
Automated generation of floor plans with
minimum bends

Pinki , Krishnendra Shekhawat and Akshat Lal

Department of Mathematics, BITS Pilani, Rajasthan, India

Abstract

The generation of floor plan layouts has been extensively studied in recent years, driven by the
need for efficient and functional architectural designs. Despite significant advancements,
existing methods often face limitations when dealing with specific input adjacency graphs or
room shapes and boundary layouts. When adjacency graphs contain separating triangles, the
floor plan must include rectilinear rooms (non-rectangular rooms with concave corners). From
a design perspective, minimizing corners or bends in rooms is crucial for functionality and
aesthetics. In this article, we present a Python-based application called G-Drawer for automat-
ically generating floor plans with a minimum number of bends. G-Drawer takes any plane
triangulated graph as an input and outputs a floor plan layout with minimum bends. It
prioritizes generating a rectangular floor plan (RFP); if an RFP is not feasible, it then generates
an orthogonal floor plan or an irregular floor plan. G-Drawer modifies orthogonal drawing
techniques based on flow networks and applies them on the dual graph of a given PTG to
generate the required floor plans. The results of this article demonstrate the efficacy of G-Drawer
in creating efficient floor plans. However, in future, we need to work on generating multiple
dimensioned floor plans having non-rectangular rooms as well as non-rectangular boundary.
These enhancements will address bothmathematical and architectural challenges, advancing the
automated generation of floor plans toward more practical and versatile applications.

Introduction

The use of graphs for architectural design had been practiced by researchers frompastmany years
(Levin, 1964; Cousin, 1970; Grason, 1970; Steadman, 2006). Adjacencies are very well repre-
sented by bubble diagrams, an adjacency graph directly suggests the required interior and
exterior rooms, wall adjacencies can also be represented by a graph, weighted graphs can be
used to input room dimensions, presence of separating triangles suggest the requirement of non-
rectangular rooms, and many other FP properties can be asked by user in the form of a graph. At
the same time, there is one-to-one correspondence between a dual graph and an FP. Graphs can
also handle the generation of dimensioned layouts or multiple layouts. Because of all these
reasons, in the recent years, many graph algorithms and theoretical results have been proposed
related to FPs.

In 2006, Steadman (2006) proposed the logic of having most of the rooms and buildings being
rectangular. He stated that the limitation of togetherness in rooms package and dimension
flexibility permitted by rectangularity clarify the prevalence of the right edge in architectural
plans. From graph theory perspective, we can easily maintain rectangularity by mainly consid-
ering the adjacency graph without separating triangles. At the same time, if the input graph has
separating triangles and it is required to satisfy all the adjacencies, then rectilinear rooms need to
be introduced within the FP; the rooms with at least one bend or concave corner (e.g., a
rectangular room has no bends, an L-shaped room has one bend and a T-shaped room has
two bends). In this article, we propose a set of graph algorithms to generate FPs with minimum
number of bends.

Literature review

In general, the problem is to automate the generation of FPs for given adjacencies. To better
understand the work done in the past and the proposed work, here we first present a few
terminologies.

A representation P of a plane graph G (a graph without any edge crossings) is a rectilinear
representation if every vertex vi ofG corresponds to a rectilinear polygon Pi in P. Each edge ei ofG
between vertices vr and vs represents the wall adjacency between the corresponding polygons Pr
and Ps.A representation P is called an FP for G if it is a rectilinear representation with rectilinear
plan boundary (see Figure 1). The polygons within an FP are called rooms.

An FP is a rectangular FP (RFP) if all of its rooms are rectangular along with its boundary (see
Figure 1a). An orthogonal FP (OFP) has rectangular boundary and at least one rectilinear room, a

Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

www.cambridge.org/aie

Research Article

Cite this article: P, Shekhawat K and Lal A
(2025). Automated generation of floor plans
with minimum bends. Artificial Intelligence for
Engineering Design, Analysis and
Manufacturing, 39, e3, 1–20
https://doi.org/10.1017/S0890060424000179

Received: 02 January 2024
Revised: 08 July 2024
Accepted: 24 July 2024

Keywords:
algorithm; floor plan; graph theory; plane
triangulated graph

Corresponding author:
Pinki;
Email: 456pinkiyadav@gmail.com

© The Author(s), 2025. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://orcid.org/0000-0001-8388-4216
https://orcid.org/0000-0002-3408-7912
https://doi.org/10.1017/S0890060424000179
mailto:456pinkiyadav@gmail.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0890060424000179&domain=pdf
https://doi.org/10.1017/S0890060424000179

room with a concave corner (see Figure 1b). An irregular FP (IFP)
has rectilinear boundary (see Figure 1c (ii)).

An orthogonal drawing (OD) of a plane graph G is an embed-
ding in the plane in which all edges are drawn as an alternating
sequence of horizontal and vertical line segments. The point of
intersection of horizontal and vertical line segments in an OD is
called bends. An OFP can also be defined in terms of an OD. An
OFP of G is an OD of its dual G* where every face corresponds to a
vertex of G. A bend in an OFP is defined differently from a bend in
an OD, that is, it represents a concave corner of a room (refer to
Figure 3).

A planar embedding is an embedding of a graph drawn in the
plane such that edges intersect only at their endpoints, that is, it has
no edge crossings. There exists multiple planar embedding of a

graph. Hence, the choice of an embedding has an impact on its OD
as well as FP.

The automated generation of FPs using graph theory began
with the generation of RFPs. In 1980s, comprehensive studies
were presented for the existence and construction of RFPs for
given adjacencies (Koźmiński and Kinnen, 1985; Bhasker and
Sahni, 1987; Bhasker and Sahni, 1988; Rinsma, 1988). It has
been proved that an RFP for a plane triangulated graph (PTG)
G exists if and only if it has no more than four CIPs and no
separating triangles (Koźmiński and Kinnen, 1985; Bhasker and
Sahni, 1987). In recent years, a lot of work done has been
published for the automated generation of RFPs (Bisht et al.,
2022; Shekhawat et al., 2021; Upasani et al., 2020). In 2013,
Pirouz Nourian introduced SYNTACTIC (Nourian et al., 2013):

Figure 1. A plane graph representing CIPs in orange color and STs in green color, with their corresponding floor plans: (a) rectangular floor plan, (b) orthogonal floor plan, and
(c) (i) orthogonal floor plan and (ii) irregular floor plan, respectively.

2 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

A computational tool suite for analyzing/designing architec-
tural configurations. This tool provides automated generation
of FPs specifically for properly triangulated planar graphs. The
FPs generated by this tool are restricted solely to rectangular
rooms.

The work on OFPs started in 1993, when Sun and Sarrafzadeh
(1993) presented the existence conditions for graphs for which
RFPs do not exist and presented the construction of OFPs. In
coming years, many papers have been published on OFPs which
are briefed as follows:

In 1993, Yeap and Sarrafzadeh (1993) gave existence condi-
tions for OFPs. They proposed that a room with two concave
corners, that is, 2-CRMs1 are both necessary and sufficient for the
existence of an OFP for a given graph. In a subsequent study, He
(1999) proposed a linear time floor planning algorithm to con-
struct an OFP using canonical labeling. In 2003, Brandenburg
et al. (2003) discussed graph theoretic open problems related to
minimizing the number of bends in a 2D orthogonal representa-
tion of a graph (Problems 14 and 15). In the same year, Kurowski
(2003) gave a polynomial time algorithm for constructing an OFP
with restricted the number of T-shaped rooms, that is, 1

2 n�2ð Þ.
In 2011, Jokar and Sangchooli (2011) proposed the face area
concept for the construction of OFPs. In 2012, Ueckerdt (2012)
used Schnyder wood technique the generating an OFP. In 2013,
Alam et al. (2013) stated that eight-sided rooms are both necessary
and sufficient for building an OFP. Chang and Yen (2014) dem-
onstrated that 12-sided rooms are required for a T-free OFP. They
also presented the construction of OFPs using only monotone
staircase rooms.

In 2022, Pinki and Shekhawat (2022a) presented a generalized
linear-time algorithm for the construction of an FP with no restric-
tion on the number of bends.

Due to the applications of FPs in architectural layout arrange-
ments and circuit designing, they are not limited to rectangular
boundary. A lot of research has been conducted on IFPs using
different approaches such as pseudo geometric dual (Baybars
and Eastman, 1980), canonical representation (Nummenmaa,
1992), perfect matching (Miura et al., 2006), and so forth. In the
last few decades, researchers came up with distinct approaches
for the automatic generation of FPs, that is, shape grammar
(Duarte, 2001; Müller et al., 2007; Wu et al., 2013), artificial
intelligence (He et al., 2022), data-driven techniques (Wu et al.,
2019; Lu et al., 2021), neural networks (Hu et al., 2020), generic
optimization (Laignel et al., 2021), constrained optimization
(Para et al., 2021), generative adversarial layout refinement
network (Nauata et al., 2021), integer linear programming
(Klesen and Wolff, 2021), and so forth. Shape grammar is one
of the most common approaches used for the automated gener-
ation of FPs by architects.

In the recent years, most the papers published related to the
automated generation of FPs are based on machine learning tech-
niques (Hu et al., 2020;Wu et al., 2019; Azizi et al., 2022). One of the
main goals of machine learning models is to adapt to new, previ-
ously unseen data, assuming it is drawn from the same distribution.
Properly trained models should capture meaningful patterns
and relationships in the dataset to generalize beyond the scope of
the training dataset. Therefore, while current methods excel in
generating significant layouts based on available data, they need
to evolve to address additional constraints and ensure adaptability

to new scenarios. For example, in this article, we proposed to
generate layouts with minimum rooms’ corners which might be
hard for data-driven approaches to handle.

We conducted a comparative analysis between the FP gener-
ated by G-Drawer and those produced by Graph2Plan (Hu et al.,
2020) and House-GAN++ (Nauata et al., 2021). Our evaluation
focused on several key aspects, that is, adjacencies, the shape of
boundary and the shapes of rooms. The floor generated by
Graph2Plan (Hu et al., 2020) and House-GAN++ (Nauata et al.,
2021) either violate the specified adjacencies or include more than
the required rectilinear rooms and rectilinear boundary (see
Figure 2).

Gaps in the existing literature and our contributions

In 2022, Pinki and Shekhawat (2022b) presented a mathematical
approach for computing the minimum number of bends required
in an orthogonal FP for a given graph G. This approach relies
solely on critical separating triangles and K4’s. However, the
paper is restricted to a specific class of graphs and it did not
include the implementation of construction algorithms. In 2023,
Shekhawat et al. (2023) presented a graph-theoretic method for
generating FPs with customized room shapes. It includes a
Python-based application for creating FPs with specific room
shapes but it generates FPs with many more bends than the
minimum required bends. Also, finding a planar embedding that
leads to an OD with a minimum number of bends is NP-hard
(Garg and Tamassia, 2001). In this work, we are considering a
fixed embedding of a dual graphG* (triconnected cubic graph) of
a given graph G and constructs an OD which may not have
minimum bends for G* but corresponds an OFP with minimum
bends for G.

Further, in literature, a lot of approaches have been proposed
and discussed for the generation of OFPs without considering the
number of bends in the obtained FP. In this article, we present a
Python-based application called G-Drawer developed by modify-
ing the approach stated by Klose (2012) as per our requirements.
G-Drawer considers all classes of PTGs and for a given graph G, it
generates an FP with a minimum number of bends by using the
following steps (see Figure 3):

(a) construct the dual G* of G,
(b) construct an embedded preserved OD of G* whose every face

corresponds to a vertex of G (using topology shape metric
approach).

More specifically, using flow networks, this article presents a
user interface G-Drawer for generating FPs with minimum
bends (minimum rectilinear rooms) where there is no restric-
tion on the input graph, that is, it considers any PTG. Depend-
ing on the input graph, it generates rectangular or orthogonal
or IFP.

The flow of the paper is organized as follows. Literature on
FPs, and contributions based on gaps in existing literature are
given in section ‘Gaps in the existing literature and our contri-
butions’. Preliminary definitions, terminologies, and some
important notations are given in section ‘Preliminaries’, which
are used throughout the paper. Section ‘G-Drawer for construc-
tion of FPs for PTG with minimum bends’ describes the key idea
for generating FPs with minimum bends. This section also pre-
sents the working of G-Drawer with explanatory examples.
Section Conclusion serves as the conclusion of the paper, while1k-CRM: a room with k concave corners.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 3

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

section ‘Limitations and future work’ discusses the limitations of
the current study and presents future directions.

Preliminaries

In this section, we provide a few definitions that will be later used in
the paper.

A graph is said to be planar if it can be drawn on the plane
without edge crossings, that is, its edges intersect only at their
endpoints. Such a graph drawing with no edge crossings is called
a plane graph or planar embedding of the graph. A planar embed-
ding of a planar graph divides the plane into connected components
called faces. The unbounded face is called the exterior face.All other
faces except the exterior face are internal faces. A graph G is said to
be biconnected if it does not have a cut-vertex (see Figure 4a). An
edge of a biconnected planar graph is a shortcut if it is incident to
two vertices on the outer boundary of G but not a part of it. In
Figure 4c, edges (4, 2); (2, 5); (5, 8); (8, 7); and (7, 4) are shortcuts. A
corner implying path (CIP) of a biconnected planar graph is a path

w1,w2,w3, … wn which lies on the outer boundary of G where
(w1,wn) is a shortcut and vertices w2,w3, …wn are not a part of
any other shortcuts. In Figure 4c, there are four CIPs, namely,
(1,2,4); (2,11,12,5); (5,9,8); (8,10,7); and (7,6,4).

Definition 1 [Plane triangulated graph]: A plane triangulated
graph (PTG) is a biconnected plane graph G which satisfies the
following conditions:

(i) all of its internal faces are triangular,
(ii) exterior face can or cannot be triangular.

Definition 2 [Separating triangle] (Pinki and Shekhawat, 2022b):
Any triangle in a plane graph having at least one interior vertex is a
separating triangle (ST). The complete graph of order 4, that is,K4 is
a smallest ST containing only one vertex of degree 3. An ST is
critical if it contains a vertex of degree >3 in its interior and it is
denoted as CST. A CST is an outer CST if it forms the boundary of

Figure 2. Comparison between G-Drawer, Graph2Plan (Hu et al., 2020), and House-GAN++ (Nauata et al., 2021) on the basis of given adjacencies, the shape of boundary and shapes
of rooms.

4 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

the external face and it is denoted as CST. A CST is categorized as
follows:

i. Simple CST: It is a CST that does not contain any other CST or if
it contains a CST then it should have either common vertices or
edges with the contained CST. In Table 1 Case 1a, Δ123 repre-
sents a simple CST that contains a CSTΔ134 with a shared edge
(1,3).

ii. Nested CST: It is a CST containing a disjoint CST, that is, it does
not share a vertex or an edge with the contained CST. In Table 1
Case 1c, Δ456 represents a nested CST that contains a disjoint
CST Δ123.

Definition 3 [Containment tree]: A containment tree T represents
the hierarchy of CSTs of the given graph. In this tree, each vertex
represents a CST except the root of the containment tree, whichmay
or may not be a CST. Two vertices are adjacent if one of the vertex is
contained in another vertex. Its hierarchical order from root to leaves
represents the containment of a vertex in its parent vertex. The
containment tree is denoted as CT and its leaves are denoted as LT.
In Table 1 Case 4,Δ123 is a root vertex of a CT containing two CSTs
Δ124 and Δ234. These two CSTs are leaves of the CT.

Remark. PTGs can be classified into the following categories (see
Figure 4):

Type 1: PTPG: A PTG with no STs and exterior face of length at
least 4 and no more than 4 CIPs. ▹ Properly triangulated planar
graph (PTPG)

Type 2: A PTGwith STs and exterior face of length 3.▹Maximal
planar graph (MPG)(MPG has no CIPs)

Type 3: A PTG with no STs and more than 4 CIPs.
Type 4: A PTGwith STs and exterior face of length at least 4 and

no more than 4 CIPs.
Type 5: A PTG with STs and more than 4 CIPs.

Notations:
FP: floor plan/s, RFP: rectangular FP, OFP: orthogonal FP, IFP:
irregular FP, PTG: plane triangulated graph, PTPG: properly triangu-
lated plane graph, MPG: maximal plane graph, CIP: corner implying
path,K4: 4-vertex complete graph, ST: separating triangle, CST: critical
ST, CST°: outer CST,Bmin:minimumnumber of bends in anOFP,CT:
containment tree, |LT|: the number of leaves of a containment tree.

G-Drawer for construction of FPs for PTGwithminimumbends

This section discusses the working of G-Drawer which has been
developed in Python for constructing FPs with minimum bends.
The input to G-Drawer is any PTG. The working steps of G-Drawer
can be summarized under the following heads:

Checking for existence of FPs

For a PTGG, there always exist an FP. Hence, the program takes the
input graph and checks the basic criterion for the existence of an FP,
which are as follows:

Figure 3. (a) A plane triangulated graph G, (b) dual graph G* of G, (c) embedding preserved orthogonal drawing (withoutminimumbends) of G* which is an orthogonal floor plan for
G (without minimum bends), and (d) embedding preserved orthogonal drawing (with minimum bends) and an orthogonal floor plan with minimum bends which is obtained by
G-Drawer. (e) An orthogonal drawing of G* which is not embedding preserved but with minimum number of bends in general and it is not an orthogonal floor plan of G.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

1. Planarization: The task of planarization is to check if the given
graph is a plane graph. We are using the Boyer–Myrvold algo-
rithm for planarity testing (Boyer and Myrvold, 1999). The
program takes the input graph via a UI that allows the user to
place the vertices and edges on the canvas. If the input graph is a
plane graph, the program proceeds with the dual generation
steps. Otherwise, an error message is displayed at the bottom
and the program execution is halted (see Figure 5a).

2. Biconnectivity: The program checks if the given input graph is
biconnected (i.e., it does not have a cut-vertex). This is done by
searching for the existence of a cut vertex in the graph. If there
exists a cut vertex, then an error message is displayed, and the
execution stops. Otherwise, the program goes to the step of dual
generation (see Figure 5b).

3. Triangularity: The program checks if the given input graph is
triangular, that is, every simple cycle of the graph is a triangle. If
the condition is satisfied, the graph proceeds with the dual
generation steps. Otherwise, the program is halted and an error
message is displayed (see Figure 5c).

Construction of FPs

G-Drawer presents the construction of different types of FPs, that
is, an RFP, an OFP, and an IFP. In 1985, Kozminski and Kinnen
(1985) proposed the following theorem for the existence of an RFP.

Theorem 1. (Koźmiński and Kinnen, 1985; Bhasker and Sahni,
1987) A biconnected PTGwith no STs and exterior face of length at
least 4 has an RFP if and only if it has no more than four CIPs (see
Figure 6).

It is clear from Theorem 1 that if a PTG G contains either an ST
or the number of CIPs >4 or the exterior face is triangular then there
does not exist an RFP corresponding to it. Hence, it is required to
construct anOFP forGwhere bends need to be introduced to satisfy
the adjacency requirements. Bends in an FP corresponds to either
an ST or a CIP, if the number of CIPs >4 (see Figure 7). When a
graph includes a separating triangle, introducing bends into the FP
becomes necessary to meet all adjacency requirements. Similarly,

Figure 4. Types of plane triangulated graphs (PTGs) representing CIPs in orange and STs in green color: (a) properly triangulated plane graph (PTPG), (b) maximal plane graph
(MPG), (c) a PTG with no STs and more than four CIPs, (d) a PTG with STs and exterior face of length at least four and no more than 4 CIPs, and (e) a PTG with STs and more than
four CIPs.

6 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

Table 1. Illustration of cases of Theorem 2 with explanatory examples

Cases Bend Graph and its corresponding floor plan

If |CST| ≥ 2 and one of the
conditions holds which
are as follows:

(a) Each CST is a leaf of a
containment tree
except root of contain-
ment tree which is a
CST (that is CST°)

(b) Each CST is a leaf of
containment tree.

(c) Each CST is either a leaf
of a containment tree
or an intermediate CST

Bmin = ρ

If |CST| ≥ 2 and there exists a
K4 ⊆ CST which do not
share an edge with any of
the CSTs

Bmin = ρ

If |CST| ≥ 2 and there exists at
least one CST containing
K4 and sharing an edge
with K4

Bmin = ρ�1

(Continued)

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 7

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

Table 1. (Continued)

Cases Bend Graph and its corresponding floor plan

If |CST| ≥ 2 and there exists at
least two CSTs containing
K4 and sharing an edge
with K4. If the shared
edges have a vertex in
common

Bmin = ρ�2

If |CST| = 1 and |K4| ≥ 1 and
there exists a K4 ⊆ CST
sharing an edge or a
vertex with the CST

Bmin = ρ

If none of the above cases is
applicable

Bmin = ρ+ 1

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

when there are four CIPs, their adjacency corresponds to the four
corners of an RFP. However, if the count exceeds four, it leads to
more than four corners, resulting in a rectilinear representation
with a rectilinear boundary.

G-Drawer presents the automated generation of an RFP for
PTPG, an OFP for PTGs (except for PTPG) with the minimum
number of bends. An IFP is also generated if number of CIPs >4 (see
Figure 8).

Theorem 2. Bends in an OFP corresponding to a PTG G is ρ�
2≤Bmin ≤ ρ+ 1 where

ρ=
∣LT Gð Þ∣+ ∣K4 Gð Þ∣+ ∣nestedCST Gð Þ∣ if ∣CIPs∣ ≤ 4;

∣LT Gð Þ∣+ ∣K4 Gð Þ∣+ ∣nestedCST Gð Þ∣+ ∣CIPs∣�4if ∣CIPs∣ > 4:

�

Proof.
The existence of bends in a PTGG depends on triangles that are

not a face, that is, on CST or K4 and CIPs. This implies that
contributors to the bends in an OFP for G are:

1. CSTs
(a) Root of a containment tree can either be a CST or not. If it

is a CST then it is denoted by CST° and CST° has three

vertices on the boundary but an OFP has four sides at the
boundary. The rooms corresponding to three boundary
vertices of CST° can form the boundary of a required OFP
if any of them has a bend (refer to Case 4 of Table 1 where
a bend can be seen on roomM3 of the OFP corresponding
to CST° (Δ123) of the given graph). Otherwise, the root of
a containment tree does not contribute to a bend in
an OFP.

(b) CSTs that are leaves of a containment tree: Each CST is
represented by a triangular face in its dual graph and a
triangular face needs to be made rectangular which gener-
ates a room with a bend in the required OFP (see Case 4 of
Table 1 where bends can be seen on rooms M3 and M4

corresponding to leaves CSTs [Δ124] and [Δ234]). Hence,
all CSTs introduce |LT| bends in an OFP.

(c) Intermediate CSTs of a containment tree: Intermediate
CSTs are either simple CST or nested CST.
(i) If an intermediate CST is a simple CST then it has a

shared edge with its descendant CSTs or its child
CSTs in CT. Because of the shared edge, the bend
required for an intermediate CST is already intro-
duced by the CST with which it is sharing an edge.
Hence, intermediate simple CSTs do not contribute to
the bends.

Figure 5. G-Drawer gave an error if the input graph is (a) not a planar graph, (b) not bi-connected, and (c) not triangular.

Figure 6. A PTPG and its corresponding RFP obtained using G-Drawer.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 9

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

(ii) If an intermediate CST is a nested CST and the nested
CST is disjoint from other CSTs then a bend is required
to make the triangular face rectangular. Hence, all
intermediate nestedCSTs introduce |nestedCST| bends
in an OFP.

2. K4s: Every K4 is a triangular face in its dual graph and to make it
rectangular, |K4| bends are required in an OFP.

3. CIPs: Every CIP is a path which lies on the outer boundary and
has a shortcut which is an edge. A shortcut disconnects the graph
into subgraphs where each subgraph corresponds to a rectangu-
lar plan/block. In an OFP, the rectangular block corresponding
to a CIP is covered from two sides by the room corresponding to
either starting vertex or ending vertex of the CIP, which intro-
duces a bend (refer to OFP in Figure 1c where the rectangular
block with roomsM3,M11, andM12 is covered from two sides by
room M5 which introduces a bend). If |CIP| < 4 then the
rectangular block obtained by these subgraphs lies on any of
the four corners of a rectangular boundary which requires
no bend.

It can be seen that the contributors for bends are: root of the
containment tree (if it is CST°), leaves CSTs of a containment tree,
intermediate CSTs which are nested CSTs,K4s and CIPs. Therefore
the number of bends required to construct an OFP is at most ρ + 1.
Hence, Bmin is at most ρ + 1, which can be reduced further in the
following cases:

Case 1. If |CST| ≥ 2 and any of the following holds:

(a) each CST is a leaf of a containment tree except the root of
containment tree which is a CST (that is CST°) then Bmin = ρ
(refer to Case 1a of Table 1).

(b) each CST is a leaf of a containment tree then Bmin = ρ (refer to
Case 1b of Table 1).

(c) each CST is either an intermediate CST or leaf of a contain-
ment tree then Bmin = ρ (refer to Case 1c of Table 1).

Explanation |:CST| ≥ 2 implies that either root of the containment
tree is a CST (which is denoted by CST°) or not. If it is a CST, that is,
CST° then it contains one or more CSTs and they further do not
contain any other CST. If CST° is simple CST, that is, it always has a
shared edge with the contained CSTs. Hence, a bend corresponding
to any CST is also a bend for CST°, that is, a bend corresponding to
CST° is not required and |nested CST| = 0. Hence, Bmin = |LT| = ρ. Else
if CST° is a nested CST then the bend required for CST° and nested
CST is the same.Here, nested CST is independent and disjoint. Hence,
the bend reduction in case of sharing of a vertex or an edge of CST°
with other CSTs is not applicable, and therefore, Bmin = ρ.

Else if the root of a containment tree is not a CST and there are
no intermediate CSTs, that is, |nested CST| = 0. |K4| = 0 and a
bend corresponding to the root is not required. Therefore,
Bmin = |LT| = ρ.

(b)

Figure 7. A PTG and its corresponding OFP with one bend (obtained using G-Drawer) due to (a) CIPs (# CIPs = 5) and (b) STs (# STs = 1).

10 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

Else if the root of a containment tree is not a CST, it does not
contribute to a bend. There are intermediate CSTs which can be
either simple CST or nested CST and intermediate simple CSTs do
not contribute to bends. |K4| = 0 and a bend corresponding to the
root is not required. Therefore, Bmin = |LT| + |nested CST| = ρ.

Case 2. If |CST| ≥ 2 and there exists a K4⊆CSTwhich do not share
an edge with any of the CSTs, then Bmin = ρ (refer to Case 2 of
Table 1).

Explanation: In this case, only one bend gets reduced because of
CST°asdiscussed inCase1.Hence,Bmin= |LT|+ |K4|+ |nestedCST|=ρ.

Case 3. If |CST| ≥ 2 and there exists at least one CST containingK4

and sharing an edge with K4 then Bmin = ρ � 1 (refer to Case 3 of
Table 1).

Explanation: If a CST and a K4 are sharing an edge, then only
one bend is needed for both of them (bend for either a CST or a

Figure 8. A PTG with different solutions (a) an OFP, (b) an IFP (staircase FP), and (c) an IFP (L-shaped FP).

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 11

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

K4 satisfies the adjacency requirements for one another as they
have a shared edge). The bend for CST° is also not required, as
explained in Case 1. Hence, Bmin = |LT| + |K4| + |nested
CST| � 1 = ρ � 1.

Case 4. If |CST| ≥ 2 and there exists at least two CSTs containing
K4 and sharing an edge with K4. If the shared edges have a vertex in
common then Bmin = ρ � 2 (refer to Case 4 of Table 1).

Explanation: Since a CST shares an edge with a K4, from Case
2, Bmin = ρ � 1. Also, if more than one CSTs are sharing an
edge with K4 and shared edges have a common vertex, then the
bend at the common vertex compensate for the bends required
for these CSTs and K4s. Hence, Bmin = |LT| + |K4| + |nested
CST| � 2 = ρ � 2.

Case 5. If |CST| = 1 and |K4| ≥ 1 and there exists a K4 ⊆ CST
sharing an edge or a vertex with the CST then Bmin = ρ (refer to Case
5 of Table 1).

Explanation: Since a CST and a K4 have a common edge or a
common vertex, only one bend is required for both of them. Hence,
Bmin = ρ, that is, |K4|.|

Three major steps are required to construct an FP for a PTG
which are as follows:

Step 1: Dual generation This step creates the dual of a given
PTGG.The planar embedding ofG is taken as an input for this step.
A graphG* is a dual ofG if the weak dual ofG* isG (see Figure 9). In
the dual of G, every vertex ofG corresponds to an interior face ofG*
and every edge of G corresponds to common line segment of the
adjacent faces of G*. Dual of G is always triconnected cubic graph
(G is biconnected and triangulated).

For a PTGG, Fint denotes the set of all the interior faces ofG and
Fext denotes the exterior face of G.

Algorithm 1 : Dual Generation.

Input: A biconnected PTG G.
Output: Dual of G (G*)

1 Place a vertex inside every f i ∈ Fint of G, call such vertices r1, r2,
… rk (refer to blue vertices in Figure 9b).

2 Place a vertex next to the midpoint of every edge of Fext, call such
vertices b1, b2, … bl (refer to red vertices in Figure 9b).

3 If fi and f j ∈ f int are adjacent then join the corresponding vertices
with an edge such that it intersects a common edge between them
(refer to green edges in Figure 9c).

4 If f i ∈ Fint shares an edge with Fext then join the corresponding
ri’s and bj’s with an edge such that it only intersects the common
edge between them (refer to pink edges in Figure 9c).

5 Join bj’s if their corresponding edges have a vertex in common
(refer to red edges in Figure 9c).

For the implementation of dual generation in G-Drawer, refer to
Figure 10.

Step 2: Orthogonalization This step is based on Tamassia’s
approach (refer to Algorithm 2 of (Di Battista and Eades, 1999))
which begins with the construction of the flow network ofG*. Then
minimum cost flow is computed for the constructed flow network
using Successive Shortest Path (SSP) algorithm (Ahuja et al., 1989).
The obtainedminimumcost flow is used to determine the angle and
bend-data to generate an OFP. We have modified and then imple-
mented this approach to obtain an OFP.

Algorithm 2 : Steps of Tamassia’s approach.

Input: A Triconnected Cubic Graph G*.
Output: An Orthogonal Floor Plan

1 Construct flow network N.
2 Compute minimum cost flow of N and call SSP minimizer.

Figure 9. A PTG G and its relation with dual graph G* where the blue vertices correspond to the interior faces, while the red vertices correspond to each edge of the exterior face. The
green edges represent adjacencies between the interior faces, the pink edges represent adjacencies between the interior faces and the exterior face, and the red edges signify
adjacencies within the exterior face.

12 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

3 Construct an orthogonal representation using data from min-
imum cost flow.

4 Exit

Step 2.1: Construction of flow network To obtain a flow
network from a dual graph G*, refer to the following steps and
Figure 11:

1. Addition of vertices:
(i) Create a square vertex wi in N for every face of G*.
(ii) Create a round vertex vj in N for every vertex of G*.

2. Addition of arcs:
(i) Connect a vertex vj ofN to a vertexwi ofN by a red arc, if face

wi is adjacent with vertex vj in G*.
(ii) Connect each vertex wi to another vertex wj of N by a blue

arc, if the corresponding faces of G* are adjacent.

A flow network is a directed graph where each edge has a
capacity, and each edge receives a flow. The edges can be mono-
directional or bidirectional. There is a cost associated with each
edge, which can be 0 and 1. The round vertices acts as source and
squared vertices acts as sink. The cost of a flow network is the net
cost of an edge which is equal to the edge cost multiplied by the
amount of flow at that edge. This net valued summed over all the
edges gives the total cost of the flow network. The flow value of an
edge represents the angle between the round vertex (original vertex)
and the square vertex (face ofG*) that each vertex shares with a face.
Capacity is defined as the maximum value that can flow in network
which lies between π/2 and 2π.

Relation between min cost flow and minimum bend To
understand how the solution of flow problem is linked to orthog-
onal representation, some essentials are required which are as
follows:

Vertex Angle: A vertex-angle is defined as the counterclockwise
angle between two consecutive edges adjacent to a vertex in the
orthogonal representation. The angle which is formed by a bend in
the orthogonal representation is called bend-angle. In Figure 12b,
angle between edges (8, 2) and (8, 9) is π/2 which is the vertex angle
whereas b0 is the bend angle. For a better understanding, the
counterclockwise angle directions are defined as:

• A 90° angle is called left.
• A 180° angle is called straight.
• A 270° angle is called right.
• A 360° angle is called full.

In a flow networkN, every round vertex acts as a source while every
face vertex acts as a sink. There are two types of arcs inN. First type
arc is from the round vertices to square vertices (refer to
Figure 11b). For a round vertex, the outgoing flow is always 4. This
is because each unit flow denotes an angle of π/2 from the vertex to
the corresponding face in the orthogonal representation (refer to
Figure 12a, where vertex 8 to vertex a has flow value 1 which
corresponds to the π/2 angle between vertex 8 and the adjacent
face A). The second type of arcs is bidirectional between faces. The
flow in such arcs represents that there exists a bend vertex between
the faces. Initially, the cost of flow in the bidirectional arcs is 1 while
the cost of flow in first type of arc is 0 and the problem is to
minimize the cost.

Inminimization algorithmover the flow network, the flow in the
bidirectional arcs gets minimized, while the flow in the mono
directional arcs is unaffected. This flow minimization indirectly
minimizes the number of bends in the FP by minimizing the total
cost of the flow network, since there is a one to one correspondence
between the flow in the bidirectional arcs and the number of bends
in the OFP.

Step 2.2: Finding min cost flow The next step is to find the
minimum cost flow of N which can be done using SSP algorithm

Figure10. A dual graph G∗ for PTPG G.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

Figure 11. (a) A PTGG, (b) a dual graphG* of G, and (c) flow networkN ofG* where the round blue vertices represent each face ofG, the square green vertices represent each vertex of
G, the red arcs denote adjacencies between faces and vertices of G, and the blue arcs indicate adjacencies between faces of G.

Figure 12. Mapping of flow value to angle between the adjacent faces.

14 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

which is a generalization of Ford Fulkerson algorithm. This solver
uses the residual network to find the shortest path and outputs the
flow value as well as cost value which are vertex and bend angles
(refer to Figure 12a).

Step 2.3: Mapping vertex angles and bend angles to obtain an
orthogonal representation To obtain an orthogonal representa-
tion from minimum cost flow solver, we need to map the flow of a
vertex arc to its corresponding angle in the orthogonal representa-
tion. The flow value is directly mapped to the angle between the
adjacent faces (see Figure 12), where

• 1 forms a left angle
• 2 forms a straight angle
• 3 forms a right angle
• 4 forms a full angle

In Figure 12, the flow value of 2 for arc (0,C), 1 for (0,D), and
1 for (0,B), that is, vertex 0 is adjacent to faceCwith 180°, 90° withD
and 90° with B.

The cost of flow in a face arc represents the number of bends
between the corresponding faces. Hence, to add bends in the
orthogonal representation, we need to iterate over all face arcs
depending on the left and right face of an edge. The bends are
added with either a left angle or a right angle. Mapping of flow and
cost to vertex angles and bend angles results in an orthogonal
representation which is given in Figure 12b.

Step 3: Compaction The task here is to assign minimum
lengths to the segments of the edges of the obtained orthogonal
representation with the condition that there are no edge crossings
and no vertex overlaps. Tamassia (Tamassia et al., 1991) investi-
gated a technique that uses a flow network to minimize the edge
lengths.

Step 3.1: Flow networks for vertical and horizontal edge
minimization The flow network for the horizontal segments is
denoted Nhor, and the network for the vertical segments is
denoted Nver, respectively (see Figure 13b,c). Network Nhor

consists of vertices that represent the internal faces of G* and
it has two new vertices representing the lower and upper regions
on the external face for source and sink which are denoted by s
and t (see Figure 13a). It has an arc for every adjacent pair of
faces f and g, that is, if they share a common horizontal segment
e. Similarly, Network Nver consists of vertices which represent
the internal faces of G* and it has two new vertices representing
the left and right region on the external face for source and sink
which are denoted by s and t (see Figure 13c). It has an arc for
every adjacent pair of faces f and g, that is, if they share a
common vertical segment e. The arcs of the flow network Nhor

and Nver in the context of the compaction have the following
properties:

(i) A lower bound for the flow is 1.
(ii) A upper bound or a capacity is ∞.
(iii) Cost is 1.

While solving networksNhor andNver, we assign initial flow value as
1 on every arc. Every vertex except source and sink is a transport
vertex with the property that the incoming flow at a vertex is equal
to the outgoing flow at the vertex. First, each arc gets a flow of 1 then
Breadth.

First Search from source to sink has been processed and each
found vertex is added to a list of vertices such that the list is ordered
by the BFS. Then, for each transport, vertex v of the list it is checked

whether the incoming flow and outgoing flow at v is equal or not.
There can be three cases:

Case 1: The incoming and outgoing flow at v is equal, that is, the
flow of that arc is feasible.

Case 2: The outgoing flow at v is more than the incoming flow at
v. In such a case, the incoming flow to vmust be increased. A vertex
can be incident to various incoming arcs and outgoing arcs, and we
need to identify which arc flow should be increased to keep the flow
minimal. This is done by finding the shortest path from the source s
to v, and the deficit value is added to all the arcs of the shortest path.
For example, consider the vertex a in Figure 13b. Initially, all the
arcs were assigned a flow of 1. This means that the outgoing flow
from a is 3 while the incoming flow is 1, which leads to a deficit of
2. To overcome this deficit, we increase the flow in arc s – a from 1 to
3, thusmass balancing the flow. Thus, whenever the outflow ismore
than inflow, we find the shortest path from the source to the given
vertex and increase the flow in the path. Figure 13a,c shows the
modified network after mass balancing has been done for all the
vertices.

Case 3: The outgoing flow from v is less than the incoming flow at
v then the shortest path from v to the sink t is calculated and the flow
of each arc is adjusted.

Once the mass balancing is done at all the vertices, the solutions
of networks Nhor andNver outputs the minimum edge lengths in an
orthogonal representation (see Figure 13a,c). Combining data
obtained from Nhor and Nver to the orthogonal representation, an
OFP is obtained (refer to Figure 14a,b). Since in the OFP, the bends
corresponding to the minimum cost, therefore OFP has minimum
bends.

Theorem 3. G-Drawer requires polynomial time to generate an FP
with minimum bends for a given PTG.

Proof. Construction of FPs requires three major operations:

(a) Dual generation: In this step, we iterates over all the inner
triangular faces and over all the external edges and place the
vertices corresponding to them. Vertices are joined using a face
to vertex map. Hence, overall complexity for this step is
O(T + P), where T is the number of inner faces and P is the
number of exterior edges. It can be seen that O(T + P) is less
than O(n), where n is the number of vertices.

(b) Orthogonalization: This step includes three operations:
(i) Generating flow network: This step is similar to dual

generation and hence, the implementation of this step
requiresO(R), whereR is the total number of faces ofG*.

(ii) Solving flow network: This step uses the SSP algorithm,
which is generalization of Ford Fulkerson algorithm and
requires O(n × m) time, where n is the number of arcs
andm is the number of nodes. The number of iterations
is at most n × U, where U is the largest supply, and
Dijkstra’s shortest path finder needsO(n2). Summing up
O(n3 × U) complexity is needed for the SSP algorithm.

(iii) Computing orthogonal representation: This is done by
using the solution of the flow network tomap the angles.
The number of angles ≤4n where n is the number of

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

Figure 13. Flow networks. (a) Min cost flow solution for Nhor. (b) Non feasible solution for Nver. (c) Min cost flow solution for Nver.

Figure 14. Solution obtained from compaction, that is, an OFP corresponding to a PTG given in Figure 11a.

16 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

Figure 15. Two floor plans corresponding to the same input graph having the same number of bends and different grid size (area and perimeter).

Figure 16. Two floor plans corresponding to the same input graph having the same number of bends and different grid size.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060424000179

vertices, since every vertex can have amaximumangle of
4 × 90. Overall complexity for this step is O(n).

(c) Compaction: This step includes three operations:
(i) Generating the flow network: This can be done in O(E)

time, since we iterate over all edges and over every face
that an edge shares and an edge can be a part of a
maximum of 2 faces. Joining the two faces by creating
a vertex inside them and adding an edge takesO(1) time.
Overall complexity is O(E).

(ii) Solving network flow: For solving the flow network, we
use a simple flow solving algorithm where complexity is
stated as follows. Adding initial flow to arcs and perform-
ing the BFS which is done only once and has negligible
complexity. The used implementation of Dijkstra’s algo-
rithm needs O(n2) in rare cases. This is done for every
node with gap not equal to 0. Assuming the rare case
that all non-source and non-sink nodes have such a
gap, Dijkstra’s algorithm is processed for n � 2 nodes.

Increasing thenodes arcs is only linear and is negligible, too.
Summing up a complexity ofO((n� 2) × (n2)).We do this
two times for the horizontal and vertical flow networks.

The time complexity of solving the flow network to find the angles
around each vertex takes themaximumamount of time. So, the overall
complexity of the FP generating algorithm isO(n3 ×U), where n is the
number of vertices and U is the largest flow. For the worst case, the
complexity is O(n3 (n � 1)) where, the largest flow U is n � 1.

Conclusion

In this article, we presented a software G-Drawer which automates
the generation of FPs based on the specific class of PTGs (refer to
‘Supplementary Material’). For a PTG G, there always exist an FP
and depending on a PTG, there exists many algorithms for gener-
ating an RFP or anOFP, whenever an RFP does not exist. G-Drawer
takes a PTG as an input and generates a corresponding FP with a

Figure 17. Different solutions for a PTG (with six CIPs) with specific location of bends.

18 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://www.dropbox.com/s/hsdbp1bx30agn9x/Demo.mp4?dl=0
https://doi.org/10.1017/S0890060424000179

minimum number of bends, that is, it first prefers to generate an
RFP (FP with 0 bends if exist), otherwise an OFP (FPs having
rectangular boundary, that is, bends are present at the rooms but
not at the boundary) or an IFP (FPs with non-rectangular bound-
ary, where if possible, the bends at the rooms are shifted at the
boundary). For details, see Figure 8, where for the same input graph,
an OFP and two different IFPs have been constructed using
G-Drawer.

Limitations and future work

The focus of this study is on the automated generation of FPs with
minimum bends. From here on, there are many mathematical as
well as architectural problems which we are planning to address in
the near future, a few of them are as follows:

1. G-Drawer generates dimensionless FPs with minimum bends,
but from application perspective, it is required to generate
dimensioned layouts. Also, G-Drawer covers FPs having non-
rectangular rooms. There exists a few approaches to generate
dimensioned FPs having rectangular rooms (Bisht et al., 2022;
Upasani et al., 2020) but it is more difficult to generate dimen-
sioned FPs with non-rectangular rooms and non-rectangular
boundary. In future, we are working on ways to incorporate
dimensions of rooms as well as boundary to have
dimensioned FPs.

2. G-Drawer generates FPs with minimum bends without consid-
ering the grid size, that is, the generated FPsmay not correspond
to minimum grid size (see Figure 15 where for the same input
graph, G-Drawer generates two FPs, each having a different grid
size). In future, we would like to develop an algorithm for
generating FPs with minimum grid size. Furthermore, it is
interesting to note that the minimum bend FP may not corres-
ponds to a minimum grid size FP (see Figure 16). Hence,
mathematically, it is more challenging to obtain minimum bend
FP with minimum grid size.

3. Sometimes, user may require multiple FPs corresponding to the
same adjacencies, which is difficult to achieve manually. At this
stage, G-Drawer generates only one FP corresponding to the
given requirements. In future, my making a few changes in
G-Drawer, multiple layouts can be generated. For illustrations,
refer to Figure 17).

4. To ensure that G-Drawer can be reached to wide range of
audience, in particular architects and computational designers,
in future, we aim to develop different plugins in Grasshopper,
Revit, and so forth.

Supplementary material. 1. A video illustrating the implementation of
G-Drawer which is done in python is available at https://www.dropbox.com/
s/hsdbp1bx30agn9x/Demo.mp4?dl=0.

2. The Implementation of the code for G-Drawer is available at https://
github.com/GPlanTeam/GDrawer-Code.

References

Ahuja RK, Magnanti TL and Orlin JB (1989) Chapter iv network flows.
Handbooks in operations Research and Management Science 1, 211–369.

Alam MJ, Biedl T, Felsner S, Kaufmann M, Kobourov SG and Ueckerdt T
(2013) Computing cartograms with optimal complexity. Discrete & Compu-
tational Geometry 50(3), 784–810.

Azizi Vd,UsmanM,ZhouH, Faloutsos P andKapadiaM (2022) Graph-based
generative representation learning of semantically and behaviorally aug-
mented floorplans. The Visual Computer 38(8), 2785–2800.

Baybars I and EastmanCM (1980) Enumerating architectural arrangements by
generating their underlying graphs. Environment and Planning B: Planning
and Design 7(3), 289–310.

Bhasker J and Sahni S (1987) A linear time algorithm to check for the existence
of a rectangular dual of a planar triangulated graph.Networks 17(3), 307–317.

Bhasker J and Sahni S (1988) A linear algorithm to find a rectangular dual of a
planar triangulated graph. Algorithmica 3(2), 247–278.

Bisht S, Shekhawat K,Upasani N, Jain RN, Tiwaskar RJ and Hebbar C (2022)
Transforming an adjacency graph into dimensioned floorplan layouts. Com-
puter Graphics Forum 41.

Boyer JM andMyrvoldWJ (1999) Stopminding your p’s and q’s: A simplified o
(n) planar embedding algorithm. In Proceedings of the tenth annual ACM-
SIAM symposium on Discrete algorithms, ACM, pp. 140–146.

Brandenburg F, Eppstein D,GoodrichMT,Kobourov S, Liotta G andMutzel
P (2003) Selected open problems in graph drawing. In International Sympo-
sium on Graph Drawing. Springer, pp. 515–539‥

Chang Y-J and Yen H-C (2014) Rectilinear duals using monotone staircase
polygons. InZhangZ,WuL,XuW,DuDZ (eds),CombinatorialOptimization
and Applications. COCOA 2014. Lecture Notes in Computer Science, volume
8881, Cham: Springer, pp. 86–100. doi: 10.1007/978-3-319-12691-3_8.

Cousin J (1970) Topological organization of architectural spaces. Architectural
Design 40, 491–493.

DiBattista G, Eades P (1999) Roberto Tamassia, and Ioannis G Tollis. InGraph
Drawing, volume 357. Upper Saddle River, NJ: Prentice Hall.

Duarte JP (2001) Customizing mass housing: A discursive grammar for siza’s
malagueira houses.

Garg A and Tamassia R (2001) On the computational complexity of upward
and rectilinear planarity testing. SIAM Journal on Computing 31(2), 601–625.

Grason J (1970) A dual linear graph representation for space-filling location
problems of the floor plan type. Emerging Methods in Environmental Design
and Planning, Proceedings of The Design Methods Group, 1st International
Conference, Cambridge, pp. 170–178.

He F, Huang Y and Wang H (2022) iplan: Interactive and procedural layout
planning. arXiv preprint arXiv:2203.14412.

He X (1999) On floor-plan of plane graphs. SIAM Journal on Computing 28(6),
2150–2167.

Hu R, Huang Z, Tang Y, Van Kaick O, Zhang H and Huang H (2020)
Graph2plan: Learning floorplan generation from layout graphs.ACMTrans-
actions on Graphics (TOG) 39(4), 1–118.

JokarMRA and Sangchooli AS (2011) Constructing a block layout by face area.
The International Journal of Advanced Manufacturing Technology 54(5–8),
801–809.

Klawitter J, Klesen F and Wolff A (2021) Algorithms for floor planning with
proximity requirements. arXiv preprint arXiv:2107.05036.

Klose P (2012) A Generic Framework for the Topology-Shapemetrics Based
Layout. Christian-Albrechts-Universität zu Kiel.

Koźmiński K and Kinnen E (1985) Rectangular duals of planar graphs.
Networks 15(2), 145–157.

KurowskiM (2003) Simple and efficient floor-planning. Information Processing
Letters 86(3), 113–119.

Laignel G, Pozin N, Geffrier X, Delevaux L, Brun F and Dolla B (2021) Floor
plan generation through a mixed constraint programming-genetic optimiza-
tion approach. Automation in Construction 123, 103491.

Levin PH (1964) Use of graphs to decide the optimum layout of buildings. The
Architects’ Journal 7, 809–815.

Lu Z, Wang T, Guo J, Meng W, Xiao J, Zhang W and Zhang X (2021) Data-
driven floor plan understanding in rural residential buildings via deep
recognition. Information Sciences 567, 58–74.

Miura K, Haga H and Nishizeki T (2006) Inner rectangular drawing of plane
graphs. International Journal of Computational Geometry & Applications 16,
249–270.

Müller P, Zeng G, Wonka P and Van Gool L (2007) Image-based procedural
modeling of facades. ACM Transactions on Graphics 26(3), 85.

NauataN,Hosseini S,ChangK-H,ChuH,ChengC-i, and Furukawa Y (2021)
House-gan++: Generative adversarial layout refinement networks. arXiv
preprint arXiv:2103.02574.

Nourian P, Rezvani S and Sariyildiz S (2013) A syntactic architectural design
methodology: Integrating real-time space syntax analysis in a configurative
architectural design process. In 9th International Space Syntax Symposium,

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 19

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://www.dropbox.com/s/hsdbp1bx30agn9x/Demo.mp4?dl=0
https://www.dropbox.com/s/hsdbp1bx30agn9x/Demo.mp4?dl=0
https://github.com/GPlanTeam/GDrawer-Code
https://github.com/GPlanTeam/GDrawer-Code
https://doi.org/10.1007/978-3-319-12691-3_8
https://arxiv.org/abs/2203.14412
https://arxiv.org/abs/2107.05036
https://arxiv.org/abs/2103.02574
https://doi.org/10.1017/S0890060424000179

SSS 2013. SejongUniversity,. https://sites.google.com/site/pirouznourian/syn
tactic-design.

Nummenmaa J (1992)Constructing compact rectilinear planar layouts using canon-
ical representation of planar graphs. Theoretical Computer Science 99, 213–230.

ParaW,Guerrero P,Kelly T,Guibas LJ andWonka P (2021)Generative layout
modeling using constraint graphs. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, IEEE, pp. 6690–6700.

Pinki P and Shekhawat K (2022a) Linear-time construction of floor plans for
plane triangulations. Communications in Combinatorics and Optimization,
8(4), 673–692.

Pinki P and Shekhawat K (2022b) Characterization of graphs based on number
of bends in corresponding floor plans. In Proceedings of the 6th International
Conference on Algorithms, Computing and Systems, ACM, pp. 1–8.

Rinsma I (1988) Rectangular and orthogonal floor plans with required room
areas and tree adjacency. Environment and Planning B: Planning and Design
15(1), 111–118.

Shekhawat K, Lohani R, Dasannacharya C, Bisht S and Rastogi S (2023)
Automated generation of floorplans with non-rectangular rooms. Graphical
Models 127, 101175.

Shekhawat K, Upasani N, Bisht S and Jain RN (2021) A tool for computer-
generated dimensioned floorplans based on given adjacencies.Automation in
Construction 127, 103718.

Steadman P (2006) Why are most buildings rectangular? Arq: Architectural
Research Quarterly 10(2), 119–130.

Sun Y and Sarrafzadeh M (1993) Floor planning by graph dualization:
L-shaped modules. Algorithmica 10(6), 429–456.

Tamassia R, Tollis IG and Vitter JS (1991) Lower bounds for planar
orthogonal drawings of graphs. Information Processing Letters 39(1),
35–40.

Ueckerdt T (2012) Geometric representations of graphs with low polygonal
complexity. Phd thesis, Department of Mathematics at TU Berlin. https://
i11www.iti.kit.edu/_media/members/torsten_ueckerdt/torsten_ueckerdt-phd_
thesis.pdf/.

Upasani N, Shekhawat K and Sachdeva G (2020) Automated generation of
dimensioned rectangular floorplans. Automation in Construction 113,
103149.

Wu F, Yan D-M, Dong W, Zhang X and Wonka P (2013) Inverse procedural
modeling of facade layouts. arXiv preprint arXiv:1308.0419.

Wu W, Fu X-M, Tang R, Wang Y, Qi Y-H and Liu L (2019) Data-driven
interior plan generation for residential buildings. ACM Transactions on
Graphics (TOG) 38(6), 1–12.

Yeap K-H and Sarrafzadeh M. (1993) Floor-planning by graph dualization:
2-concave rectilinear modules. SIAM Journal on Computing 22(3),
500–526.

20 Pinki, Krishnendra Shekhawat and Akshat Lal

https://doi.org/10.1017/S0890060424000179 Published online by Cambridge University Press

https://sites.google.com/site/pirouznourian/syntactic-design.
https://sites.google.com/site/pirouznourian/syntactic-design.
https://sites.google.com/site/pirouznourian/syntactic-design.
https://i11www.iti.kit.edu/_media/members/torsten_ueckerdt/torsten_ueckerdt-phd_thesis.pdf/
https://i11www.iti.kit.edu/_media/members/torsten_ueckerdt/torsten_ueckerdt-phd_thesis.pdf/
https://i11www.iti.kit.edu/_media/members/torsten_ueckerdt/torsten_ueckerdt-phd_thesis.pdf/
https://arxiv.org/abs/1308.0419
https://doi.org/10.1017/S0890060424000179

	Automated generation of floor plans with minimum bends
	Introduction
	Literature review
	Gaps in the existing literature and our contributions
	Preliminaries
	G-Drawer for construction of FPs for PTG with minimum bends
	Checking for existence of FPs
	Construction of FPs

	Conclusion
	Limitations and future work
	Supplementary material
	References

