

On Complex Explicit Formulae Connected with the Möbius Function of an Elliptic Curve

Adrian Łydka

Abstract. We study analytic properties function m(z, E), which is defined on the upper half-plane as an integral from the shifted L-function of an elliptic curve. We show that m(z, E) analytically continues to a meromorphic function on the whole complex plane and satisfies certain functional equation. Moreover, we give explicit formula for m(z, E) in the strip $|\Im z| < 2\pi$.

1 Introduction

For a complex number z from the upper half-plane let

$$m(z) = \frac{1}{2\pi i} \int_C \frac{e^{sz}}{\zeta(s)} \, ds,$$

where $\zeta(s)$ denotes the classical Riemann zeta function, and the path of integration consists of the half-line $s=-\frac{1}{2}+it, \infty>t\geq 0$, the line segment $[-\frac{1}{2},\frac{3}{2}]$ and the half-line $s=\frac{3}{2}+it, 0\leq t<\infty$. This function was considered in [1] and [5] where the following theorems were proved.

Theorem 1.1 (Bartz [1]) The function m(z) can be analytically continued to a meromorphic function on the whole complex plane and satisfies the following functional equation

$$m(z) + \overline{m(\overline{z})} = -2 \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \cos\left(\frac{2\pi}{n}e^{-z}\right).$$

The only singularities of m(z) are simple poles at the points $z = \log n$, where n is a square-free natural number. The corresponding residues are

$$\operatorname{Res}_{z=\log n} m(z) = -\frac{\mu(n)}{2\pi i}.$$

J. Kaczorowski in [5] simplified the proof of this result and gave an explicit formula for m(z) in the strip $|\Im z| < \pi$.

Received by the editors January 1, 2013. Published electronically August 10, 2013. AMS subject classification: **11M36**, 11G40. Keywords: *L*-function, Möbius function, explicit formulae, elliptic curve.

Theorem 1.2 (Kaczorowski [5]) For $|\Im z| < \pi$, $z \neq \log n$, $\mu(n) \neq 0$ we have

$$\begin{split} m(z) &= -\sum_{n=1}^{\infty} \frac{\mu(n)}{n} e\left(-\frac{1}{ne^z}\right) - \frac{e^z}{2\pi i} m_0(z) \\ &- \frac{1}{2i} \left(m_1(z) + \overline{m_1}(z)\right) + \frac{1}{2i} \left(F_m(z) + \overline{F_m}(z)\right), \end{split}$$

where

$$m_0(z) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \frac{1}{z - \log n}$$

is meromorphic on C and

$$m_1(z) = rac{1}{2\pi i} \int_C \left(an rac{\pi s}{2} - i
ight) rac{e^{sz}}{\zeta(z)} ds,$$
 $F_m(z) = rac{1}{2\pi i} \int_1^{1+i\infty} \left(an rac{\pi s}{2} - i
ight) rac{e^{sz}}{\zeta(z)} ds$

are holomorphic in the half-plane $\Im z > -\pi$.

In this paper we prove analogous results for the Möbius function of an elliptic curve over $\mathbb Q$ defined by the Weierstrass equation

$$E/\mathbb{Q}: y^2 = x^3 + ax + b, \quad a, b \in \mathbb{Q}.$$

Let L(s, E) denote the L-function of E (see for instance [4, pp. 365–366]). For $\sigma = \Re s > 3/2$ we have

(1.1)
$$L(s,E) = \prod_{p|N} (1 - a_p p^{-s})^{-1} \prod_{p \nmid N} (1 - a_p p^{-s} + p^{1-2s})^{-1},$$

where *N* is the conductor of *E*. It is well-known that coefficients a_p are real and for $p \nmid N$ one has

$$a_p = p + 1 - \#E(\mathbb{F}_p),$$

where $\#E(\mathbb{F}_p)$ denotes the number of points on E modulo p including the point at infinity, and $a_p \in \{-1,0,1\}$, when p|N (for details see [4, p. 365]). The Möbius function of E is defined as the sequence of the Dirichlet coefficients of the inverse of the shifted L(s, E):

$$\frac{1}{L(s+\frac{1}{2},E)} = \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n^s}, \quad \sigma > 1.$$

Using (1.1) and the well-known Hasse inequality (see [4, p. 366, (14.32)]) we easily show that μ_E is a multiplicative function satisfying Ramanujan's condition ($\mu_E(n) \ll n^{\epsilon}$ for every $\epsilon > 0$), and moreover

$$\mu_E(p^k) = \begin{cases} -\frac{a_p}{\sqrt{p}} & \text{if } k = 1, \\ 1 & \text{if } k = 2 \text{ and } p \nmid \Delta, \\ 0 & \text{if } k \ge 3 \text{ or } k = 2 \text{ and } p | \Delta, \end{cases}$$

for every prime p and positive integer k.

Furthermore, C. Breuil, B. Conrad, F. Diamond and R. Taylor, using the method pioneered by A. Wiles, proved in [3] that every L—function of an elliptic curve analytically continues to an entire function and satisfies the following functional equation

(1.2)
$$\left(\frac{\sqrt{N}}{2\pi}\right)^{s} \Gamma(s)L(s,E) = \eta \left(\frac{\sqrt{N}}{2\pi}\right)^{2-s} \Gamma(2-s)L(2-s,E),$$

where $\eta = \pm 1$ is called the root number.

In analogy to m(z) we define m(z, E) by

$$m(z, E) = \frac{1}{2\pi i} \int_C \frac{1}{L(s + \frac{1}{2}, E)} e^{sz} ds,$$

where the path of integration consists of the half-line $s=-\frac{1}{4}+it$, $\infty>t\geq 0$, the simple and smooth curve l (which is parametrized by $\tau\colon [0,1]\to \mathbb{C}$ such that $\tau(0)=-\frac{1}{4},\, \tau(1)=\frac{3}{2},\,\Im\tau(t)>0$ for $t\in (0,1)$ and F(s) has no zeros on l and between l and the real axis), and the half-line $s=\frac{3}{2}+it$, $0\leq t<\infty$.

Using (1.2) and Stirling's formula (see [4, p. 151, (5.112)]) it is easy to see that m(z, E) is holomorphic on the upper half-plane.

Our main goal in this paper is to prove the following results, which are extensions of Theorems 1.1 and 1.2.

Theorem 1.3 The function m(z, E) can be continued analytically to a meromorphic function on the whole complex plane and satisfies the following functional equation

$$m(z,E) + \overline{m}(z,E) = -rac{2\pi}{\eta\sqrt{N}}\sum_{n=1}^{\infty}rac{\mu_E(n)}{n}J_1\left(rac{4\pi}{\sqrt{Nn}}e^{-rac{z}{2}}
ight) - R(z),$$

where $R(z) = \sum \operatorname{Res}_{s=\beta} \frac{e^{sz}}{L(s+\frac{1}{2},E)}$ (summation is over real zeros of $L(s+\frac{1}{2},E)$ in (0,1), if there are any) and $J_1(z)$ denotes the Bessel function of the first kind:

$$J_1(z) = \sum_{k=1}^{\infty} \frac{(-1)^k (z/2)^{2k+1}}{k! \Gamma(k+2)}.$$

The only singularities of m(z, E) are simple poles at the points $z = \log n$, $\mu_E(n) \neq 0$ with the corresponding residues

$$\operatorname{Res}_{z=\log n} m(z, E) = -\frac{\mu_E(n)}{2\pi i}.$$

Let $Y_1(z)$ be the Bessel function of the second kind and let

$$H_1^{(2)}(z) = J_1(z) - iY_1(z)$$

denote the classical Hankel function (see [2, p. 4]). Moreover, let

$$R^*(z) = \operatorname{Res}_{s = \frac{1}{2}} \left(\tan \pi s \frac{e^{sz}}{L(s + \frac{1}{2}, E)} \right) + \sum \operatorname{Res} \left(\tan \pi s \frac{e^{sz}}{L(s + \frac{1}{2}, E)} \right),$$

summation is over real zeros of $L(s + \frac{1}{2}, E)$ in $(0, 1) \setminus \{\frac{1}{2}\}$ (if there are any),

$$m_0(z, E) = \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n^{\frac{3}{2}}} \frac{1}{z - \log n},$$

$$m_1(z, E) = \frac{1}{2\pi i} \int_C (\tan \pi s - i) \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds,$$

$$H(z, E) = \frac{1}{2\pi i} \int_{\frac{3}{2}}^{\frac{3}{2} + i\infty} (\tan \pi s - i) \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds.$$

It is easy to see that R(z) and $R^*(z)$ are entire functions, $m_0(z, E)$ is meromorphic on the whole plane, whereas $m_1(z, E)$ and H(z, E) are holomorphic for $\Im z > -2\pi$. With this notation we have the following result.

Theorem 1.4 For z = x + iy, $|y| < 2\pi$, $x \in \mathbb{R}$, $z \neq \log n$, and $\mu_E(n) \neq 0$, we have

$$(1.3) \quad m(z,E) = \frac{-\pi}{\eta\sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n} \left(H_{1}^{(2)} \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{z}{2}} \right) - \frac{2}{\pi} i \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{z}{2}} \right)^{-1} \right)$$

$$- \frac{1}{2} \left(R(z) - iR^{*}(z) \right) + \frac{1}{2i} \left(H(z,E) + \overline{H}(z,E) \right) - \frac{e^{\frac{3}{2}z}}{2\pi i} m_{0}(z,E)$$

$$- \frac{1}{2i} \left(m_{1}(z,E) + \overline{m_{1}}(z,E) \right).$$

2 An Auxiliary Lemma

We need the following technical lemma.

Lemma 2.1 Let z = x + iy, y > 0, $s = Re^{i\theta}$, $R \sin \theta \ge 1$, $\frac{\pi}{2} \le \theta \le \pi$. Then for $R \ge R(x, y)$ we have

 $\left|\frac{e^{sz}}{L(s+\frac{1}{2},E)}\right| \leq e^{-y\frac{R}{2}}.$

Proof Using (1.2), the Stirling's formula and estimate

$$\log L(\sigma + it, E) \ll \log(|t| + 2), \quad |\sigma| \ge \frac{3}{2}, \quad |t| \ge 1$$

(see [7, p. 304]) we obtain

(2.1)

$$\log\left|\frac{e^{sz}}{L(s+\frac{1}{2},E)}\right| = \Re\log\frac{e^{sz}}{L(s+\frac{1}{2},E)} = 2R\log R\cos\theta + Rf(\theta,x,y) + O(\log R),$$

where
$$f(\theta, x, y) = \left(x + 2\log \frac{\sqrt{N}}{2\pi} - 2\right) \cos \theta - (y + 2\theta - \pi) \sin \theta$$
.
For $\frac{\pi}{2} \le \theta \le \frac{\pi}{2} + \frac{1}{\sqrt{\log R}}$ we have

$$f(\theta, x, y) = -(y + 2\theta - \pi) + O\left(\frac{1}{\sqrt{\log R}}\right)$$

and hence

$$\log \left| \frac{e^{sz}}{L(s + \frac{1}{2}, E)} \right| \le -\frac{yR}{2}.$$

For $\frac{\pi}{2} + \frac{1}{\sqrt{\log R}} \le \theta \le \pi$ we have

$$|\cos \theta| \gg \frac{1}{\sqrt{\log R}}$$

and consequently

$$\log\left|\frac{e^{sz}}{L(s+\frac{1}{2},E)}\right| = -2|\cos\theta|R\log R + O(R) \le -\gamma R \le -\frac{\gamma R}{2}$$

for sufficently large R, and the lemma easily follows.

3 Proof of Theorem 1.3

We shall first prove that m(z, E) has meromorphic continuation to the whole complex plane.

Let us write

$$2\pi i m(z, E) = \int_{-\frac{1}{4} + i\infty}^{-\frac{1}{4}} \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds + \int_{l} \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds + \int_{\frac{3}{2}}^{\frac{3}{2} + i\infty} \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds$$
$$= n_{1}(z) + n_{2}(z) + n_{3}(z),$$

say.

Notice that $n_2(z)$ is an entire function.

We compute $n_3(z)$ explicitly. Term by term integration gives

$$n_3(z) = -e^{\frac{3}{2}z} \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n^{\frac{3}{2}}(z - \log n)}.$$

This shows that $n_3(z)$ is meromorphic on the whole complex plane and has simple poles at the points $z = \log n$, $\mu_E(n) \neq 0$, with residues

$$\operatorname{Res}_{z=\log n} n_3(z) = -\mu_E(n).$$

Let us now consider $n_1(z)$. Let C_1 consist of the half-line $s=\sigma+i$, $-\infty<\sigma\leq -\frac{1}{4}$ and the line segment $[-\frac{1}{4}+i,-\frac{1}{4}]$. Using Lemma 2.1, we can write

$$n_1(z) = \int_{C_1} \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds.$$

Putting $s = \sigma + i$, $\sigma \le 0$ in (2.1) we obtain

$$\left| \frac{e^{(\sigma+i)z}}{L(\frac{1}{2}+\sigma+i,E)} \right| \ll e^{-c_0|\sigma|\log(|\sigma|+2)},$$

hence $n_1(z)$ is an entire function.

Then for $z \in \mathbb{C}$, $z \neq \log n$, and $\mu_E(n) \neq 0$, we have

$$m(z, E) + \overline{m}(z, E) = -\frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds - R(z)$$

where minus before a contour denotes the opposite direction.

Using the equality (1.2), we get

$$\frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds
= \frac{\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n} \cdot \frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \frac{\Gamma(s + \frac{1}{2})}{\Gamma(\frac{3}{2} - s)} \left(\frac{Nne^z}{(2\pi)^2}\right)^s ds.$$

The last integrand has simple poles at $s = -\frac{1}{2}, -\frac{3}{2}, -\frac{5}{2}, \dots$ Computing residues we obtain

$$\frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \frac{\Gamma(s+\frac{1}{2})}{\Gamma(\frac{3}{2}-s)} \left(\frac{Nne^z}{(2\pi)^2}\right)^s ds = J_1\left(\frac{4\pi}{\sqrt{Nn}}e^{-\frac{z}{2}}\right).$$

4 Proof of Theorem 1.4

Let us now consider the function

$$m^*(z,E) = \frac{1}{2\pi i} \int_C \tan(\pi s) \frac{e^{sz}}{L(s+\frac{1}{2},E)} ds.$$

Using Lemma 2.1 we can write

$$m^*(z,E) = \frac{1}{2\pi i} \left(\int_{C_1 \cup l} + \int_{\frac{3}{2}}^{\frac{3}{2} + i\infty} \right) \tan \pi s \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds = m_a^*(z, E) + m_b^*(z, E).$$

Using again estimation

$$\Big|\frac{e^{(\sigma+i)z}}{L(\frac{1}{2}+\sigma+i,E)}\Big| \ll e^{-c_0|\sigma|\log(|\sigma|+2)}, \quad \sigma \leq 0$$

and $\tan(\pi(\sigma+i)) \ll 1$ it is easy to see that $m_a^*(z,E)$ is an entire function. Moreover

$$m_b^*(z, E) = H(z, E) - \frac{e^{\frac{3}{2}z}}{2\pi} m_0(z, E).$$

This gives the meromorphic continuation of $m^*(z, E)$ to the half-plane $\Im z > -2\pi$ and $m^*(z, E)$ has poles at the points $\log n, n = 1, 2, 3, \ldots, \mu_E(n) \neq 0$, with residues

$$\operatorname{Res}_{s=\log n} m^*(z, E) = -\frac{\mu_E(n)}{2\pi}.$$

Now we consider the function $\overline{m^*}(z, E)$. Changing s to \overline{s} we get

$$\overline{m^*}(z,E) = \frac{1}{2\pi i} \int_{-\overline{C}} \tan \pi s \frac{e^{sz}}{L(s+\frac{1}{2},E)} ds, \quad \Im z < 2\pi.$$

Further we have

$$\overline{m^*}(z, E) = \frac{1}{2\pi i} \int_{-(\overline{C_1} \cup \overline{I})} \tan \pi s \frac{e^{sz}}{L(s + \frac{1}{2}, E)} ds + \overline{H}(z, E) - \frac{e^{\frac{3}{2}z}}{2\pi} m_0(z, E).$$

Then for $|\Im(z)| < 2\pi$ we have

$$m^*(z,E) + \overline{m^*}(z,E) = -J(z,E) - \frac{e^{\frac{3}{2}z}}{\pi} m_0(z,E) + H(z,E) + \overline{H}(z,E) - R^*(z),$$

where

$$J(z,E) = \frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \tan \pi s \frac{e^{sz}}{L(s+\frac{1}{2},E)} ds.$$

Using functional equation (1.2), we get

$$J(z, E) = \frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \tan(\pi s) \frac{e^{sz} \Gamma(s + \frac{1}{2})}{\eta \Gamma(\frac{3}{2} - s) L(\frac{3}{2} - s)} \left(\frac{\sqrt{N}}{2\pi}\right)^{2s - 1} ds$$

$$= \frac{-2\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n} \left(\frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \frac{\Gamma(s + \frac{1}{2}) \Gamma(s - \frac{1}{2})}{\Gamma(s) \Gamma(1 - s)} \left(\frac{e^z N n}{4\pi^2}\right)^s ds\right).$$

We can compute the last integral using inverse Mellin transform (see [6, p. 407])

$$\frac{1}{2\pi i} \int_{\overline{C_1} \cup (-C_1)} \frac{\Gamma(s + \frac{1}{2})\Gamma(s - \frac{1}{2})}{\Gamma(s)\Gamma(1 - s)} \left(\frac{e^z Nn}{4\pi^2}\right)^s ds$$

$$= -Y_1 \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{z}{2}}\right) - \frac{2}{\pi} \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{z}{2}}\right)^{-1}.$$

Therefore

$$J(z,E) = \frac{2\pi}{\eta\sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n} \left(-Y_1 \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{z}{2}} \right) - \frac{2}{\pi} \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{z}{2}} \right)^{-1} \right).$$

For $x \in \mathbb{R}$, $x \neq \log n$ we have

$$\Re(m^*(x,E)) = \frac{\pi}{\eta \sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n} \left(-Y_1 \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{x}{2}} \right) - \frac{2}{\pi} \left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{x}{2}} \right)^{-1} \right) - \frac{e^{\frac{3}{2}x}}{2\pi} m_0(x,E) + \frac{1}{2} \left(H(x,E) + \overline{H}(x,E) \right) - \frac{1}{2} R^*(x).$$

Obviously

$$m^*(z, E) = im(z, E) + m_1(z, E),$$

therefore we get

$$(4.1) \qquad \Im\left(m(x,E)\right) = -\frac{\pi}{\eta\sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_{E}(n)}{n} \left(-Y_{1}\left(\frac{4\pi}{\sqrt{Nn}}e^{-\frac{x}{2}}\right) - \frac{1}{\pi} \frac{e^{\frac{x}{2}}\sqrt{Nn}}{2\pi}\right) + \frac{e^{(\frac{3}{2}x}}{2\pi} m_{0}(x,E) - \frac{1}{2}\left(H(x,E) + \overline{H}(x,E)\right) + \frac{1}{2}\left(m_{1}(x,E) + \overline{m_{1}}(x,E)\right) + \frac{1}{2}R^{*}(x).$$

On the other hand

(4.2)
$$\Re(m(x,E)) = -\frac{\pi}{\eta\sqrt{N}} \sum_{n=1}^{\infty} \frac{\mu_E(n)}{n} J_1\left(\frac{4\pi}{\sqrt{Nn}} e^{-\frac{x}{2}}\right) - \frac{1}{2} R(x).$$

The equations (4.1) and (4.2) imply the formula for $z \in \mathbb{R}$, $z \neq \log n$, and $\mu_E(n) \neq 0$, and by the analytic continuation, formula (1.3) is valid in the strip $|\Im z| < 2\pi$.

Acknowledgments This paper is a part of my PhD thesis. I thank my thesis advisor Prof. Jerzy Kaczorowski for suggesting the problem and helpful discussions.

References

- [1] K. Bartz, On some complex explicit formulae connected with the Möbius function, I. Acta Arith. 57(1991), 283–293.
- H. Bateman and A. Erdelyi, Higher transcendental functions. Vol. II, McGraw-Hill Book Company, 1953.
- [3] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q. J. Amer. Math. Soc. 14(2001), 843–939. http://dx.doi.org/10.1090/S0894-0347-01-00370-8
- [4] H. Iwaniec and E. Kowalski, Analytic number theory. Amer. Math. Soc., Providence, RI, 2003.
- [5] J. Kaczorowski, Results on the Möbius function. J. London Math. Soc. 75(2007), 509–521. http://dx.doi.org/10.1112/jlms/jdm006

- [6] D. Kaminski and R. B. Paris, *Asymptotics and Mellin–Barnes integrals*. Encyclopedia Math. Appl., Cambridge University Press, Cambridge, 2001.
- A. Perelli, General L-functions. Ann. Mat. Pura Appl. 130(1982), 287–306. http://dx.doi.org/10.1007/BF01761499

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland

e-mail: adrianl@amu.edu.pl