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Nonstandard topological extensions

Robert A. Herrmann

This paper investigates the nonstandard theory of filters on a
non-empty meet-semi-lattice of sets and applies this theory to
the general study of topological extensions Y for a space X .
In particular, we apply this theory to Baire and quasi-H-closed
extensions as well as Wallman type compactifications. Whereas
these extensions have previously been obtained and studied as
types of ultrafilter extensions, we study them as subsets of an
enlargement of X . Since X C YC X and the elements of X
and Y - X are of the same set-theoretic type, these extensions

appear more natural from the nonstandard viewpoint.

1. Introduction

Extensions of a space X by means of filter type spaces have been
studied by numerous authors. For example, the Wallman type
compactifications using normal bases as introduced by Frink [5] and studied
by Alo and Shapiro [1], Ald and Shapiro [2], Biles [3]1, D'Aristotle [41,
Steiner and Steiner [17], Steiner [18], [19], among others. As shown in
[6], the Stone-Cech compactification may be considered as a Z-ultrafilter
extension. The Katétov extension of a Hausdorff space [91, the quasi-H-
closed (that is, generalized absolutely closed) extension such as it is
discussed by Porter and Thomas [14] and Liu [10], and a Baire extension
discovered by McCoy [13] are studied as ultrafilter type extensions
determined by the topology of X .

At the Seventy-Ninth Annual Meeting of the American Mathematical
Society I conjectured that all of the above extensions and many new ones

could be obtained as subsets of an enlargement of X , [7]. I was asked to
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Justify this conjecture. Consequently, this paper investigates a
construction method which shows that all of the above extensions, as well
as many others, can be considered as subsets of b4 ,» Where X is the non-
standard extension of a space X within the set-theoretic enlargement

#M = (#*U, *e, *pr, *ap) discovered by Machover and Hirschfeld [12]. The
extensions Y of X constructed here not only have the property that
XCcYc % but they also appear more natural from the nonstandard viewpoint
since the elements of X and Y - X are of the same set-theoretic type;
whereas, in many of the classically constructed extensions the elements of
the remainder are filters on X . Indeed, observe that if g ¢ %—X , then

q 1is not an element of any n-fold power set iteration, n > 1 .

First, we show how it is possible to extend most of the known results
from the nonstandard theory of filters on a set X to filters in any non-
empty meet-semi-lattice of subsets of X . We then use the topology or a
normal base on a space X as the basic meet-semi-lattice in order to
construct various topological extensions as subsets of % . Even though the
meet-semi-lattices we use in the latter parts of this paper are lattices of
sets, I have shown elsewhere [§] that other interesting extensions exist
where the basic meet-semi-lattice V is the set of all regular-open

subsets of X . In this latter case, V is known to be a non-lattice.

2. UV-filters

Throughout this paper L will be a suitable first order language with

equality containing one binary predicate symbol "e" and two binary

pr
with the concepts and notations of set-theoretic nonstandard analysis the

" "

" and "ap" . We assume that the reader is familiar

operator symbols "

foundations of which may be found in references [171], [12], [15]. Our
principal reference is [72] and the first order structure we use is

M = (U, €, pr, ap) which is to be interpreted in the usual manner. We let
our nonstandard structure be the enlargement *M = (*U, *¢, *pr, *ap) .
Any notation not specifically defined in this paper will be found in [12].
Of course, we assume that for a topological space (X, T) , we have

X €U , where U 1is our universe.

Let UV be any non-empty meet-semi-lattice of subsets of a non-empty
X . This means that if G, H € V , then G n H € V . In the usual manner
[16], we call any non-empty Fc V a V-filter if whenever G, H ¢ F ,
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then G n H €F and whenever 4 € F, B¢V, AcCB ,then BE€F . We
say that a non-empty F Cc V is a subbase for a V-filter (F) if
(Fy=1{p | [p eVl an3ylly €F']alycpll}, where

Fr={p| [p= ﬂ{Ai}] A [iAi} is a non-empty finite subset of F]L . A
V-filter F is trivial if F =V . Finally, @ # Bc V 1is a base for the
V-filter (B) if for each G, H € B there exists some K € B such that
K< G n H . Whenever we discuss a V-filter F , we will always tacitly
assume that @ # Fc Vc P(X) and that V is a meet-semi-lattice unless

otherwise indicated.
The following results are easily verified.

(21). If F disa V-filterand ¢ #+ B< F, then B is a base for
F iff for each G € F there exists some H € B such that HcC G .

(2.2). If we assume that @ € V and @ # FcV, then (F) # V iff
F has the finite intersection property.

We call a V-filter F a V-ultrafilter if it is a maximal (<)

non-trivial V-filter.

(2.3). If ¢ €V, then every non-trivial V-filter is contained in a
Veultrafilter.

(2.4). 1f @, G €V and F <is a V-ultrafilter, then Gn H % @
for each H € F iff G € F .

(2.5). If G, HE€V, GuUHEF, where F is a V-ultrafilter and
V Zs a lattice of subsets of X , then either G € F or H €F .

We now indicate how to modify most of the known results from the non-
standard theory of filters on a set X , [I1], [12]3, so that they hold for
V-filters. 1In order to do this, we formally prove only a small number of
results and then state a representative collection of theorems, without
proof, since the reader should be able to easily modify the corresponding
filter results as they appear in [11], [12]. If it should become necessary
to distinguish between various meet-semi-lattices we will use the
terminology VU-filter on X +to mean that V < P(X) . Also, certain

variants to the notation and terminology found in [12] will be introduced.
THEOREM 2.6. If @ # Fc V, then Nuc F = Nuc {(F) .

Proof. Clearly F c(F)c G, where G is the filter on X
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generated by F . From the definition of the "nucleus" (that is,
Nuc F=0n{G | ¢ € F} ), it follows that Nuc G C Nue (F) € Nuc F . Using
the known result that Nuc F = Nue G , we have the result.

DEFINITION 2.1. Let $## FcV . Then Nue F=n{F | F ¢ F} will
be called a V-monad.

We observe, at this point, that if Fc ! is a base for a V-filter,

then it is also a base for a filter on X .
THEOREM 2.7. If F is a V-filter and Fl cF, then Fl ig a base
for F iff F ‘Acontains an infinitesimal ‘*element which is also a

*element of Fl .

Proof., Let Fl C F and assume that Fl is a base for F . Then Fl
is a base for the filter G on X generated by Fl . Consequently, there
exists some E € *U such that E C Nuc Fl = Nuc G and F #*¢ Fl . Since

F, © F implies that ?l cF,then E *¢F .

Conversely, assume that Fl c Fc V and that there exists some
E € *U such that E *€ Fl and F is an infinitesimal *element of F .
Hence, if G € F , then £ C G . Thus the sentence in L ,

e[z € Fl] A [z c 6]

holds in *M ; hence in M . Interpreting this in M , it follows that
each element in F contains a subset which is an element of F1 and, of
course, since Fl c I also an element of V . This implies that Fl is a
base for the V-filter F .

DEFINITION 2.2. Let WCX . Define

VEiL(w) = {6 | [6 eVl [WcGl}.

If V Fil(W) # @ , then clearly V Fil(W) is a V-filter on X . If we
now replace the word "filter" by "V-filter" and the symbol "Fil" by

"V Fil" , then by similar modifications as displayed above it can easily be
shown that Theorems 5.1.3 and 5.1.4 of [12] hold. Indeed, the following is

also easily verified.
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THEOREM 2.8. Let (F), (G> be V-filters generated by bases F and
G. Then (F)c(GY iff Nuc G < Nuc F <iff for each F € F there exists
some G € G such that G < F .

Now let {Fj | 4 € J} be a non-empty set of V-filters such that
ﬂ{FJ- [ j € J} = H# @ . Clearly H is the strongest (in the ususl sense)
V-filter weaker than each Fj . Under the above assumption, it follows

that the results of Sections 5.1.6 and 5.1.7 of [72] hold when interpreted
for V-filters.

Let B be a base for a V-filter F on X and f: X~>7Y .

Consider
Vy ={p| [p= ﬂ{f[_.Gi] A [{Gz} is a non-empty finite subset of V]} .
Then it is not difficult to show that f[B] is a base for the Vy—filter

(f[F])y on Y . Also, if C is a base for the Vl—filter G on Y,

then f'l[C] is a base for the Vm-filter <f"l[G]> on X , where
-] _
fl=v, .

The following result, Theorem 2.9, and Corollary 2.1 are obtained by a
straightforward modification of the results in Sections 5.1.9 and 5.1.10 of
[12].

THEOREM 2.9. Let F and G be bases for V and Vl-filters (F

~

and (G) on X and Y , respectively. Let f : X > Y and *f:f(—*Y,

where *f 1is the unique extension of f to X . Then

(i) Vy Fil(*flNuc F)) = (f[F] )y s
(i) Nuc(Vy Fil(*f[Nuc F])} = Nuc f[F],

(ii1) *f Y [ue G] = Nuc FU[6G] .

COROLLARY 2.1. Let *M be an a-enlargement for some Limit ordinal
o . Then under the hypothesis of Theorem 2.9, we have that
*f[Nuc F] = Nuc f[F] .

If we assume that V 1is a non-empty lattice of subsets of X , then
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we may use V' = Vu {¢#} u {X} in order to topologize X by considering
the set of closed sets in X to be {(Nuc F | F is a V'-filter} .
Indeed, since the S-topology on I is compact [171, p. 47] it clearly
follows that X is compact in its V'-topology. As a direct consequence

of our previous definitions and results we have the following theorem.

THEOREM 2.10. Let f : X~ Y . Assume that f'l[(v')y] =V and
that X and ¥ carry the V' and ((V’)y)' topologies, respectively.

Then

A~

(i) the induced map *f : X ~ ¥ is continuous;
(i1) 1f *M <s an o-enlargement for some limit ordinal o and
if f 1is a bijection, then *f 4is a homeomorphism.

In the sequel, we will be principally concerned with V-ultrafilters.
For this reason, the following results, even though not completely
analogous to the known results for ultrafilters, are of considerable

importance.
THEOREM 2.11. Let @ € V and consider any V-ultrafilter F . Then
(z) F =V Fi1({p}) = V Fil(p) for each p € Nuc F ;

(ii) if F is fized (that is, N{G | G ¢ F} # @ ), then there
exists some p € X such that

VFil(p) = F= {G | [G € V] A [{p} cGl} ;

(i) <if F 18 free (that is, not fixed), then there exists
some q € X-X such that V Fil(p) = F and
Nue FnXx=¢.

Proof. Again a simple modification of the results in Section 5.1.5 of
[rz1.

DEFINITION 2.2. Let ¢ € X . If V Fil(q) is a V-ultrafilter,
then we call Nuc(V Fil(q)) = NVF(q) a V-ultramonad. 1If V Fil(q) is
free, then NVF(q) is a free V-ultramonad.

The following important properties associated with V-ultramonads are
obtained from the previous results in this paper or by the usual

modifications of results from [11] or [123.
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THEOREM 2.12. Let p, q € X, ® € V and assume that WNVF(q) ,
NVF(p) are V-ultramonads. Then

(1) WVF(q), NVF(p) are distinct iff V Fil(q), V Fil(p) are
distinet iff NVF(q) n NWVF(p) = @ <iff there exist
G, HEV such that GnH=9 and q € G, p € H ;

(i7) letting G € V , we have that ¢ € V Fil(q) <iff
WF(q) nG# @ iff WF(q) <G ;

(iii) letting G €V , if Hn G # @ for each H ¢V such that
WF(q) n B # @, we have that NVF(q) n G # @ ;

(iv) <f F s a V-filter, then Wuc F <s a V-ultramonad
Lff for each A € V-F , we have that Nuc F n4d = ¢ .

The following lemma, which is proved here in its entirety, is obtained
by using the enlargement *M , the language L and a suitable modification

of the proof of Theorem 2.7.2 in [171].

LEMMA  2.1. Assume that we are given some non-empty F <V , an
internal @ <X and a mp f such that

(1) f: N> F, where N denotes the natural numbers,
(i1) f(1) < f(j) for each 1, J € N such that j < 1 ,
(iit) f(n) # @ for each n € N .
Then @ n (Ff(n))~ # @ for each n € N implies that Q n Nuc fIN] # & .
Proof. We have that
s={q | [[ftapq] *n @ # @] r [[Fapq] *¢ FIN]] A [q *€ N1}
is an internal subset in N . Thus S = P for some P € *U . Now since

f, f(n), fIN], and each »n € N are assumed to be standard, it follows that
@n (FW) = (@ *n £(n))" = (@ *n (F*apn))” # @ and (f*apn) *¢ fI¥] for

each n € N ; which implies that N C Py . However, N # P since W
is an external subset of i) . Consequently, there exists some Vv € v
such that v € P . The sentences in L s

Vovy [[x € 8] A [y € W] A [z < y] > [fapy) < [fapz]] ,
Vx[[x € N] > [N[fapx = ¢]]]

nold in M ; hence in *¥ . Using the result that if 7y € §-N , then
Y >n for each n € N , we obtain (f*apv)”™ < (f*apn)” = (f(n))” for each
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n€N. Mso (ftapv)” # @ . Thus (f*apv)” < Nuc f{N¥] and
(F*apv)”™ n 2) # 0 . Clearly g n Nuc flny #¢ .

We now use the previous results and those which the reader can easily
obtain by modifying the known results in [17], [1Z), in order to give a
nonstandard proof of a sufficient condition for a space to be Baire. We
will use this result in the sequel in order to investigate a nonstardard
Baire space extension of an arbitrary non-Baire space. First, we need an
additional definition. The motivation for this definition comes from the
well known fact that a filter F converges to p € X iff Nuc F < u(p) ,
where u(p) is the monad of Robinson [15].

DEFINITION 2.3. A V-monad Nuc F is said to converge on X if
there exists some p € X such that Nuc F < u(p)

THEOREM 2.13. Let (X, 1) be a topological space. If X is mot a

Baire space, then there exists a free converging T-ultramonad in X .

Proof. Assume that (X, T) is not Baire. Hence, there exists a non-
empty G € T and a sequence f : (N-{0}) » P(X) such that
G =U{f(n) | n € -{0}} , wnere F(n) # P and int cl fln) =@ for each
n € §~{0} . Define themap h : N - 1-{#} as follows:

(i) 1let R(0) = X ;

(i1) let h(F) =x - (Ul fn) | n=1, ..., §})

Since f(n) 1is nowhere dense in X , we have that #(j) is an open dense
set in X for each j € N . we observe that h(j) # § for each j €W ,
and that h{(Z) < h(j) for each %, j € ¥ such that j < < . Consider

H = 0{h(j) l J €N} . If p €G, then p ¢ flk) ccl f(k) for some

k € N-{0} . Hence p ¢ h(k) and it follows that G n H =@ . Therefore,
H is not dense in X . Let V=1 and Glp) = {4 | [4 €1l A [p €4}
for some p € G . Clearly, u(p) = Nuc G(p) = Nuc{G(p)? and

Nuc A[N] = MNucCh[N]> . Let E be the infinitesimal *element of <(G(p}?

which exists by Theorem 2.7. The sentence in L ,
Ve[lz € 1] A [Mx = #]] » [~z o hin) = ¢1]]

holds in M for each »n € N ; hence in *M . Since (G(p)’> is non-
trivial, then % # @, and interpreting the above sentence in *M yields
that 2 n (W(n))~ # 9 for each h(n) € h{N] . Lemma 2.1 implies that
E,‘ < Nud #[N]> # @ . Hence
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Nuc{ G(p)? n Nuc{ A[N]) = Nucl{ G(p)? u (R[N])) = Nuc F # ¢ ,

vhere F =<((G(p)) v (R[N])) . Thus the t-filter F 1is non-trivial.
Therefore, there exists a T-ultramonad NtF(r) , where » € X , such that
NtF(r) < u(p) N Nuc h[N] . Now if q € X, q € u(p) , and q € (h(n)]“
for each n € N , then ¢ € B . This contradicts u(p) n B =@ . Hence
NtF(r) n X = @ . Consequently, NTF(r) is free and obviously is

converging on X .

3. Baire and quasi-H-closed extensions

In order to properly differentiate the following constructions from

the usual ones, we introduce an additional definition.

DEFINITION 3.1. A topological space Y will be called a nonstandard

extension of a space X 1if
(i) xcYcX and X#7Y,
(ii) X 1is a dense subspace in Y .

THEOREM 3.1, If for the space (X, 1) there exists a free
T-ultramonad in X , then there exists a nonstandard Baire extension
(bx, bT) of X .

Proof. Assume that V =1 . For each G € T , let
¥G)={p | [p € @] A [MF(p) 1is a free T-ultramonad in X}

Define bX = X u N(X) . From the hypothesis and Theorem 2.11, we have that
XChXcX and X # bX . Mso, NG cG-GcC % - X . Now for each
G €1 ,let G' =G uNG) . Then consider B={¢' | ¢ ¢ 1} .

We now show that B is a base for a topology on bX . Let
G/, Gy €B . Then G nGy=(6 nG,) v () nnig,)) . 1r
G nG, = @ , then N(Gl) n N(Gz) =@ € B since G nG,= ¢ .
Consequently, assume that G3 = Gl n 02 # @ . Since &3 = 81 N 32 , it is
easily verified that N(G3) = N(Gl) n N(Gz) . Clearly,

bx = U{G' | G € T} . Thus we consider B to be a base for a topology bt
on bX . It follows immediately that X is a dense subspace in bX and,

consequently, (bX, bTt) is a nonstandard extension of X .

We next show that (bX, bt) is a Baire space. Assume not. Using a
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result from McCoy's paper [13], we have that there exist sequences {Ui}
and {Bi} of sets such that {Bi} < B, u, € bt for each 7 € N , and

By B c(Mu, | ¢=1,...,n}), B #8 for each k €N . Also,

k+1.
{Ui} is point-finite. Letting B; = G, v N(Gi) for each 7 € N , it is
easily shown that the sequence {Gi} has the finite intersection property.

Hence Nuc{Gi} #0 . Let NTF(q) be a T-ultramonad contained in

Nuc{Gi} . Then NtF(q) 1is free since

nfe; [2entenfp, | ienpenfy, |fenp=90.

Consequently, q € X-X . However, we observe that since q *¢€ Gi for each
L €N, then q €B, for each £ €N . Thus q €N{B, | 2 en} =¢ .
This contradiction completes the proof.

The nonstandard Baire extension (bX, bt) has a mapping property
similar to the Stone-Cech compactification. We use V-filter methods in

order to investigate this property.
THEOREM 3.2. Let (Z, g) bea T3—space and f : X+ 2
continuwously in such a marmer that clz(f'[X]) =2 and flX]1# 2 . Then

the nonstandard Baire extension (bX, bt) exists. Moreover, there exists
a subspace Y of bX and a continuous map h from Y onto Z such that
hlx = .

Proof. Let V =T , where T 1is the topology on X , and assume that
p € Z-f[X] . Since clz(f[X]) =2 , then u(p) n (fIX])" # @ . Using

T-filter theory, we have that

7)) 0 A RRY] = e SO R 2 B,
where G(p) = {¢ | [6 € 1] A [p € G]} . Consequently, since
Nuc f’l[G(p)] # @ and f is continuous, then there exists a T-ultramonad
NTF(qp) c *f-l[u(p)] . If q €X, then u(f(q)) nulp) =@, since 2 is
T_ . Hence, since continuity implies that g € u(q) € *f+ m(r(a))] , we

2
have that ¢ f NTF(qp) +  Hence NTF(qp) is a free T-ultramonad and the
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nonstandard Baire extension (bX, b1) for X exists. Let

n={rr() | [vrle) = 7 ue))] A b € 2]
A [NTF(qp) is a free T-ultramonad in 3\(]} .

Define Y = (UA) UX and consider Y a subspace of bX .

Define h : Y~>Z by h(q) = flq) for each ¢ € X and
h[IVTF(qp)] = p for each IVTF(qp) € A . Observe that A is a partition.

Assume that distinet », t € Z-f[X] . Since Z is T3 , then there exists

some W € 0 such that r € ¥ and ¢ ¢ cl,W . This implies that W € G(r)

and Z—clz

then IVTF(qr) n NTF(qt] =@ and h is well-defined.

W € G(t) . Consequently, since f_l[W] n [Z-f’l[clzw]] =0,

Let y €Y and W € 0 such that h(y) € W . Then there exists some

W, €0 suchthat h(y) €c1, (W) ©W . Consider

-1 ! -1 ~1
) = ) v a(rt)
where N[f_l [Wl]J is defined in the proof of Theorem 3.1. Then

[f—l [Wl])’ NY =X is open in the topology induced on Y . Suppose that
x €K. If « €X, then h(z) = flx) ef{f'l[wl]] cw CW. If

x € K-X , then =z € IVTF(qp] for some p € Z-f[X] . If we assume that
qp f ch(Wl] , then there exists some #' € ¢ , such that qp € W' and

Wl NnW =@ . However, this implies that IVTF(qp) = ¢ for

IVTF(qp) c |t w1 n f"l[w']] , a contradiction. It follows that

h[K] <« W . Consequently, % is continuous and, obviously h|X = f . This
completes the proof.

Recall that a space X is quasi-H-closed [14] iff every open cover G

of X contains a finite subset, say {G .oy Gn} , such that

l,
X = {ClX(Gi) | 7 n} . If X 1is regular, then X is quasi-A-

closed iff X 1is compact. A quasi-H-closed space is also known as a
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generalized absolutely closed space [10]. Throughout the remainder of this
paper, (bX, bT) will denote the nonstandard Baire extension of a space

(X, 1) when it exists.

THEOREM 3.3. If (X, 1) <s not quasi-H-closed, then there exists a
topology T' Dbt on bX such that (bX, 1') is a nonstandard quasi-H-

closed extension of X and X € T' .

Proof. Let UV = T and construct bX in the same manner as in
Theorem 3.1. We observe that since X is not quasi-H-closed, then there
exists a non-converging T-ultramonad NTF(g) in ¥ . Moreover,

NtF(q) ¢ u(p) for any p € X implies that NtF(q) o u(p) = @ for each
p € X . Thus NTF(q) is a free T-ultramonad in ¥ . Hence X< bX and
X # bx .

Let B={¢'"| G et} , where G' = GuUN(G) and N(G) 1is defined in
the proof of Theorem 3.1. Now define C = B u T ., Using the method
indicated in the proof of Theorem 3.1, it follows easily that C is a base
for a topology T' ®bT on bX in which X 1is a dense open subspace.

Therefore, (bX, T') is a nonstandard extension of X .

In order to show that (bX, T') 1is quasi-H-closed, we need the
following two results. First, a space is quasi-H-closed iff every open
ultrafilter converges to an element in that space. Secondly, if (X, T)
is a dense subspace in (bX, T') and F is a T'-ultrafilter on bX ,
then Nue(F n X) is a T-ultramonad in X . TIn this latter case,
Fopebx irf {Fonx | FeFl=Fnx~>p. Let F bea
T'-ultrafilter on bX . Assume that Nuc(F N X) € u(p) © X . Then
F>pebx . If Nuc(F nX)dup) forany p € X, then Nuc(F N X) is
a free T-ultramonad and Nuc(F n X) = NTF(q) for some ¢q € bX-X . Let
K € T' and assume that ¢ € K . Then there exists some G U N(G) € B
such that ¢ € G U N(G) € K . This implies that q € G . Consequently,
(FnX)nG# @ for each F € F . However, for each F € F , we have that

F = GF U LF , where GF €1 and L, < X-X . Hence G n GF # ¢ for each

F € F . Therefore, Kn F# ¢ for each F € F implies that X € F . It
follows that F > ¢ . Thus (bX, t') 1is quasi-H-closed and the proof is

complete.

In the remaining set of theorems in this section, we discuss other

nonstandard quasi-H-closed extensions and their relation to the Katétov
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extension of a Hausdorff space.

THEOREM 3.4. If (X, 1) <s not quasi-H-closed, then there exists a
nonstandard quasi-H-closed extension (hX, ht) such that X € ht .~ If X
is also T, , then (hx, ht) 1is T, except for hx - x .

Proof. We construct the space (hX, hAT) by using a nonstandard
variant of Liu's construction [10]. Let V = 1t and define
H = U{NTF(q) I NtF(g) 1is a non-converging T-ultramonad in %} . TFor each
g €% ,1et Glg)=1{6Guiql ]| [Get) A [NtF(g) nC # 8]} and
B=U{Glg) | g € H} . Define C=Burt and WX =Xvu H . Since X 1is
not quasi-H-closed, then H # @# . Clearly, X C hX C ¥ and X # hx . 1If
g € X , then there exists some G € T such that g € G . If q € H , then
since NTF(q) n X# @, we have that ¢ € X u {g} € B . We know that, in

"

general, if NtF(g) is non-converging, then WNTF(q) n X =@ . Tt follows
that € 1is closed under finite intersection and is a base for a topolegy

hT on hX . Obviously, X 1is an open dense subspace in (hX, hT)

Let F be an hr-ultrafilter on hX . Observe that if Nuc(F n X)
is a free T-ultramonad in X , then WNuc(F n X) = NTF(q) for some

g €H. If K€ht, g €K, then there exists some G v {ql} ¢ C such
that ¢ € Gu {ql} K. Since q § G, then ¢ = q, - Thus

NtF(q) n G# ¢ and as in the proof of Theorem 3.3 it is easily verified
that (hX, ht) 1is quasi-H-closed.

Recall that a space #AX is said to be T2 except for hX - X 1iff

for distinet p, ¢ € AX , not both in %X - X , there exist disjoint

hTi-open sets Kl, K2 such that p € Kl and q € K2 . Assume that X is
T2 . If distinet p, ¢ € X , then the requirement holds since T C AT .

Assume that p € X and g € hX-X . Since WN1F(q) n u(p) = ] , then there

exist G, G? € T such that p € Eb , q € G , and Gp nG=@ . Since

&p nG=¢ , this implies that G, 0 (Gu {qg}) =@ , where Gu {q} ¢B .

The result follows and this completes the proof.

THEOREM 3.5. Assume that (X, 1) is not quasi-H-closed. Then there
exists a nonstandard quasi-H-closed extension (kX, k1) of X such that
X € kt and with the following properties:
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(i) the space kX is T, except for X ;

(i) i1f X 1is Ty s then kX 1is essentially the same as ([ 101,
that is, isomorphic to [14]1) the Katetov extension of
X s

(i11) the set hX - kX 1is infinite.
Proof. Let V =1 and

Hl = {NtF(q) | NtF(q) 1is a non-converging T-ultramonad in 1.
Observe that Hl is non-empty and forms a partition for UHl . The Axiom
of Choice allows us to consider a choice set, say H' , composed of one

element from each element of Hl . Define kX = X u H' . Clearly

kX < hX . Let Kkt be the topology induced on kX by hT , where AT is
defined in the proof of Theorem 3.4. Obviously, X 1is an open dense
subspace of (kX, kt) and X # kX .

It is easy to show that kX is quasi-H-closed. Indeed, this follows
in the same manner as in the proof of Theorems 3.3 and 3.4 with the
additional observation that if F is a kT-ultrafilter on kX and there
exists some g € X-X such that WNTF(g) = Nuc(F n X) , then there exists
some q' € H' such that NtF(q') = N1F(q) .

(i) Let p € X and ¢q € kX-X . In the same manner as in the proof
of Theorem 3.4, it follows that p and ¢ are separated by KT-open
sets. Hence, we assume that we have distinct p, q € kX-X . Since

NTF(p) n NtF(q) = ® , then there exist disjoint Gb, Gb € T such that

p € 5?—Gp and q € 5q-Gq . The result follows easily.

(71) Recall that kX 1is essentially the same as (that is, isomorphic
to) the Katetov extension of X iff there exists a homeomorphism from kX
onto the Katétov extension of X which restricted to X 1is the identity.

We use the criterion of Liu's [10]. If X is T2 , then a T2 extension
Y of X 1is essentially the same as Katetov's extension if all sets of the

form Gu {q} , where G € T and g € clY(G)-X , are open in Y and X
is open in Y . Clearly (%) implies that kX is T, . Let G €T and

q € clkX(G)—X C kX-X . Assume that g € G, v {ql} € B, where B is
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defined in the proof of Theorem 3.4. Then ¢q = qq - However,
(Gl u {q}) NG#@ implies that Gl NG# P . Hence NTF(q) < G .
Consequently, ¢ € G implies that G u {q} € B and the result follows.

(iii) There exists some ¢ € X-X such that WNtF(q) n X = § and
NtF(q) # @ . Since Nuc Fil(qg) < NtF(q) , the conclusion is obvious since

Nuc Fil(q) is an infinite set.

THEOREM 3.6. Asswume that (X, 1) 1is not quasi-H-closed and that
(Y, v) <s any subspace of hX such that kX cC Y .

(i) Then (Y, Y) <s a dense open subspace.

(i1) Also, (Y, Y) 18 a nonstandard quasi-H-closed extension of X

such that X € Y and if kX # Y , then Y is not T, except for X .

2

Proof. (Z) The subspace Y 1is obviously dense in AX . Let
g €Y. If q € X, then there exists some G € T such that g € GC Y .
If q t X , then g € H, where H is defined in the proof of Theorem 3.h4.

However, H' defined in Theorem 3.5 is a choice set for the partition Hl

of H . We observe that there exists one, and only one, NTF(ql) € Hl

such that g € NTF(ql] . For some G € 1 , it follows that G u {g} € AT

and Gu {glcY . Thus Y is open in hX .

(Z2) A proof similar to that which shows that kX and hX are
quasi-H-closed also shows that (Y, Y) is quasi-H-closed. Clearly
X €vy .

Now if kX # Y , then it is clear that there exist distinct p, q €Y
such that NTF(q) = NtF(p) . Consequently, if G € T , then p € G iff
q ¢ G . This implies that Y is not T2 except for X and the proof is

complete.

The final result in this section shows that the space kX constructed
in Theorem 3.5 is the smallest nonstandard quasi-H-closed extension in a

very natural sense.

THEOREM 3.7. Aesume that (X, T) is not quasi-H-closed. If

Xc YCkX and Y <s a proper subspace, then Y 18 not quasi-H-closed.

Proof. Assume that gq € kX-Y . Then WN1F(q) is a free non-
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converging T-ultramonad. Let F = (K| [K € kt] A [K n X € T Fil(q)]}
It is known that F is a kr-ultrafilter on kX . Conversely, F n X is
a T-ultrafilter on X such that F N X =1 Fii(q) . Clearly F » q .

Now if g' # ¢ and q' € kX-X , then since kX is T2 except for X ,

we have that F + g' . We knov that FnY > p for some p € Y iff
F>p. Tus FnY-+q andonly q € kX . However, q f Y and the

result follows.

4. Wallman type compactifications

In this section, we construct nonstandard Wallman type
compactifications which are not necessarily Hausdorff. We will do this by
letting V =8 , where B 1is a normal base for the space X as

originally defined by Frink [5] with the T, requirement deleted. Unless

1
otherwise indicated, the space (X, T) will be non-compact completely

regular and not necessarily Tl . Observe, that a normal separating ring

of closed sets in the sense of Steiner [19] is a normal base and

conversely.

THEOREM 4.1. Each normal base B for (X, 1) determines non-
standard normal compactifications H(X, 8) and w(X, B)S such that

X CulX, B)gC HX, B) <X .

Proof. Assume that B 1is a normal base. Since (X, T) 1is non-

compact, then there exists a non~empty {BA [ A€ A} = FC B with the

finite intersection property and such that NF =@ . Since #*¥ is an
enlargement, it follows that Nuc F # § . Thus, for some g € Nuc F, we
have that NBF(g) 1is a free f-ultramonad. We now construct H(X, B)
For each B € B , let

F(B) = {q I [qg € §] A [NBF(q) 1is a free PB-ultramonad in %]} .
Define H(X, 8) = X u F(X) . Clearly, XcC H(X, 8) € X and X # H(X, B)

In order to obtain a topology for H(X, B) , let B' = B U F(B) for
each B € B . Consider I' = {B' | B €B} . Ifr B',C' €T, then
B'uC'=(BucC)u (F(B) u F(C)) . However, BUC =D € B and it
follows easily that F(D) = F(B) u F(C) , since Bul =D . Notice that

@, H(X, B) € T . Hence, we consider I a base for the closed subsets in

https://doi.org/10.1017/50004972700024461 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700024461

Nonstandard topological extensions 285

H(X, B) . Obviously X is a subspace in H(X, B) since F(B) nX =6
for each B € B . Considering any B u F(B) € T such that X < B u F(B) ,
we have that X = B . Consequently, X is dense in H(X, B8) .

We now show that H(X, B) 1is compact. Let {B$ | ¢ € 8} be a set of

basic closed sets in H(X, B) with the finite intersection property.

Assume that {Bé | 2=1, ..., n}c {B$ | ¢ € 8} for some n >1 .
Clearly
ﬂ{Bé li=1, ..., n} =

= (ﬂ{Bi [2=1, ..., n}) U (ﬂ{F(Bi) | 2 =1, ..., n}) =B vu F(B) ,

vhere B=ﬂ{Bi|i 1, ..., n} €8 . Now BUFB)#@ . If B=¢ ,

then F(B) = @ . Consequently B # @ implies that
{B¢ [ [o €] A [B$ = B¢ U F(B¢)]} = F' has the finite intersection

property. Thus, Nuc F' # @ . If there exists some p € X such that
p € Nue F' , then p € B¢ for each ¢ € ® . On the other hand, assuming
that there does not exist a p € X such that p € Nuc F' , then there
exists some ¢ € ¥-X such that the free B-ultramonad NBF(g) < Nuc F' .
Since q € §¢ for each ¢ € & , then this implic~ +hat ~ ¢ PR ] for

each ¢ € & . Consequently, ﬂ{Bé | ¢ ¢ 9} # 8 ana H(X, B) is compact.

We now show that T 1is a separating family of closed sets in the
sense of Steiner [18]. Let K be any non-empty closed subset in H(X, B)
and assume that ¢ € H(X, B)-K . We first assume that ¢ € X . Since X
is a subspace, then K n X is closed in X . Since T is a base for the
closed sets in H(X, B) , it follows that X C B u F(B) and ¢q f.B u F(B)
for some B u F(B) ¢ I' . However, 8 is a separating family implies that
there exist C, D € B suchthat CnD=@8, KnXCBC(C,and q €D .
Clearly, F(C) nF(D) =9 and F(B) € F(C) imply that K< C u F(C) ,

q €DUF(D) ,and (CuFEC) n(DuFD) =9 . On the other hand, we
assume that g € X-x . Thus, q € F(B) for some B € B . 1In the same
manner as above, we easily show that there exist elements of I which
separate K and ¢q . Consequently, I is a separating family of closed

sets.

In order to show that [ 1is a normal separating family [17], we
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assume that B, v F(Bl) = Bi » By F(Be) = B!

] [
5 and Bl NB' =@ . The

2

base B being normal implies that there exist B Bh € B such that

3’
C C = = =

Bl B3 , B2 Bh . Bl n Bh 32 n B3 ¢ , and B3 U Bh X . If we

consider the sets Bi U F(Bi) , 7 =1,2, 3, b , then it is easily

verified that I is normal. Consequently, I 1is a normal separating

family of closed sets and Steiner's result in [78] implies that H(X, B)

is a completely regular space. Hence H(X, B) 1is a normal

compactification of X .

We now construct w(X, B) Obviously {WBF(q) | q € F(x)}

g *
partitions F(X) . Let S(B) be the set of all choice sets determined by
{ngF(q) | q € F(X)} and S €S(B) . Define w(X, B)g=Xu S5 and let

w(X, B)S carry the topology induced by I . Hence, if B € B and ¢q € B

such that NBF(q) is a free B-ultramonad in X , then there exists one,
and only one, element, say p € S , such that NBF(q) = NBF(p) . It is
also clear that for each B € B such that F(B) # § the set S n F(B) 1is
a choice set for the partition {WBF(q) | q € F(B)} . Observe that the
closed base for w(X, B)S induced by I 1is of the form

{Bu [S n F(B)) | B ¢ B} . To show that w(X, B)S is a normal
compactification of X , it is sufficient to show that w(X, B)S is a

compact subspace of H(X, B) . However, this follows from a simple
modification of the above proof that H(X, B) 1is compact and this

completes the proof.

Throughout the remainder of this paper, we shall let S(B) be the set
of all choice sets determined by the partition {WBF(q) | q € F(X)} , where
B is a normal base for X . Also, w(X, S)S for some S € S(B) and

H(X, B) will denote the normal compactifications of X constructed in

Theorem 4.1. In [4], D'Aristotle constructs for each normal base B a

normal compactification X(B) . Our next theorems show the relations
between the compactifications w(X, B)S , H(X, B) , and X(B) . In
particular, they show that w(X, B)S is homeomorphic (=) to X(B) and

that no subspace Y such that (X, B)S E Y c H(X, B) is homeomorphic to
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X(S) even though all such Y are normal compactifications of X .

THEOREM 4.3. The compactification (X, B)S o~ X(B)

Proof. Recall that X(B) = Xu Al , where A is the set of all free
B-ultrafilters on X . Define the map ¢ : X(B) - w(X, B)S in the

following manner. For each p € X , let ¢(p) =p . For XA € A, let
¢(X) = S n Nuc{X) = g € Nuc(A) . Clearly, ¢ is a bijection. Since for
each B € B, ¢ maps the closed base elements

Bu{x | [x €Al A[Be€er]} of X(B) onto Bu (S nF(B)) , then ¢ isa
homeomorphism.

COROLLARY 4.1. If (X, 1) 1is a Tychonoff space, then

w(X, B)S ~ w(X, B) , where w(X, B) is the T, Wallman compactification

2
of X in the sense of Frink [5].

THEOREM 4.4, Assuwme that Y s a subspace of H(X, B) such that
w(X, B)S g Y. Then Y 1s a non-T normal compactification of X .

Proof. Since it is easily verified that Y is a normal

compactification of X , all we need to show is that Y is not TO .

Clearly there exist distinet p, g € Y-X such that NBF(q) = NBF(p) . Now
for any B u F(B) € T , we have that p € F(B) iff gq ¢ F(B) . Hence Y
is not TO .
If we assume that a free B-ultramonad NBF(g) is a finite set, then
there exists a non-empty finite infinitesimal *element F such that
E C NRF(q) . However FE *€ B Fil(qg) implies by transfer that there exists
a non—empty finite element of B which is an element of the free
B-ultrafilter B Fil(q) . This contradiction implies that NBF(q) is an
infinite set. Consequently, for each normal base B for X there exist

infinitely many distinct yet homeomorphic compactifications w(X, B)S

which are all homeomorphic to the T, Wallman compactification w(X, B)

2

if X is Tl . For this reason, the following result is not without
interest.

THEOREM 4.5. Assume that (X, 1) <is Tychonoff and B, Y are normal
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bases such that B <y . Then w(X, B) ~w(X, v) Zff S(y) < S(B) and
for each S € S(y) , w(X, B)S = w(X, Y)S as spaces.

Proof. Sufficiency is apparent. Hence, let NYF(q) < H(X, yY) and
consider the B-monad WNBF(q) . We know that NYF(q) is a Y-ultramonad
and, since B <€ Y , it follows that WNYF(q) < NRF(q) .

We need to show that NBF(q) is a free B-ultramonad. Let B € B8
such that ¢ {E B . Then since B € Y there must exist some C € Y such
that q € NYF(q) © o and B nC =@ for WNF(q) is a Y-ultramonad.
Using Steiner's Theorem 7 in [79], which implies that B separates Y , we

have that there exist Bl’ 32 € B such that B C B Cc c B2 , and

l Ed
B nB, = # . Since q ¢ B, implies that B, ¢ B Fil(q) , we have that

NBF(q) is a B-ultramonad for B n B2 =@ . Next we show that NBF(q) is

free. Since NYF(q) is a free <Y-ultramonad, we know that, for each
p € X , there exists some Cp €Y such that NYF(q) < Cp and p ¢ Cp .
However there exist B3, Bh € B such that p € B3 R

Bl n Bh =@ since B separates points and closed sets. Clearly this

Cp c Bh , and

implies that NBF(q)Cﬁh since NBF(q) is a PB-ultramonad. Hence
p ¢ NBF(q) implies that WNBF(q) is free.

Assume that WNBF(q') < H(X, B) . Clearly WNBF(q') is a free Y-monad
since MNBF(q') is a free PB-ultramonad and B < Y . Thus there exists a
free Y-ultramonad WNF(q") € NYF(q') . Therefore
MWF(q") < NRF(q") < H(X, B) . However, NBF(q") = NBF(q') . Consequently,
if NBF(q') < H(X, B) , there there exists some MF(q") € H(X, Y) such
that NYF(q") € NBF(q') © H(X, B) . Assume that there exists some
WYF(qy) © H(X, ¥) such that WF(q ) < w8F(q') anda NyF(q,) # WYF(q")

Then there exist Cl’ C., €Y such that ql € Cl y q € 02 , and

2

Cl n 02 =@ . Since B separates Y , it now easily follows that

NBF(ql) C NBF(q") < H(X, B) and IVBF(ql) NnNRF(q ) =@ . However
ner(q,)
one, and only one, MNYF(q") such that NYF(q") < H(X, Y) and
MYF(q") © NBF(q')

NRF(q") = NRF(q') , a contradiction. Consequently, there exists
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It is clear from the above results that S(y) <€ S(B) . Hence
B)S = w(X, Y)S as sets for each S € S(y) . The closed base

{Bu(snF®B) | BeBl for w(X, B)g is a subset of the closed base

[co(snF)) | ¢ ey} for wlx, )

{711

[2]

[3]

[4]

[5]

(6]

[7]

[8]

5" Since the topologies for

are T, compact, it follows that

B) s 5

s and w(X, v)

B)S = w(X, Y)S as spaces. This completes the proof.
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