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On Complex Explicit Formulae Connected
with the Mobius Function of an Elliptic
Curve

Adrian Lydka

Abstract. 'We study analytic properties function m(z, E), which is defined on the upper half-plane as an
integral from the shifted L-function of an elliptic curve. We show that m(z, E) analytically continues
to a meromorphic function on the whole complex plane and satisfies certain functional equation.
Moreover, we give explicit formula for m(z, E) in the strip |Jz| < 2.

1 Introduction

For a complex number z from the upper half-plane let

1 eSZ
m(z) = — [ —ds,
=) 2mi /c ¢(s)
where ((s) denotes the classical Riemann zeta function, and the path of integration
consists of the half-line s = —% +it,00 >t > 0, the line segment [—%, %] and the

half-line s = % +it, 0 < t < oo. This function was considered in [1] and [5] where
the following theorems were proved.

Theorem 1.1 (Bartz [1]) The function m(z) can be analytically continued to a mero-
morphic function on the whole complex plane and satisfies the following functional equa-
tion

— -~ A(n) ( 2m —z)
+ =23 - cos( e
m(z) + m(z) nz::l " cos ” e
The only singularities of m(z) are simple poles at the points z = logn, where n is a
square-free natural number. The corresponding residues are

)

Resz:logn m(z) = i

J. Kaczorowski in [5] simplified the proof of this result and gave an explicit for-
mula for m(z) in the strip |Sz| < .
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Theorem 1.2 (Kaczorowski [5]) For |Sz| < , z # logn, u(n) # 0 we have

(@ + ) + 5 (Fa(2) + Fu(2)

where

mo(e) = 1
n=1

z—logn

is meromorphic on C and

1 T .\ €
ml(z):%/c(tani—l)@ds,

1 1+ioco s ) esz
F,.(z) = %/1 (tanj — 1) @ ds

are holomorphic in the half-plane Sz > —m.

In this paper we prove analogous results for the Mbius function of an elliptic
curve over () defined by the Weierstrass equation

E/Q:y*=x"+ax+b, abecQ.

Let L(s, E) denote the L-function of E (see for instance [4, pp. 365-366]). For o0 =
Rs > 3/2 we have

(1.1) L(s,E) = [TA —app ) ' T[T —a,p =+ p" )71,
pIN PN

where N is the conductor of E. It is well-known that coefficients a, are real and for
p 1 N one has

a, = p+1—#E(F,),

where #E(F,) denotes the number of points on E modulo p including the point at
infinity, and a, € {—1,0,1}, when p|N (for details see [4, p. 365]). The Mobius
function of E is defined as the sequence of the Dirichlet coefficients of the inverse of

the shifted L(s, E):
1 — p(n)
= . o> 1.
L(s+ 1 E) 2T ©

n=1

https://doi.org/10.4153/CMB-2013-021-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2013-021-3

Explicit Formulae for the Mobius Function of an Elliptic Curve 383

Using (1.1) and the well-known Hasse inequality (see [4, p. 366, (14.32)]) we easily
show that p is a multiplicative function satisfying Ramanujan’s condition (pg(n) <
n® for every € > 0), and moreover

) -7 k=1,
pe(p) =41 ifk=2and ptA,
0 ifk > 3ork=2and p|A,

for every prime p and positive integer k.

Furthermore, C. Breuil, B. Conrad, F. Diamond and R. Taylor, using the method
pioneered by A. Wiles, proved in [3] that every L—function of an elliptic curve analyt-
ically continues to an entire function and satisfies the following functional equation

N\ s N\ 2—s
(1.2) (Xi)FQMgD=n<1:) T2 —s)LQ2 —s, E),
2T 2
where 7 = %1 is called the root number.
In analogy to m(z) we define m(z, E) by

m(z,E) = ! / ;eﬂ ds,
27 L(s+ %, E)

where the path of integration consists of the half-lines = —1 +it,c0 >t > 0,
the simple and srnooth curve [ (which is parametrized by 7: [0,1] — C such that
7(0) = —1, (1) = 2, S7(t) > 0fort € (0, 1) and F(s) has no zeros on [ and

between [ and the real axis), and the half-line s = 5 +1it,0 <t < oo.

Using (1.2) and Stirling’s formula (see [4, p. 151, (5.112)]) it is easy to see that
m(z, E) is holomorphic on the upper half-plane.

Our main goal in this paper is to prove the following results, which are extensions
of Theorems 1.1 and 1.2.

Theorem 1.3 The function m(z, E) can be continued analytically to a meromorphic
function on the whole complex plane and satisfies the following functional equation

21 () A
m(z,E>+m(z,E>——nm; , ]1(\/7 ) - R,

where R(z) = > Res;_g ﬁ (summation is over real zeros of L(s + %, E)in (0,1), if
L
there are any) and ],(z) denotes the Bessel function of the first kind:

( 1) (Z/2)2k+1
h@) = E: THOGk+2)

The only singularities of m(z, E) are simple poles at the points z = logn, up(n) # 0
with the corresponding residues

pe(n)

Resz:logn m(z, E)=— i
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Let Y;(z) be the Bessel function of the second kind and let
(2) _ .
H\"(z) = Ji(z) — iY1(2)

denote the classical Hankel function (see [2, p. 4]). Moreover, let

R*(Z):Ress:%(tanﬂ'sL( ) ZRes(tanﬂs o e” E))

summation is over real zeros of L(s + %, E)in (0,1) \ {%} (if there are any),

mo(z, E) = Z ,ME(”) 1

n: z—logn’

my(z,E) = /(tanws L( + B ds,

1 *+IOO es
H(Z,E) = 2 - / (tan7TS )ﬁ S
T )3

It is easy to see that R(z) and R*(z) are entire functions, myg(z, E) is meromorphic on
the whole plane, whereas m; (z, E) and H(z, E) are holomorphic for 3z > —27. With
this notation we have the following result.

Theorem 1.4 Forz=x+iy,|y| <2m x € R, z # logn, and pg(n) # 0, we have

) 4T . 2.0 4 _\ !
(1.3) m(z,E):m; . (Hg)(me z)—;z(ﬁe ) )

" mo(z, E)
— my(z,
27 0

oln

— %(R(z) —iR*(2)) + %(H(z E) +H(z,E))
— 5 (mi(e B+ 7r(z, ).

2 An Auxiliary Lemma

We need the following technical lemma.

Lemma 2.1 Letz=x+iy,y > 0,5 = Re'?, Rsinf > 1, 3 < 0 < . Then for
R > R(x, y) we have

‘L(s+ E)‘ -

Proof Using (1.2), the Stirling’s formula and estimate

3
logL(o +it, E) < log(|t| +2), |o| > 2 lt] > 1
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(see [7, p. 304]) we obtain
(2.1)

log = 2RlogRcos O + Rf(6,x,y) + O(logR),

gIMI Lis+1F)

1
2
where f(0,x,y) = <x+210g§ —2) cosf — (y+20 —m)sin6.

—< <I
For 0 +\/10?

we have

f0.x,9) = ~(y+20—m +0(

1
+/log R)
and hence

g’m’

For%—i— < 0 < 7 we have

1
4/logR

| cos 0] >

1
y/logR
and consequently

oe| i 1| =

27

R
—2|cosf|RlogR+ O(R) < —yR < — 7=

for sufficently large R, and the lemma easily follows. ]

3 Proof of Theorem 1.3

We shall first prove that m(z, E) has meromorphic continuation to the whole complex
plane.
Let us write

-1 e o2 5+i0o o2
Zwim(z,E):-/ 71d5+/71ds+/ — s
—Liico L(s+ 3,E) 1 L(s+ 3,E) 3 L(s+ ,E)
= mi(2) + my(2) + n3(2),
say.

Notice that n,(z) is an entire function.
We compute n3(z) explicitly. Term by term integration gives

e (n)
p—rt ni(z — log n) .
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This shows that #3(z) is meromorphic on the whole complex plane and has simple
poles at the points z = log n, ug(n) # 0, with residues

Res;_jogn 13(2) = —pp(n).

Let us now consider n;(z). Let C; consist of the half-lines = 0+ i, —00 < 0 < —%
and the line segment [—i +i,— i ]. Using Lemma 2.1, we can write

eSZ
S R —
miz) /c s+ "

Puttings = 0 + i, 0 < 01in (2.1) we obtain

‘ e(a+i)z

—¢lo]1
- : ‘ <e clo] og(\a|+2)7
L(5 + o +1,E)

hence n;(z) is an entire function.
Then for z € C, z # log n, and pg(n) # 0, we have

eSZ

1
——f/ 45— R()
271 CU(—Cy) L(S + §7E)

m(z,E) + m(z,E) =

where minus before a contour denotes the opposite direction.
Using the equality (1.2), we get

1 / e”
— P ds
271 au(,cl) L(S + 29 E)

Cx S L[ T ey,
N4 n 2w Joue) TS —9) \ @2m)?

The last integrand has simple poles at s = f%, f%, f%, .... Computing residues we

obtain X
1 T'(s+ 5) Nneé\ s T _
_ 27 ds = .
271 /Clu(cl) F(% —) ( (27T)2> S ]1( ﬁNne )

S

4 Proof of Theorem 1.4

Let us now consider the function

Z

1 e
*(z,E) = — — ds.
m™(z, E) o /Ctan(ﬂs)L(s+ 5 ds

27

Using Lemma 2.1 we can write

1 %+iOO esz
m*(z,E)2,</ +/ ) tanwsmds:m:(z,E)+mZ(z,E).
Ti\Jou J: s

1
2 27
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Using again estimation

o+i)z

(
’ e < eololloglol 5 <

L( +0+i,E)

and tan( (o +1i )) < 1itis easy to see that m; (z, E) is an entire function.

Moreover

3z

my,(z,E) = H(z,E) — %mo(z, E).

This gives the meromorphic continuation of m*(z, E) to the half-plane Sz > —27
and m™*(z, E) has poles at the points logn,n = 1,2,3, ..., ug(n) # 0, with residues
pe(n)

Ress_jogn m* (2, E) = — o

Now we consider the function m*(z, E). Changing s to 5 we get

. l eSZ
m*(z,E) = —/ tan s —————ds, Sz < 2.
-C L(S + 29 E)

Further we have

1 e* — e3?
m*(z,E) = —/ tan ms—————ds + H(z, E) — ——my(z, E).
27 J_ i) L(s+ 3,E) 27

Z

Then for |S(z)| < 27 we have

2z

m*(z, E) +W(Z, E) = _](27 E) - %mo(z7 E) +H(Z7 E) +ﬁ(27 E) - R*(Z)a

where

eSZ

1
J(z,E) = —/ tan Ts—————ds
271 Cilu(fCl) L(S + E’E)

Using functional equation (1.2), we get

eszl_‘(sﬂ-%) (\/ﬁ) Zsflds

2

J(z,E) = L / tan(7s)
, . T
2mi Jeiu-cy) UACEDICES

_2m o () (1 D(s+ DI(s— 1) / ENny s
- WN; n (W/clucl) T(5)D(1 —s) (4772) ds)'

We can compute the last integral using inverse Mellin transform (see [6, p. 407])

1 L(s+ (s — §)<eZNn)sd
271 Jeru—cy LTI —s) 47?2

() - ()

i
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Therefore
2T uE(n)< 4T, 2/ 4w _.\ !
J(z,E) = —— -Y eZ)—7< e 2 .
(= E) n\/IT/'; n 1<\/Nn m™\+/Nn )
For x € R, x # logn we have

R(m*(x,E)) ZME(H)( 1(;}%3 f) 7%(\2% *%) _1)

- ezixmo(x E)+ - (H(x E)+H(x,E)) — %R*(x).

Obviously
m*(z,E) = im(z, E) + mi(z, E),

therefore we get

W S(nts) =T S (L () L)

3
(jx

+
27

mo(x, E) — (H(x E)+H(x,E))

+ %(ml(x, E) +my(x, E)) + %R*(x).

On the other hand

(4.2) (m(x E) Z ME(”) (\/7 %) — %R(x).

The equations (4.1) and (4.2) imply the formula for z € R, z # log n, and pg(n) #
0, and by the analytic continuation, formula (1.3) is valid in the strip |3z| < 2.
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