each 7,1 < 7 <
[(n + 1)/2], a recursive function fs;—1 such that

W, infinite — th-_l(z) = szi—l
and
W, finite — ng,'_l(z) = Wb2i——l

where Wy,,_, is a finite subset of Wh,,_,.

We also define fy; for 1 <7 < [(n + 1)/2] to be the constant function
fai(x) = by
Thus, for 1 £4 £ [(n + 1)/2]

W, infinite — Wy, oy) — Weiw = Wagiey — Wy
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and
W, finite = Wy i) — Whiw = Wagicr — Wy

which is a finite subset of Wy,;_; — Wh,,.
Let f = {(fi, ..., fz). Then

[(n+1) /2]
W"c infinite — Vf(z) = U (qu'—l(z) - Wf2i(x))
1=1
[(n+1) /2]
= Ul (szi—l - szi) =T,
i=
and
[(n+1) /2]
W, finite — Vi@ = L)1 (szi—1(z) — Whiw)
i—
[(n+1) /2] .
= Ul (szi—l - Wlm)
1=

which is a finite subset of V.

LemMa 4.3. Let n = 1. If there is an infinite Vy,, € C such that no finite subset
of Vynisin Cthen K' <,6,(C).

Proof. This follows from Lemma 4.2.

LEMMA 4.4, Let n = 2. Suppose there exist distinct finite sets Dy, D, € C such
thatcard Dy, = card D, = 1land @ ¢ C. Then K, <10,(C).

Proof. Define f; by:

W _§D, if 0 < card {x,jx; € K} =1
n@ D,\U D, otherwise.

Forl <17 £ [(n + 1)/2], define f2;; by:

0 if card {x;lx; € K} < 4 — 4
Weisi D, if 40 — 4 < card {x,lx; € K} < 40— 3
D,\U D, otherwise
and define f;; by:
0 if card {x,lx; € K} <4 — 3
Wty D, if 40 — 3 < card {x;lx; € K} < 41— 2
D,\U D, otherwise.

(If 7 is odd f,.1 is not defined). So:

D, if card {x,|x; € K}

_ _ )8 if card {x,|x; € K}

Who = Whe = D, if card }xlx; € K} =
@  otherwise

Il

Il

0
1
2
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@  otherwise.

and for ¢ > 1,
0 if card {xyx; € K} < 47 — 4
D, if card {x,]x, € K} = 41 — 4
Whioiw — Whiw =0 if card {x)|x; € K} = 40 — 3
lD,, if card {x;|x, € K} = 41 — 2

Letf = <f1’ L )fﬂ)
1) If x € K, then card {x,]x, € K} is odd. From the above, we see that

Wiiciy — Wiy = 0 except when card {x;|x; € K} = 0or 2 (mod 4), hence

[(n+1) /2]
V/(x) = U (szi—l(.’t) - szi(z)) =0¢C

Thus x € K, — f(x) ¢ 6,(C).
2) If x ¢ K, then card {x;|x; € K} is even. Thus

0 (mod 4)

Vo D, if card {x,x; € K}
e = 2 (mod 4)

D, if card {x,|x; € K}

Since D, D, € C,x ¢ K, — f(x) € 6,(C). By 1) and 2), K, =16,(C).

LemMA 4.5. Let n > 2. Suppose D, € C, card D, = 1 and there exist Dy,
Dy, ¢ Csuchthat D, = Dy \J Dy, and D,y \ Dy, =0 ¢ C. Then K, <,6,(C).

Proof. Define f; by:
Wfl(x) = D,

and for 1 <7 £ [(n + 1)/2], define f2,_; by:

D, if4i—6 = card {x)fx; € K} £ 4 —5

0 if card {x)x; € K} <47 — 6
W!zi—1(:c)
D, otherwise.

For 1 =1 £ [(n + 1)/2], define fa; by:

D, if4i — 3 < card {x,lx; € K} < 4i — 2

0 if card {x|x; € K} < 4 — 3
an(x)
D, otherwise.

(If » is odd f,+1 is not defined).
For ¢ = 1, we have:

D, ifcard {x,]x; € K} =0
Whnw — Wape = Dy, if1 = card {lexj € K} =2
U} otherwise

https://doi.org/10.4153/CJM-1977-082-3 Published online by Cambridge University Press


file:///xj/xj
file:///xj/xj
https://doi.org/10.4153/CJM-1977-082-3

802 NANCY JOHNSON

and for 1 <7 = [(n + 1)/2],
0 if card {x,lx; € K} <41 — 6
D, if47—6 = card {x,x, € K} £4i—5
Weivw — Weiw = {Du if card {xl|xj €K} =4 —4
lDw if 47 — 3 < card {x;]x, € K} <4i — 2
{4] otherwise.

Letf = <f1, e yfn)-
1) If x ¢ K, then card {x,|x; € K} is even. If card {x,|x; € K} = 44, — 4,
then:

Wf?io—l(l‘) - szio(r) =D, € C,

hence Vi = D, € C (since @, D,,, Dy, C D).
If card {x;|x; € K} = 47, — 2 then:

W!h‘o—l(x) - szio(z) = Dy,
and

sz(ion)—l(x) - Wf‘z(ioﬂ)(l') = Dy,
hence

Viey = Dy \I Dy, = D, € C.

Thus x ¢ K, — f(x) € 6,(C).
2) If x € K,, then card {x,|x; € K} is odd.
If card {x;jx; € K} = 44y — 3, then:

D, ifi1=1
WfZi—l(I) - Wf2i(z) = {ﬂ 2 i1 5 ’i(:)-
Thus

V/(z) = Duz ¢ C.
If card {x,/x;, € K} = 41y — 1 then:

D, ifi=4+1
Wf2i—l(1) - Wf‘li(I) = {0 ' if 7 ,:) +1

hence
Vf(a:) = Dul ¢ C.
Thusx € K, > f(x) ¢ 6,(C). By 1) and 2), K, <,6,(C).

Now we may proceed to prove Theorem 4.1.

Proof of Theorem 4.1. 1f 6,(C) € Z,7! then 6,(C) =, K,. If 6,(C) is non-
trivial then there exists some 17, , € C. Suppose no finite subset of 1, , is in C.
Then by Lemma 4.3, K’ =<,6,(C), but since 6,(C) <, K, we have that
K’ <, K,. But K, =, K so we obtain K’ £, K, a contradiction. Thus some
finite subset of V,, is in C.
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Let Dy, be a set of minimal cardinality in {D, € C|Dy, C V,,}. If card
D,, > 1 then by Lemma 4.5, K, <: 6,(C). But then since 6,(C) <, K, we
would have K, =, K,, a contradiction. Thus we may assume that the cardi-
nality of D, is either 1 or 0.

Next we show that every Z,7! extension of D, is in C. If some r.e. extension
of Dy, is not in C, then by Lemma 3.2, K, <, 6,(C), a contradiction. If every
r.e. extension of D,, is in C but some Z,~! extension of D,, is not in C then by
Lemma 3.3, K’ =,0,(C), a contradiction. Thus all Z,! extensions of D,, are
in C.

Now if D,, = @, then C = Z,7%, s0 6,(C) is trivial. Since we are assuming
0,(C) is non-trivial, we know that card D,, = 1.

We wish to show that C = {V,,|Dy C V). We know {V,.|Doy C Voul
C C. Suppose there is some V', , € Csuch that Dyy Vo ,. By an argument
similar to the above, we know there exists a D,, € C such that card D,, = 1
and D,, C V, ,. Since D,y Z Vo, itfollows that D,, # D, which implies that
D,, N\ D, = @. Hence by Lemma 4.4, K, <,6,(C), but this is again a contra-
diction. Thus every set in C extends D,,. If D,, = {a} then we have C =
{Venla € V,,} which completes the proof.

COROLLARY 4.6. Let C be any class of sets. Then for each n > 2, 6,(C) 1s
. -complete if and only if there exists an a such that CM 2,7V = {V,, € Z,7Ya
€ Vonl.

Proof. Since 6,(C) = 6,(C M 2,71), the result follows from Theorem 4.1 and
Corollary 3.4.

5. Conclusions. In view of the last corollary of Section 4, and the r.e. and
d.r.e. Rice-Shapiro Theorems, we see that if we let C, = {X|a € X} then for
eachn = 1, 6,(C,) is 2, '-complete and 6,(C,) is II,~!-complete, so we have a
single class C, whose index sets are complete at all the levels of the finite
Ershov hierarchy. The situation is illustrated by the following diagram where

"

“—" means ‘‘<,".

21 Z,L 23—1

01<Cu>——‘> 6Z<Cu) ——>03(Cu)_‘_—)'

D U G

L 55 0,(C,)L—65(C,) -
! o ! w3 L

We note that because of Corollary 4.6, only a class consisting of all sets
which contain a single fixed element has this “‘uniform completeness’’ property.

LeMMA 5.1. Let C be any non-empty class of sets. For each n 2 1, 6,(C) =,
b41(C).
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Proof. Let x € 6,(C) and let

[(n+1) /2]
Vx,n = Ul (Wx'n’—l - szi)y (Wxn-u = ﬂ),
=
wherex = (x1,...,%,). Letx’ = (%1,...,%,, %p1). Then«'isa 2,7 index of
[(n+2) /2]
Ul (szi—l - WIu)v (Wrm+z = 0)’
{=

and V,, = Vi .41 Thus:
x€0,(C) o Ve €C
S Vyan €C
—x € 0,11(C).

Now suppose there is a class C and some n > 2 such that 6,(C) is Z,7!-
complete while 6,,:(C) is not Z,;1 !-complete. By Corollary 4.6, since 6,(C)
is T, 1-complete there existsan a such that CN 2,71 = {V,, € 2,7l a € V,,}.
Moreover,if 1 < m = n,wehavealsothat CN 2, = {V,, € Z,7a € V, .}
since 2,,7! C 2, L. Thusforl £ m < #,0,(C) is £, '-complete.

Since we are assuming 6,,:(C) is not Z,,;~!-complete, then

Cm E?H—l_l # {Ve,n+l € 2;n+1_l|a' E Ve,'rH—l}-

We know already that {a} € C M =,,,7! (since {a} € CM Z,71) so either there
exists a set V, 41 € 2,417 — Cwith @ € V, 41, or there exists a set V, 41 €
Cwitha e Ve.n+1-

In the first case, by Lemma 3.3 we have K’ <,6,,1(C), hence by Lemma 5.1,
K" £,6,(C)forall m =2 n + 1. In the second case since 6,(C) € Z,7, every
finite (hence Z,7!) set in C must extend {a}. Since @ € V, 41, no finite subset
of V¢nr1 may be in C. So by Lemma 4.3 we have K’ =<, 6,,,(C), hence by
Lemma 5.1, K’ £,6,,(C) for eachm = n + 1. Thus we have for m = n + 1
either K/ <4 6,,(C) or K’ £, 8,(C). So for such a class the index sets are
complete for an initial segment of the finite Ershov hierarchy then “‘jump”
to at least degree 0’/. This proves our final theorem.

THEOREM 5.2. Let C be any non-empty class of sets. If there is some n > 2
such that 0,(C) is Z,~'-complete, but 6,,1(C) is not Z, ,~'-complete then:

a) For1 =m = n, 0,,(C) is 2, Y-complete, and

b) for m > n + 1, either K’ £.6,,(C) or K’ £,6,,(C).
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