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Optimal reduction

in replacement systems

John Staples

High level programming languages can generally be compiled in

many different ways. Thus it is natural to ask if there is a

best way, for example in the sense of achieving complete

execution of the program in a minimum number of steps; such a

complete, minimal execution procedure will be called optimal.

In recent years this question has been studied and answered for

several simple models of programming languages, and a technique

for proving procedures to be optimal has gradually emerged. Even

for model languages the proofs of optimality become intricate;

thus it is natural to emphasize the simplicity of the underlying

technique by generalising it to an abstract system. That is the

purpose of this paper. The general method to be given applies to

prove all theorems (on optimal executions for model languages)

which are known to the author. None of the previously known

proofs has explicitly used the method, but in no case is it

particularly difficult to modify the known proof so as to conform

with the method.

1. Introduction

1.1. The abstract system with which this paper is concerned is

Rosen's notion of general replacement system [5], which has become standard

for purposes such as ours; see for example [2, 6]. A general replacement

system is nothing but a set B together with a binary relation •+ on B ;

however the name general replacement system indicates a concern with a
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particular class of problems, for example as follows.

1.2. Given a general replacement system (5, •*•) , we write a -*• b if

(a, b) € -»• . The problems we consider are motivated by the intuitive idea

that each element represents a program at some state of execution; if

a •*• b then a possible next step in the execution of a is to transform a

to b . Elements of B may be called terms.

1.3. We write •** for the reflexive, transitive closure of + . If

there is no b € B such that a -*• b , then we say that a is in normal

form. If a •*•* b and b is in normal form then we say that b is a

normal form of a . If each a € B has at most one normal form then we

say that the system has the normal form property. A standard way of

proving the normal form property, for systems which have it, is to deduce

it as a corollary of the Church-Rosser property, which is defined as

follows.

A system (B, -»•) is said to have the Church-Rosser property if for

all a, b, a € B such that a •*•* b, a -*•* a , there is d € B such that

b •*•* d, a +* d .

The Church-Rosser property is named after the authors of the original

proof [/] of a particular instance of the property. The property in the

generality considered here was first studied by Newman [3].

Intuitively a term in normal form represents a completely executed

program. Since we generally require that programs should execute to the

same conclusion no matter which of the alternative compilations is chosen,

we are generally interested in systems which have the normal form property.

1.4. If a -*• b then we say that a contracts to b . If

a = V a1+a2, .... V l "" an« an = * ,

then we say that the displayed sequence of contractions is a reduction of

a to b , of length n . We may loosely denote, in context, a particular

reduction of a to b by a ->•* b . This paper gives a method for proving

for appropriate systems that certain reductions of terms with normal form

to normal form are optimal in the sense that they are both

(i) complete: that is, do reduce the terms in question to

normal form; and
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(ii) minimal: that is, all'reductions to normal form are of

minimal length.

Our proof does not assume the normal form property. On the contrary,

the normal form property is established by our hypotheses, though the

Church-Rosser property is not.

2. The optimality result

2.1. We write S., for the set of terms of S which have a normal
N

form.

2.2. We consider a subset -»• of •+ consisting entirely of

contractions of terms of #„ ; but we do not assume that all such

contractions are included, or that b i B~ when a •* b and a € B^ . We

call elements of •*• o-contractions, and we call reductions which comprise

solely o-contractions, o-reductions. Our object is to give conditions on

-»• which ensure that repeated o-contraction of a term with normal form is

always possible until a normal form is reached, that a normal form is

always reached in that way, and that the o-reduction so obtained is a

reduction of the term to normal form of minimal length.

If it should occur that o-contractions commute, in the sense that:

whenever a € B« , b, c € B , b t a , and a •* b , a •* a ,

there is d € B such that b •* d , o •*• d ,

o o

then it is straightforward to show (see 3.1) that all o-reductions of

a to normal form have the same length and reduce to the same normal form.

For systems with the normal form property that is evidently a necessary

condition for o-reductions to be optimal, but it is not usually

sufficient. We shall see however that it is one of four conditions which

taken together are sufficient (2.U).

2.3. In nontrivial programs and systems it is often possible to carry

out computational steps which are completely irrelevant to the execution,

and which therefore must be avoided in any optimal reduction. Consider a

trivial example; at a branching point such as,
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if 2 = 0 then y = 2 + 3 else y = h + 5 ,

there is no need to evaluate the sum 2 + 3 .

We shall assume in the hypotheses of our abstract result that we are

able to describe the subset •+. of •+ comprising worthless contractions

of terms of 5« . Such a subset will be called the set of dummy

contractions, in accordance with previous practice in specific systems (see

[7, S]). A sequence of dummy contractions is naturally called a dummy

reduction and loosely denoted -»-.,, .

2.4. It is convenient to have a slightly different notation also for

sets of contractions and sets of reductions, as follows. We write y, o, 6

for arbitrary contractions, o-contractions, dummy contractions

respectively. If r denotes a set of contractions or reductions then r*

denotes the set of reductions obtainable by iterating the contractions or

reductions of r a finite number of times. If r, e denote sets of

contractions or reductions then rs denotes the set of reductions obtain-

able by first applying to a term a contraction or reduction from r and

then another from s . Also we denote by r - s a contraction or

reduction which is in r but not in 8 , by r a reduction

comprising either no contractions or else just one contraction or reduction

from r , and by r the set of contractions not in r .

Thus, for example, 6*y6* denotes a dummy reduction (perhaps

comprising zero dummy contractions) followed by an arbitrary contraction

followed by a dummy reduction.

We now state:

2.5 THE MAIN RESULT. If (B, -»•) is a system such that * has

subsets "*•»•*•* which satisfy the following conditions then 8 has the

normal form property, every b € B« has em o-reduction to normal form, and

every o-reduction of b to normal form is a reduction of b to normal

form of minimal length. The conditions are:

2 . 5 . 1 . if a € Bj, , b € B , and a •*• b then there is c (. B

such that a •*• c ;
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2.5.2. if a $ BN , b, o € B , b t c , and a •*• b , a •* o ,

then there is d (. B suah that b -*• d , 0 •*• d ;

o o

2.5.3. (i) if a € BN , b, c € B , and a -*Q b , a •+. c ,

then there is d € B such that a •*• d . b -*-rt d .

o 0*

(ii) if a (. BJJ , b, d € S , a •+* b , and b •*• d

then there is a € B suah that a •*• a and

0 *6* d ;

2.5.U. if a € Bj. , b, 0 € B , and a •*• b is a contraction of

6 - o y and if a •*• c , then there is d € B such that

b -»•* d by a reduction of (o*S*)*o(o*6*)* and suah that

c •*•* d by a reduction of 6*Y^.6* .
a -
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FIGURE 1

REMARK. The conditions of the above result are illustrated in Figure

1. In 2.5-'* the condition on the reduction of b to d is simply that it

comprise ^-contractions and dummy contractions, but including at least one

o-contraction.

The proof of the result is given in the next section.

3. Proof of optimality

Throughout this section we consider a system (S, •*•) which satisfies

the hypotheses of 2.5; but in view of the discussion of 2.2 it should be

noticed that the proof of 3.1 depends only on the hypothesis 2.5-2. We

begin the section by stating and proving some needed lemmas, and conclude

with the proof of 2.5-
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3.1. All o-reductions of a term a € B_ to normal form have the

same length and reduce a to the same normal form.

In order to prove 3.1 we first prove:

3.2. If a € Bj, has an o-reduotion R to normal form b which has

length n and first contraction a •*• a , and if a -»• a~ where

a2 * a l ' an<^ ^f a l ~*o a 3 ' a2 "*" a 3 •* ^nen a2 ' M S an o-reduotion to

b of length n - 1 .

Proof. By induction on n . The case n = 2 i s easily checked from

2.5.2 as follows. The second contraction of R must be a, -»• a ; for
1 o 3

if it were a, •* b where b t a, then from 2.5.2 there would be a^

such that a~ •* a, , b -*• a, , contradiction since b is in normal form.

Suppose then that n > 2 . If a. -»• a is the second contraction

a, •* a, of R then the assertion is trivially true. If not then 2.5.2

applies to a. to show that there is a- such that a ? + a_ ,

a. + a_ . Then the inductive hypothesis applies to a. to show that a_

has an o-reduction to normal form b of length n - 3 . Hence a_ has

an o-reduction to b of length n - 2 as required.

3.3 Proof of 3.1. Suppose that R, S are o-reductions of lengths

m, n respectively to normal forms p and q . We prove by induction on

k = max{m, n) that m = n and p = q .

The case fe = 0 is trivially true. Also the case k = 1 is easily

seen to be true, for R, S comprise the contractions a •*• p , q -*• q

respectively and p = q since the assumption p # q leads from 2.5.2 to

the conclusion that p, q are not in normal form, contradiction.

Hence we assume that k i 2 . Denote the first contractions of R, S

by a •* a, , a •* a~ respectively. If a, = a o then the inductive
o 1 o £ -L £•

hypothesis applies to a, to give the result immediately. If a, f a_

then from 2.5.2 there is a, such that a, •*• a~, a , * a_ . Then 3.2

applies to both a , a ? to show that au has o-reductions of lengths
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m - 2, n - 2 to normal forms p, q respectively. Thus the inductive

hypothesis applies to a~ to show that p = q and m - 2 = n - 2 .

3.4. 1/ a Z Bj, has an o-reduction R to normal form b of length

n , and if a •+»< a then a., to an o-reduction of length n to b .

Proof. By induction on n . Then, for a proof by induction on the

number of contractions comprising a •*vJt a, it is evidently enough to

suppose that a -»•. a. . Then the case n = 0 is vacuously true and the

case n = 1 is evident from 2.5.3 d)• Hence we suppose that n i 2 .

Say that the first contraction of R is a •*• a^ . Then from 2.5.3

(i) there is a_ such that a 2 •+-.,, a , a -*• a . The inductive

hypothesis applies to a 2 to show that a, has an o-reduction to b of

length it - 1 , so as a. -*• a^. , a, has an o-reduction to b of length

3.5. If a £ B~ has an o-reduot-ton R to normal form b of length

n and if a •*•* a by a reduction S of type (o*6*)* which includes oust

m o-oontractions, then c has an o-reduction to b of length n - m .

Proof. For a proof by induction on the number of contractions in S

it is evidently enough to treat the two cases when S is a single

contraction a •*• a , or a •+. a. . These cases are given by 3.2 and 3.^

respectively.

3.6. If a •+,Jt a and if a has an o-reduation to normal form b

of length n then a has an o-reduction to normal form b of length n.

Proof. By induction on n . Then for a proof by induction on the

number of contractions comprising a -••,,, a, it is enough to suppose that

a *& al " T h e c a s e n ~ ° i s trivial s o w e suppose that n > 0 . Say

that the first contraction of R is a. •*• a_ . Then from 2.5-3 (ii)
1 o d

there is a. such that a -*• a and a. -*--A a^ . Then by the inductive

hypothesis a, has an o-reduction to b of length n - 1 , so that

has an o-reduction to b of length n as required.
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3.7. Proof of 2 .5 . We prove by induction on m that i f a (. B has

a reduction R to normal form b of length m then a has an

o-reduction to b of length at most m . The result then follows from

3 . 1 .

The case m = 0 i s t r i v i a l l y t rue . The case m = 1 i s easy, for i f

a -*• b then a •* b , since a •*• a for some a by 2 .5 .1 ; thus a •*-. b
O O 0

implies (2.5.3 (i)) that b is not in normal form, contradiction, and

a -»* b implies (2.5.1*) that b is not in normal form, contradiction.

Since a •*• b, a •* a , then b = a , for b t a implies (2.5.2) that b

is not in normal form, contradiction.

Hence we assume that m > 2 . Say that the first contraction of R

is a •*• a, . We assume, as we may by inductive hypothesis, that the

remainder of R which reduces <z to b is an o-reduction. We then

assume that a •*• a. is not an cp-contraction, for if it is then the

previous assumption shows that R itself is an o-reduction of a to b

of length m . We also assume that a -»• a., is not a dummy contraction,

for otherwise the result follows from 3.6. Now there is (2.5.1) an

o-contraction a -*• a of a , so (2.5-h) there is a_ -»• B such that

a 2 •** a. by a reduction of S*y6* , and a. -*•* a,, by a reduction of

(o*6*)*o(o*6*)* . As a. has an o-reduction to b of length m - 1 ,

and as the reduction a, -*•* £JU is an (o*6*)* which includes at least one

o-contraction, then (3.5) a, has an o-reduction to b of length at most

m - 2 .

Now say that the reduction a^ -*•* a_ is

a2 "6* % - a5 V a3 •

From 3.6, a_ has an o-reduction to b of length at most m - 2 , so by

inductive hypothesis a^ has an o-reduction to b of length at most

m - 1 j so by 3.6 again a ? has an o-reduction to b of length at most

m - 1 . Since a •*• a~ we conclude that a has an o-reduction to b of
o 2
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length at most m , as required.

4. Discussion

4.1. If o can be chosen to be 6 then evidently Condition 2.5.U is

vacuously true.

4.2. The simplified hypotheses indicated in k.l are enough for the

very simple, and suitably chosen, system of [4], but for the more complex

systems of [7, £] the hypotheses as stated in 2.5 are needed.
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