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INVERTIBLE OPERATORS ON CERTAIN 
BANACH SPACES 

BY 

J.-M. BELLEY 

Introduction. It has long been the practice in the theory of Hilbert spaces to 
use the Fourier series expansion (i.e. the Levy inversion formula) for the 
resolution of the identity associated with a unitary operator to obtain results 
for this operator, and hence for any power bounded invertible operator on such 
spaces since they are necessarily isomorphic to unitary operators [5, p. 1945]. 
Though many important power bounded operators on Banach spaces are not 
spectral [6, p. 1045-1051] the approach of this paper permits us to deduce for 
such operators results similar to those known for spectral operators. That 
which permits this and which makes this paper different from the usual 
approach as found in Dunford and Schwartz [5, p. 1941, 2007-2010], Sz.-Nagy 
and Foia§ [12, p. 109-118, 153-163] and Colojoarâ and Foia§ [3, p. 154] is the 
application of the Levy inversion formula to arbitrary invertible power 
bounded operators. Starting directly from this formula we obtain for an 
arbitrary invertible power bounded operator on LP(I), I a finite measure space 
and p fixed ( l<p<oo) , a family of operators with projection properties 
analogous to those for a spectral measure associated with a spectral operator 
(theorem 1) and which reduces to the spectral measure for those operators 
which are spectral. Furthermore, by Lamperti's theorem we are able to 
establish a relationship between invertible isometries on LP(I), p^2, oo? which 
also need not be spectral [6, p. 1045-1051], and unitary operators with the 
multiplicative property on L2(I) (theorem 3). The inversion formula also 
permits us to establish an operational calculus on a somewhat more general 
class of functions than usual (theorem 4) and a convergence result for certain 
contractions (theorem 5). 

Invertible Operators on Lp: For a fixed p, l < p ^ o o ? let U be an invertible 
operator whose iterates U1, j = 0, ±1 , ± 2 , . . . , are uniformly bounded in norm 
on LP(I), I denoting a finite measure space. Given / in LP(I) and g in Lq(I), 
l/p + l/q = l, define the square integrable function of t (on [0, 27r)) 

(1) (G,/, g) = Z e*((lT' " 1)/, g)I2irij-&G({euM g) 
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where 
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(G({eu})f, g)= lim £ e'"( [/"'/, g)/(2n + l) , 

(/, g) represents the integral over I of the product fg of / with the complex 
conjugate of g, and for the sum X/*o we take its principal value. Though 
(G({elt})f, g) vanishes as a square integrable function of t we shall see later that 
when p = 2 it converges pointwise as does (Gf/, g). 

THEOREM 1. For a uniformly bounded sequence {[ / ' : / = (), ±1 , ± 2 , . . . } o/ 
iterates of an invertible operator on If (I) we have for almost all (s', s, t', t) in 
[0, 2TT)4 with 0 < s , s'<t, t'<2TT 

((Gs - Gs){Gt - G,)f, g) = ((GSAt - GsW)/, g) 

where / and g are any given functions in If (I) and Lq(I) respectively, l/p + 

l/q = l . 

Proof. Since ((Gs - GS)(G, - Gf)/, g) is square integrable on [0, 27r)4. we will 
be able to change the order of the limits in what follows to obtain equality 
almost everywhere. For convenience of notation we will omit the inner product 
and take 0 = s' = f '<s<f<27r . Hence, introducing Et for Gt — G0 and E({elt}) 
for G({elt}) (as we shall do later), we get 

E({e*})E({e"}) = lim 
1 

m,n-oo(2m + l)(2n + l) 

m n -i-fc 

- { 
0 if f ^s 

£({eis}) if t = s 

Also 

1) E({e's}) I ^ r - ^ I/-'' = lim X X 
/^ i (k+j)s ij'(t-s) _ i(fc-l-j')s — ijs\ 

jvo 27ry 

= 1 (e 

-m jV=0 

ij(t-s) - e _ , J S ) 

lirij 

(2m + l)2mj 

E({eis}) 

U -i-k 

( 2 i r - f ) 
E({eis}) if 0 < s < ( 

-—-E({eis}) if 0 < t < s 
ZTT 

Or-s) 
E({eis}) if s = f^0 
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and 

9 # -

B({1})I^U->J^E({1}) 
j^O llTl] ITT 

since [4, p. 98] 

y^o 2777/ Z7T 
0 < W < 2 T T 

Also, since (/+ k)ljk = 1// + 1/fc if / * 0 and fe^ 0, then 

v ^ - ^ - i V (« - D „ - f c 

i-fc 

„iks 

i^o 2 m/ k^o 27r(k 
_ y (« . 'CH- fcyK . -» ) - g«ta - ei(/+fc)«e-ifc» + !) _. 

~k7o 47r2iki(k + /) 

(ei0+fc)»e*/(«-«)_ei0+fc).g-«f_e«» + 1 ) _ ._ f c 

yïi 4ir2i/i(k + /') 

À 47r2(i/)2 £ 

= y (e'^'-D^'^-e-'*')^,,^ 
k^o 27ri(/ + k) 27rik 

ikcs-o.^-ikri ^ (eiks — 1) U~j~k 

+ 
k^o 27ri(/ + k)27rik k^0 27rifc 2iri(i + k) 
k^-j k*-j 

j^o 2iri(j+k) 27n/ 

,#o 2mj2m(j + k) ,*o 2iri/ 2iri(j + k) 
j*-k j*-k 

À 4,r2(i/)2 

= - - i - E ^ - ^ + y 5 - (£({1})-E({e"})) 
Z7T 477 Z77" 

- - Î - Es + A + r ^ - (£({1})- E({eis})) 
Z7T 47T Z7T 

+ J 5 s - r — X2(E({1})-E{{eis}))+—- —2 
Z7T Z7T 47T 
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since [4, p. 99] 

X (exp(i/w))//2 = ( 3 w 2 - 6 ™ + 27r2)/6 

for all u in [0, 2TT). 

Thus, if 0 < s < f < 2 7 r , we get EtEs = Es as can be verified by substituting 
equation (1) for Et and Es and using the relations just derived. Q.E.D. 

COROLLARY. For almost all (s \ 5, tf, t) in [0, 27r)4 for which [s\ s) and [t\ t) 
are disjoint, ((Gs - Gs)(Gt - Gt)f, g) = 0 for any given functions f in If (I) and g 
inLq(I), l/p + l/q = l . 

Proof. Choosing s"<s'<s<t'<t, by the theorem we have almost 
everywhere 

(Gs - G.0 = (Gs - GS)(G, - G,-) = (Gs - GS)(G, - G,) + (Gs - Gs0(G, - Gs.) 

= (Gs-Gs,)(Gt-Gt>) + (Gs-Gs>) 

from which we deduce the corollary. Q.E.D. 

REMARK. In case p = 2 the idempotents Et = Gt- G0 are spectral projections 
of U which are known to be similar to a unitary operator; see [12, proof of 
proposition 5.3 (page 79)] or see B. Sz.-Nagy [11, p. 152-157]. In both these 
references it is also shown that the associated spectral measure is no greater in 
norm than the uniform bound for the iterates of the operator U. 

If l/ t ,-a>< f <oo, is a group of operators on LP(I) then for all / in LP(I) and 
all g in Lq(I), l/p + l/q = l, define 

f °° 

(2) m g) = e-in(Urf, g)/2mrdr-i(F({t})f, g)+U g) 
J—oo 

where 

(F({t})f9 g) = Um ± | ^ *-*"( l/r/, g) dr. 

Whenever (Utf, g) is a uniformly bounded measurable function on (-00,00), 
(Ff/, g) is a square integrable function for which we can repeat the argument in 
the proof of the previous theorem to obtain 

THEOREM 2. For a uniformly bounded group of operators Ut (-oo<t<oo) on 
LP(I) and any f in LP(I) and any g in Lq(l), l/p + l/q = 1, we have (FsFtf, g) = 
(FSAt/, g) for almost all (s, t) in (-oo,oo)x(-oo? 00). 

By Lamperti's theorem [10, p. 333] an invertible isometry W on LP(I) 
(p^2,oo) is necessarily induced by an invertible endomorphism T o n I such 
that Wf(x) = f(T~1x)1

r
/p(x) where r is the Radon-Nikodym derivative of mT~l 
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with respect to the measure m on /. We now introduce the family of isometries 
{Wp-:l<p'<oo} where Wp.f(x) = f(Tlx)rUp'(x) for all / in Lp\l). If / lies in 
LP(I) and g in V(I), l/p + l/q = l, then for all integers n and n' we have 

( W;+n'f(x))( Wn
qg(x)) = /(T-"-"'x)(dm(T-n-"'x)/dm(x))1/p 

x g(T-nx)(dm(T-nx)/dm(x))Uq 

-'r-'p&gr*™^ dm(T~nx) / ov ' dm(x) 

= Wn
1(^T~n'x)(dm(T-n,x)/dm(x))1/pg(x)) 

= WÏ(g(x)Wn
pf(x)). 

Similarly, ( Wn
pf){W«+n'g) = Wn

x{fW
n

qg), Thus we can show the following result. 

THEOREM 3. To any given invertible isometry W on a particular LP(I), p' ^ 2, 
oo, there corresponds a family of operators { Wp : 1 < p < oo} induced by a common 
endomorphism such that Wp is an invertible isometry on If (I). Furthermore, if 
Gp given by equation (1) corresponds to Wp and if we put EP(J) = GP- Gp for all 
intervals J = {els:t'<s<t] on the unit circle in the complex plane, then for almost 
all intervals J and J\ 

(Ep(J)f)(EHJ')g) = E\jmEp(J)f)(Eq(r)g)) 

for all f in LF(I) and all g in Lq(I), l/p + l/q = l, p # l , oo, and where 
JJ' = {zz'\ z in J, z' in J'}. 

By the expression "almost all intervals J = {em:f'< u<t} and J' = 
{elu :s'< u < s}" we obviously mean almost all (f\ t, s', s) in [0, 2TT)4. The proof 
of the second part of the theorem is analogous to that of the same result for 
operators with the multiplicative property on L2(I) [2, p. 807-808]. The same 
property was obtained by C. Foia§ [7, p. 641] whenever /, g, and their product 
all lie in L2(I). 

We are now in a position to define the operators q>(U) for certain functions <p 
on [0, 2TT) when U is an invertible operator on LP(I) whose iterates are 
uniformly bounded. Whenever ç is an integrable function on [0,2ir) we shall 
write <p' for the series whose terms are the derivatives of the terms in the 
Fourier series of <p. Write S(U,f, g) for the class of functions <p for which the 
product (p'{t)(Gtf g) is integrable on [0, 2TT) and for all such functions define 

J"2ir 

<P'( 
0 

(3) M U)f, 8) = <P(2TT)(/, g) - <p'(t)(Gtf, g) dt. 
Jo 

In S(U, /, g) will be included those functions with L2 derivative and certainly all 
analytic functions in a neighborhood of the spectrum of U, in which case (3) 
yields the same result as the usual methods of operational calculus [5, p. 1941, 
2007-2010]. If we enlarge S(U,f,g) to also include all square integrable 
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functions <p on [0, 2TT) with nth partial Fourier series çn for which Jo77 <p'n(t) 
(Gtf, g) dt converges as n -» o° and take this limit for the value of the integral in 
(3), then S((J,/, g) will contain all functions on [0, 2TT) with absolutely con­
vergent Fourier series since the kth Fourier coefficient of (Gtf, g) is of the 
order l/|k| (fc = ±1 , ± 2 , . . .), so obtaining a generalization of the operational 
calculus of I. Colojoarâ and C. Foia§ [3, p. 154]. 

THEOREM 4. Let <p and if/ be elements of S(U,f, g) and a, ]3 any complex 
numbers. Then 

(i) ûup + jSifr fies in S( l / , / ,g) and (a<p + j3^)(l/) = a<p(l/) + j8^(l/). 
(ii) J/ ffie produc* <pi// fies is S(l / , / , g) ffien (<p^)(t/) = <p(U)^(U). 

(iii) J/ (p is a trigonometric polynomial X^a k exp(ikf) ffierc <p(L0 = Zm ak£/k 

We need but prove (ii) as the other two are easy to show. 

<p{UmU) = <p(2ir)it,(U)- | <p'(s)<A(£/)Gs ds 

= (p(27r)(iA(27r)-Jf(r)Gf^ 

- 1 <p'(s)(<K2*r)- JV(f)Gt * ) G S ds 

= <p(27r)il/(27r)-<p(27r) ifr'(t)Gtdt 

- 4f(2v) J <p'(s)<3, ds + J J <p'(sW(t)GsGt ds dt 

The last term in the line above is equal to JJJJ 9 '(s)i / /(0(G s- Gs)(Gt-Gt>) 
which becomes, by theorem 1, 

<p'(sW(t)Gsdsdt+\ ç'(sW(t)Gtdsdt 
Jo Jo Jo Jt 

J '2TT C2ir 

<p'(s)M2ir) - il>(s))Gs ds + ^'(0(<p(27r) - <p(t))G, dt 
o Jo 

and thus by equation (3) we get (ii). 
Almost Everywhere Convergence: Let U be a contraction on the Hilbert 

space L2(I) with generalized resolution of the identity Et [9, p. 448-455]. 
Suppose that U can be extended to contractions on LX(I) and L°°(I) (as in the 
case of automorphisms [8, p. 13]). For such operators we prove the following. 

THEOREM 5. If U be a contraction on L2(I) which can be extended to 
contractions on Ll(I) and L°°(/) and if {pk(elt): fc = l , 2 , . . . } be a pointwise 
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convergent sequence of uniformly bounded trigonometric polynomials on [0, 2TT) 
then for all f in 1/(7), Pk(U)f(x) converges pointwise almost everywhere on I. 

Proof. First we prove this for functions in L°°(I). For any such function /, if 
Pk(U)f does not converge pointwise almost everywhere, there is a constant 8 
such that for all x in a subset Y of I of measure | Y\ > 0, 

sup \pk>(U)fW-pAU)f(x)\>8 
k',k">:m 

for all integers m. Thus, given m, there exists an integer M>m and measura­
ble functions k'(x), k"(x) with values between m and M such that for some 
function ft, |ft| = 1, we have 

(4) ((Pk'(xW-pk.ix)(U))fW> Hx))>^i 

whenever M is chosen so that 

sup \pk.(U)f(x)-pAU)f(x)\>0 
ro<k',k"<M 

for all x in a set Z in Y of measure greater than |Y|/2. Partitioning the set Z 
into sets Yu..., Yf such that k'(x) and k"{x) are constant on each Yt 

(i = 1, . . . , / ) we get by writing âff for the characteristic function of Yi? k\ for the 
value of fc'(x) on Yi and k? for that of k"(x), 

(5) ((Pk'(x)(t/)-Pk"(x)(t/))/(x), fc(x)) = 1 1 ( ^ ( e ' O - M c ' O ) d(Er/, « « . 

where ft is taken with support on Z and Et is the generalized resolution of the 
identity for U. 

For s > 0 and M, m large enough we could choose k\x) and fc"(x) such that 
\Pki

r(eit)~Pki"(eit)\< £ /2 ' for all r and all i. Choosing ft with support on Z we still 
have the inequality (4). But by (5) 

|((Pk'(x)(^)-pk"(x)(L/))/(x), h ( x ) ) | < I I I P k K e V p ^ Ô I |d(Bi/, afSh)| 

^s\\f\\2\\h\\2 

which is less than 8 | Y|/2 for e small enough, thus contradicting (4). So we get 
the theorem for any L°°(I) function. 

If / lies in Ll(I), then writing ^afexpiijt) for pk(e
lt) we get the inequality 
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(4) in the form 

(6) (f(x), I l /*V ' w -a , f c ' w )h(x) )>8 \Y\I2 
i 

which will also hold for some L2(I) function / close in 1/(1) norm to the 
original /, where U* is the adjoint of U. But the left hand side of this 
inequality can be handled as equation (5) to yield the inequalities 

\((pk'(x)(U)-pk»aU))f(x),h(x))\ = 

^I(e/2')ll/l|2||a,«/i||2 

< e\\fh\\h\\ 2 

which contradicts (6) for s small enough. Q.E.D. 
Theorem 5 is a generalization of a result to be found in [1, pp. 161]. The 

proof given here is an improvement over that found there. 

BIBLIOGRAPHY 

1. J.-M. Belley, Invertible Measure Preserving Transformations and Pointwise Convergence, Proc. 
Amer. Math. Soc, Vol. 43, No. 1, March 1974, p. 159-162. 

2. , Spectral Properties for Invertible Measure Preserving Transformations, Can. J. Math., 
Vol. XXV, No. 4, 1973, p. 808-811. 

3. I. Colojoarâ and C. Foia§, Theory of Generalized Spectral Operators, Gordon and Beach, 
Science Publishers, New York, 1968. 

4. H. Davis, Fourier Series and Orthogonal Functions, Allyn and Bacon, Boston, Mass., 1963. 
5. N. Dunford and J. T. Schwartz, Linear Operators, Part HI, Wiley-Interscience, New York, 

1971. 
6. U. Fixman, Problems in Spectral Operators, Pacific J. Math. 9 (1959), p. 1029-1051. 
7. C. Foia§, Sur les mesures qui interviennent dans la théorie ergodique, J. Math. Mech., 13, No. 4, 

1964, p. 639-658. 
8. P. R. Halmos, Lectures on Ergodic Theory, Publ. Math. Soc. Japan, No. 3, The Mathematical 

Society of Japan, Tokyo, 1956. 
9. F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Akadémiai Kiadô, Budapest, 1952, 

sixth edition. 
10. H. L. Royden, Real Analysis, Macmillan Company, New York, 1968. 
11. B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta. Sci. Math. 

(Szeged) 11 (1947), p. 152-157. 
12. B. Sz.-Nagy and C. Foia§, Harmonic Analysis of Operators on Hilbert Space, Akadémiai 

Kiado, Budapest, 1970. 

FACULTÉ DES SCIENCES 

UNIVERSITÉ DE SHERBROOKE, 

SHERBROOKE, Q U E . 

CANADA, J1K 2R1 

https://doi.org/10.4153/CMB-1977-027-3 Published online by Cambridge University Press

file:///Y/I2
https://doi.org/10.4153/CMB-1977-027-3

