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On the Average Number of Square-Free
Values of Polynomials
Igor E. Shparlinski

Abstract. We obtain an asymptotic formula for the number of square-free integers in N consecutive
values of polynomials on average over integral polynomials of degree at most k and of height at most
H, where H ≥ Nk−1+ε for some fixed ε > 0. Individual results of this kind for polynomials of degree
k > 3, due to A. Granville (1998), are only known under the ABC-conjecture.

1 Introduction

For a polynomial f (X) ∈ Z[X] we denote by S f (N) the number of positive integers
n ≤ N such that f (n) is square-free.

It is natural to expect that

(1.1) S f (N) ∼ c f N

as N →∞, where

c f =
∏

p prime

(
1−

ρ f (p2)

p2

)
and ρ f (m) denotes the number of solutions to the congruence

f (n) ≡ 0 (mod m), 1 ≤ n ≤ m

modulo an integer m ≥ 1. However for polynomials of degree k > 0 only conditional
results (under the ABC-conjecture) are known; see [2, 3, 5] and references therein.

A related question of studying the distribution of square-free parts of polynomial
values (that is, square-free values of s in the representations f (n) = r2s with r ∈ Z)
has also been studied in the literature [1, 4].

Here we show that (1.1) holds unconditionally on average over the polynomials of
naive height at most H, provided that

(1.2) NA ≥ H ≥ Nk−1+ε

with some fixed A and ε > 0.
For positive integers H and k, let Fk(H) denote the following family of polynomi-

als over Z of degree at most k and of height at most H, that is,

Fk(H) = {a0 + · · · + akXk ∈ Z[X] : (a0, a1, . . . , ak) ∈ Bk(H)}.
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where

Bk(H) = {(a0, . . . , ak) ∈Zk+1 : gcd(a0, a1, . . . , ak) = 1,

ai ∈{0,±1, . . . ,±H}, i = 0, 1, . . . , k}.

Theorem 1.1 For a fixed k ≥ 2, we have

1

#Fk(H)

∑
f∈Fk(H)

|S f (N)− c f N| ≤ N1/2Ho(1) + N(k+1)/2H−1/2+o(1),

as H →∞.

We see from Theorem 1.1 that for any constants A and ε > 0 there is δ > 0 such
that

1

#Fk(H)

∑
f∈Fk(H)

∣∣S f (N)− c f N
∣∣� N1−δ

provided H satisfies (1.2).

2 Notation

Throughout the paper, the letter p (possibly subscripted) always denotes a prime; k,
m, and n always denote positive integers (as do K, M, and N).

Any implied constants in symbols O,�, and�may occasionally depend, where
obvious, on the integer parameter k and are absolute otherwise. We recall that the
notations U = O(V ), U � V , and V � U are all equivalent to the statement that
|U | ≤ cV holds with some constant c > 0.

Finally, U = o(V ) means that U ≤ ψ(V )V for some function ψ such that
ψ(V )→ 0 as V →∞.

3 Solutions to Polynomial Congruences of Small Height

Let Wk(m,H,N) be the number of solution to the congruence

(3.1) a0 + a1n + · · · + aknk ≡ 0 (mod m),

in the variables
(a0, . . . , ak) ∈ Bk(H) and n ≤ N.

Trivially, we have

(3.2) Wk(m,H,N)� Hk(H/m + 1)N.

We now obtain a stronger estimate for large values of m.

Lemma 3.1 We have

Wk(m,H,N) ≤
(
Hk+1Nk/m + Hk

)
(HN)o(1).
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Proof We write the congruence (3.1) as the equation

a0 + a1n + · · · + aknk = λm,

with some integer λ with |λ| ≤ (k + 1)HNk/m.
We fix some a0 with |a0| ≤ H and λ with |λ| ≤ (k + 1)HNk/m and a0 − λm 6= 0.

This can be done in O((HNk/m + 1)H) ways. Since a0 − λm 6= 0, from the
bounds on the divisor function, we see that n can take at most Ho(1) possible val-
ues. After this, (a1, . . . , ak) can take at most O(Hk−1) values. There are at most(
HNk/m + 1

)
Hk(HN)o(1) solutions of this type.

We now fix some a0 with |a0| ≤ H and λ with |λ| ≤ (k + 1)HNk/m with
a0 − λm = 0. In this case, a0 defines λ uniquely and a0 ≡ 0 (mod m). Hence this
can be done in O

(
H/m + 1

)
ways. For O(Hk) possible choices of (a1, . . . , ak) we get

O(1) possible values for n.
Thus,

Wk(m,H,N)�
(
HNk/m + 1

)
Hk(HN)o(1) + (H/m + 1)Hk

≤
(
HNk/m + 1

)
Hk(HN)o(1),

and the result follows.

4 Proof of Theorem 1.1

Clearly we can assume that H ≥ N, as otherwise the bound is trivial.
Let T f (m,N) denote the number of solutions to the congruence

f (n) ≡ 0 (mod m), 1 ≤ n ≤ N,

modulo an integer m ≥ 1. Denoting by µ(m) the Möbius function, by the inclusion
exclusion principle, for f ∈ Fk(H) we obtain

S f (H) =
∑

d≤
√

kHNk

µ(d)T f (d2,N).

We now fix some parameter D and write

S f (H) = M f (H) + O(R f (H)),

where

M f (H) =
∑
d≤D

µ(d)T f (d2,N) and R f (H) =
∑

D<d≤
√

kHNk

T f (d2,N).

To estimate M f (H) we write

(4.1) T f (d2,N) =
N

d2
ρ f (d2) + O(ρ f (d2)).
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Clearly, for any p, we have

(4.2) ρ f (p2) ≤ kp

(as polynomials from Fk(H) are nontrivial modulo every prime p). Furthermore,
using the Hensel lifting, we also see that if p - ∆ f , where ∆ f is the discriminant of f ,
then

(4.3) ρ f (p2) ≤ k.

Therefore, combining (4.2) and (4.3), we see that for any square-free integer d,
using the multiplicativity of ρ f (m), we have

ρ f (d2) ≤ dρ f (d) = d
∏
p|d
ρ f (p2) ≤ kω(d) gcd(d,∆ f ),

where ω(d) is the number of prime divisors of d. Using the well-known estimate on
ω(d) we derive

(4.4) ρ f (d2) ≤ do(1) gcd(d,∆ f ).

We now assume that ∆ f 6= 0.
Thus, using (4.1) and (4.4), we obtain

M f (H) =
∑
d≤D

µ(d)
(

N
ρ f (d2)

d2
+ O
(

do(1) gcd(d,∆ f )
))
.

Using the bound (4.4) again and the multiplicativity of ρ(m), we derive

∑
d≤D

µ(d)
ρ f (d2)

d2
=

∞∑
d=1

µ(d)
ρ f (d2)

d2
+ O

(∑
d>D

gcd(d,∆ f )

d2+o(1)

)

= c f + O

(∑
d>D

gcd(d,∆ f )

d2+o(1)

)
.

Therefore

(4.5) M f (H) = c f N + O

(
Do(1)

∑
d≤D

gcd(d,∆ f ) + N
∑
d>D

gcd(d,∆ f )

d2+o(1)

)
.

We have

(4.6)
∑
d≤D

gcd(d,∆ f ) ≤
∑
e|∆ f

e
∑
d≤D
e|d

1 ≤ Dτ (∆ f ) = D∆o(1)
f ,
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where τ (m) is the number of integer positive divisors of m. Similarly,

∑
d>D

gcd(d,∆ f )

d2+o(1)
≤
∑
e|∆ f

e
∑
d>D
e|d

1

d2+o(1)
≤
∑
e|∆ f

1

e1+o(1)

∑
d>D
e|d

1

(d/e)2+o(1)

≤
∑
e|∆ f

1

e1+o(1)
min{(e/D)1+o(1), 1}.

Considering the cases e > D and e ≤ D, we see that each of τ (∆ f ) terms in the last
sum is D−1+o(1). Hence

(4.7)
∑
d>D

gcd(d,∆ f )

d2+o(1)
≤ D−1+o(1)∆o(1)

f .

Since ∆ f = HO(1) for f ∈ Fk(H), substituting (4.6) and (4.7) in (4.5), we derive

(4.8) M f (H) = c f N + O
(
DHo(1) + ND−1Ho(1)

)
,

provided that ∆ f 6= 0.
The sum M f (H) contributes to the main term. We now estimate error term R f (H)

on average on f ∈ Fk(H).
Changing the order of summation, we see that∑

f∈Fk(H)

R f (H) =
∑

D<d≤
√

kHNk

Wk(d2,H,N).

We now choose another parameter E > D and use (3.2) for d ≤ E and Lemma 3.1
for d > E getting∑

f∈Fk(H)

R f (H)� Hk+1N/D + HkNE + Hk+1+o(1)Nk/E + Hk+o(1)
√

HNk.

Taking E = H1/2N(k−1)/2, we obtain

(4.9)
∑

f∈Fk(H)

R f (H)� Hk+1N/D + Hk+1/2+o(1)N(k+1)/2.

Combining (4.8) and (4.9) and estimating the contribution from O(Hk) polyno-
mials f ∈ Fk(H) with ∆ f = 0 trivially as O(N), we derive∑

f∈Fk(H)

|S f (N)− c f N| � DHk+1+o(1) + Hk+1+o(1)N/D + Hk+1/2+o(1)N(k+1)/2.

Taking D = N1/2, we conclude the proof.
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5 Comments

Since the ultimate goal is obtaining nontrivial estimates on S f (N), as an intermediate
step, it is certainly interesting to reduce the amount of averaging in the sums of The-
orem 1.1. For small values of m it is easy to improve the bound (3.2) (for example via
bounds of exponential sums). However, the lower limit in condition (1.2) is defined
by the bound of Lemma 3.1 that has to be improved for any further progress.

It is also easy to see that for the set of monic polynomials

Gk(H) = {a0 + · · · + ak−1Xk−1 + Xk ∈ Z[X] : (a0 . . . , ak−1) ∈ Bk−1(H)}

of degree k ≥ 3, the same method gives

1

#Fk(H)

∑
f∈Fk(H)

∣∣S f (N)− c f N
∣∣� N1/2Ho(1) + N(k−1)/2H−1/2+o(1),

which is nontrivial in the range NA ≥ H ≥ Nk−2+ε.
Finally, the same method also applies to studying square-free values of multivari-

ate polynomials, so one can get unconditional analogues of the result of Poonen [5]
(which as in [2] relies on the ABC-conjecture) on average over multivariate polyno-
mials of fixed degree and height at most H.
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