
Math. Struct. in Comp. Science (2017), vol. 27, pp. 1132–1152. c© Cambridge University Press 2016

doi:10.1017/S0960129515000493 First published online 9 February 2016

Practical coinduction

DEXTER KOZEN† and ALEXANDRA SILVA‡

†Computer Science, Cornell University, Ithaca, New York 14853-7501, U.S.A.

Email: kozen@cs.cornell.edu
‡Intelligent Systems, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen,

the Netherlands

Email: alexandra@cs.ru.nl

Received 6 March 2013; revised 17 October 2014

Induction is a well-established proof principle that is taught in most undergraduate

programs in mathematics and computer science. In computer science, it is used primarily to

reason about inductively defined datatypes such as finite lists, finite trees and the natural

numbers. Coinduction is the dual principle that can be used to reason about coinductive

datatypes such as infinite streams or trees, but it is not as widespread or as well understood.

In this paper, we illustrate through several examples the use of coinduction in informal

mathematical arguments. Our aim is to promote the principle as a useful tool for the

working mathematician and to bring it to a level of familiarity on par with induction. We

show that coinduction is not only about bisimilarity and equality of behaviors, but also

applicable to a variety of functions and relations defined on coinductive datatypes.

1. Introduction

Perhaps the single most important general proof principle in computer science, and argu-

ably in all of mathematics, is induction. There is a valid induction principle corresponding

to any well-founded relation, but in computer science, it is most often seen in the form

known as structural induction, in which the domain of discourse is an inductively-defined

datatype such as finite lists, finite trees, or the natural numbers.

For example, consider the type List of A of finite lists over an alphabet A, defined

inductively by

— nil ∈ List of A

— if a ∈ A and � ∈ List of A, then a :: � ∈ List of A.

The defined datatype is the least solution of the equation

List of A = nil + A × List of A. (1.1)

It is the initial algebra for a signature consisting of one constant (nil) and one binary

constructor (::). This means that one can define functions with domain List of A uniquely

by structural induction. For example, the functions length, which computes the length of

a finite list, and concat, which concatenates two finite lists, can be defined as follows:

length(nil) = 0 concat(nil, �) = �

length(a :: �) = 1 + length(�) concat(a :: �1, �2) = a :: concat(�1, �2).

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1133

No one would dispute that these functions are uniquely defined. Now, we can prove

that length(concat(�1, �2)) = length(�1) + length(�2) by structural induction on the first

argument.

length(concat(nil, �2)) = length(�2),

= 0 + length(�2) = length(nil) + length(�2),

length(concat(a :: �1, �2)) = length(a :: concat(�1, �2)),

= 1 + length(concat(�1, �2)),

= 1 + length(�1) + length(�2), (inductive step)

= length(a :: �1) + length(�2).

This proof would raise no objections as to its correctness. The induction principle in play

here is implicit and trusted; there is no need to reassert its validity every time it is used

or whenever a new inductive datatype is introduced.

Coinduction, on the other hand, is still mysterious and unfamiliar to many. Coinduction

is the dual principle to induction and is used to prove properties of coinductively-defined

datatypes such as infinite streams, infinite trees, and coterms. These datatypes are typically

final coalgebras for a signature. For example, the finite and infinite streams over A form

the final coalgebra for the signature (nil, ::) and are the greatest solution of Equation

(1.1).

Although coinduction has been around for decades, many proofs in the literature that

rely on coinduction still end up essentially reasserting the principle every time it is used.

It is clearly not as familiar as induction and not trusted in the same way. Quoting Rutten

from his seminal paper on universal coalgebra:

Firstly, induction principles are well known and much used. The coinductive definition and proof

principles for coalgebras are less well known by far, and often even not very clearly formulated.
– Rutten (2000)

Rutten’s paper was the precursor of much work on coalgebra and coinduction, which

included, among many others, extensions to modal logics (Kurz 2001; Schröder 2005,

2008; Schröder and Pattinson 2007) and structural operational semantics (Klin 2007;

Turi and Plotkin 1997). However, most attention has been devoted to bisimulation proofs

of equality between coinductively defined objects. With only a handful of exceptions,

e.g. Brandt and Henglein (1998); Hermida and Jacobs (1998); Milner and Tofte (1991);

Niqui and Rutten (2009), not much has been explored when it comes to properties of

other relations on coinductive datatypes besides equality.

Our aim in this paper is to introduce an informal style of coinductive reasoning that

can be quite useful in dealing with infinite data. We illustrate this style with a number of

interesting examples. Our arguments may seem a bit magical at first, because they apply

to infinite objects and look something like induction without a basis. Nevertheless, they

are backed by sound formal proof principles. The reason they work is summed up in the

following motto:

A property holds by induction if there is good reason for it to hold; whereas a property holds

by coinduction if there is no good reason for it not to hold.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1134

Although there is a coinductive step but no basis, any difficulty that would arise that

would cause the property not to hold would manifest itself in the attempt to prove the

coinductive step.

The examples we give in the paper demonstrate the versatility of the principle. We will

prove properties of several kinds:

— Classical bisimulation proofs. For example, given two coinductively defined streams,

are they equal?

— Properties other than equality. For example, given two streams σ and τ over N , is σ

lexicographically less than τ?

— Properties of relations on coinductive datatypes. For example, is the subtype order on

recursive types transitive?

— Properties of functions between coinductive datatypes. For example, given two coinduct-

ively defined partial orders and a function between them, is the function monotone?

In all these examples, the proofs we give are quite short and involve establishing a

coinductive step analogous to the inductive step in proofs by induction. What is missing is

the final argument that the proof is a valid application of the coinduction principle; but

it is not necessary to include this step for the same reason that it is not necessary to argue

with every inductive proof that the proof is a valid application of the induction principle.

We emphasize that we are not claiming to introduce any new coinductive proof

principles. The foundations of coinduction underlying our approach are well known.

Rather, our purpose is only to present an informal style of coinductive reasoning that can

be used in everyday mathematics, much as induction is used today.

We hope that this paper will be of interest both to experts in coalgebra and coinduction

by pointing out nonstandard examples of proofs by coinduction and to nonexperts by

showing how coinduction can be used in an informal way to prove interesting properties

from the realm of functional and imperative programming.

2. Coinductive datatypes

Coinductive datatypes provide a wealth of examples from functional programming. Coin-

ductive datatypes usually refer to possibly infinite structures. Prime examples include

infinite streams, infinite trees, coterms (infinite terms), and finite and infinite words over an

alphabet. In programming language semantics, coinductive types are often used to model

traces (Ichiro et al. 2007), recursive types (Brandt and Henglein 1998), and program state

(Jeannin and Kozen 2012).

Formally, coinductive datatypes can be defined as elements of a final coalgebra for a

given polynomial endofunctor on Set. For instance, the set Aω of infinite streams over

an alphabet A is (the carrier of) the final coalgebra of the functor FX = A × X, whereas

the set A∞ of finite and infinite words over an alphabet A is the final coalgebra of

FX = 1 + A × X.

Many functional programming languages such as Haskell and OCaml support coin-

ductive types; Standard ML and F# do not. The type of streams would be defined in

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1135

Haskell as

data Stream a = S a (Stream a).

Here data is a keyword and S is a constructor. The type Stream a is polymorphic,

parameterized by the type variable a.

Coinductive datatypes are usually presented together with their destructors. For instance,

streams admit two operations hd : Aω → A and tl : Aω → Aω , which in Haskell would be

defined as

hd (S a as) = a tl (S a as) = as.

The existence of destructors is a consequence of the fact that Aω is a coalgebra for

the functor FX = A × X. All such coalgebras come equipped with a structure map

〈obs, cont〉 : X → A × X; for Aω , obs = hd and cont = tl. Interestingly enough, the

structure map of a final coalgebra is always an isomorphism, as is the structure map of an

initial algebra. This is the content of Lambek’s lemma (Lambek 1968). Thus, initial algebras

and final coalgebras are always both algebras and coalgebras for the same functor. In

the case of streams, the inverse of 〈hd, tl〉, usually referred to as the constructor, is cons,

a function of type A × Aω → Aω . In Haskell, it would be defined as

cons (a,as) = S a as.

3. Some motivating examples

3.1. Lexicographic order on streams

In this section, we give an informal proof that lexicographic order on streams is transitive.

The argument illustrates an informal style of coinductive reasoning in a nonstandard

setting. At first glance, this technique seems quite magical because it appears to involve

induction on a non-well-founded relation.

Let (A, �) be a partially ordered alphabet. An A-stream is an element of Aω . The

constructor :: (cons) of type A × Aω → Aω and corresponding destructors hd : Aω → A

and tl : Aω → Aω are defined as in Section 1. The ordering �lex on A-streams is defined

to be the maximum relation R ⊆ Aω × Aω satisfying the following property:

Property 1. If σRτ, then

i. hd(σ) � hd(τ), and

ii. if hd(σ) = hd(τ), then tl(σ)R tl(τ).

The relation �lex exists and is unique, and any relation satisfying Property 1 is a subset.

This is because if {Rα} is any indexed family of relations satisfying Property 1, then their

union
⋃

α Rα also satisfies Property 1. The relation �lex is thus the union of all relations

satisfying Property 1.

The relation �lex satisfies many desirable properties. For example, �lex is reflexive, that

is, σ �lex σ holds for any A-stream σ, because the identity relation id = {(σ, σ) | σ ∈ Aω}
satisfies Property 1, therefore id ⊆ �lex.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1136

Moreover, because �lex is maximum, the converse of Property 1 holds for �lex; that is,

if

i. hd(σ) � hd(τ), and

ii. hd(σ) = hd(τ) ⇒ tl(σ) �lex tl(τ),

then σ �lex τ. If not, then �lex would not be maximal; one could add the pair (σ, τ) to

�lex without violating Property 1.

To say that �lex is the maximum relation satisfying Property 1 says that it is the greatest

fixpoint of the operator.

T�lex(R) = {(σ, τ) | hd(σ) � hd(τ) and hd(σ) = hd(τ) ⇒ tl(σ)R tl(τ)}.

Formally, the relation �lex is defined as the greatest fixpoint of T�lex; in symbols, �lex=

νX.T�lex (X).

Now we will show

Theorem 1. The relation �lex is transitive.

Proof. We want to show that if σ �lex ρ �lex τ, then σ �lex τ. Suppose

σ �lex ρ �lex τ. (3.2)

By Property 1(i),

hd(σ) � hd(ρ) � hd(τ). (3.3)

Since � is transitive on A, hd(σ) � hd(τ). Thus, Property 1(i) holds for the pair σ, τ.

For Property 1(ii), if hd(σ) = hd(τ), then hd(σ) = hd(ρ) = hd(τ) by Equation (3.3)

and the antisymmetry of � on A. By the assumption (3.2) and Property 1(ii), tl(σ) �lex

tl(ρ) �lex tl(τ). By the coinduction hypothesis, tl(σ) �lex tl(τ). This establishes Property 1(ii)

for σ, τ.

We have shown that under the assumption (3.2) and the coinduction hypotheses on

the tails, both clauses (i) and (ii) of Property 1 hold for the pair σ, τ. By the converse of

Property 1, σ �lex τ.

The part of this proof that is unsettling is the appeal to the coinduction hypothesis on

the tails of the two streams. Streams are infinite, and there is nothing like a basis. So the

entire argument seems non-well-founded. But as we will show later, the argument is quite

firmly grounded. Intuitively, one can appeal to the coinductive hypothesis as long as there

has been progress in observing the elements of the stream (guardedness) and there is no

further analysis of the tails (opacity). We will explain this formally in Section 4.

There are of course other ways to prove transitivity of �lex. Here is an informal proof

by induction that is dual to the proof presented above.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1137

Proof of Theorem 1 (alternative). We show the contrapositive: For any σ, ρ, τ, if σ
�lex τ,

then either σ
�lex ρ or ρ
�lex τ. We proceed by induction on the inductive definition of

�lex.
†

If σ
�lex τ because of (i), then hd(σ)
� hd(τ), therefore either hd(σ)
� hd(ρ) or

hd(ρ)
� hd(τ), since � is transitive on A. Then either σ
�lex ρ or ρ
�lex τ by (i). This is

the basis.

If σ
�lex τ because of (ii), then hd(σ) = hd(τ) and tl(σ)
�lex tl(τ), and tl(σ)
�lex tl(τ) was

determined at an earlier stage in the inductive definition. By the induction hypothesis,

either tl(σ)
�lex tl(ρ) or tl(ρ)
�lex tl(τ), say the former without loss of generality. If either

hd(σ)
� hd(ρ) or hd(ρ)
� hd(τ), we are done as above. Otherwise hd(σ) � hd(ρ) � hd(τ),

and since hd(σ) = hd(τ), we have hd(σ) = hd(ρ) = hd(τ). Since tl(σ)
�lex tl(ρ), we have

σ
�lex ρ by (ii). �
In the latter proof, we are actually doing induction on the relation

{((tl(σ), tl(τ)), (σ, τ)) | hd(σ) = hd(τ)},

which is well founded on the set
�lex. One can show that σ
�lex τ iff there exists n � 0

such that hd(tlm(σ)) = hd(tlm(τ)) for m < n and hd(tln(σ))
� hd(tln(τ)). The smallest such

n is the stage in the inductive definition of
�lex at which σ
�lex τ is established.

A third alternative would show that the relation {(σ, τ) | ∃ρ σ �lex ρ �lex τ} satisfies

Property 1, therefore is contained in the maximal such relation �lex. The details of this

argument, written out, would contain all the same ingredients as our other two proofs.

Here is another example involving lexicographic order on streams.

Theorem 2. For streams over a commutative semigroup (A,+), pointwise addition is

monotone; that is,

σ �lex τ and ρ �lex π ⇒ σ + ρ �lex τ + π,

where σ + τ is the pointwise sum of the two streams.

Proof. First observe that the pointwise sum operation + on streams satisfies the

equations

hd(σ + τ) = hd(σ) + hd(τ) tl(σ + τ) = tl(σ) + tl(τ). (3.4)

By Property 1(i),

hd(σ + ρ) = hd(σ) + hd(ρ) � hd(τ) + hd(π) = hd(τ + π).

Thus, Property 1(i) holds for the pair (σ + ρ, τ + π).

For Property 1(ii), if hd(σ + ρ) = hd(τ + π) and using the fact that, by hypothesis,

hd(σ) � hd(τ) and hd(ρ) � hd(π), then we can conclude that hd(σ) = hd(τ) and hd(ρ) =

hd(π). By the assumptions σ �lex τ and ρ �lex π and Property 1(ii), tl(σ) �lex tl(τ) and

† It is a well-known fact that a relation is coinductively defined as the greatest fixpoint of some monotone

operator iff its complement is inductively defined as the least fixpoint of the dual operator; expressed in the

language of the μ-calculus, ¬νX.τ(X) = μX.¬τ(¬X).

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1138

tl(ρ) �lex tl(π). By the coinduction hypothesis, we have tl(σ) + tl(ρ) �lex tl(τ) + tl(π). That

is, tl(σ + ρ) �lex tl(τ + π). This establishes Property 1(ii) for (σ + ρ, τ + π).

A subtle but important observation is that the equations (3.4) determine the operation

+ on streams uniquely. Indeed, this would be the preferred way to define the operation

+ coinductively for the purpose of formalization in an automated deduction system such

as Coq or NuPrl, as the informal definition above using pointwise sum would require the

extraneous notions of the natural numbers and indexing.

But how do we know from Equation (3.4) alone that + exists and is unique? Ultimately,

this comes from the fact that (Aω, hd, tl) is a final coalgebra (Aczel 1988; Barwise and

Moss 1996). This means that for any coalgebra (X, obs, cont) with obs : X → A and

cont : X → X, there is a unique coalgebra morphism X → Aω . If we make a coalgebra

out of Aω × Aω by defining

obs(σ, τ) = hd(σ) + hd(τ) cont(σ, τ) = (tl(σ), tl(τ)),

then + is the unique morphism to the final coalgebra Aω , the equations (3.4) asserting

exactly that + is a coalgebra morphism.

3.2. Recursive types

Recursive types were introduced by Mendler (1988). The subtyping problem for recursive

types was studied in Amadio and Cardelli (1993); Brandt and Henglein (1998); Kozen et

al. (1995). In their simplest form, recursive types are constructed from the constants ⊥
and
 and the binary function space constructor →. The set of recursive types C is the

set of coterms of this signature. The subtype order � is defined to be the greatest binary

relation on C such that if σ � τ, then either

— σ = ⊥, or

— τ =
, or

— σ = σ1 → σ2 and τ = τ1 → τ2 and τ1 � σ1 and σ2 � τ2.

In other words, � is νX.T (X), the greatest post-fixpoint of the monotone map

T (X) = {(⊥, τ) | τ ∈ C} ∪ {(σ,
) | σ ∈ C},
∪ {(σ1 → σ2, τ1 → τ2) | (τ1, σ1) ∈ X, (σ2, τ2) ∈ X}.

Theorem 3. � is transitive.

Proof. Suppose σ � ρ � τ. If σ = ⊥ or τ =
, we are done. Otherwise, we cannot

have ρ =
 since ρ � τ, and we cannot have ρ = ⊥ since σ � ρ, therefore ρ = ρ1 → ρ2

for some ρ1, ρ2. Then we must also have σ = σ1 → σ2 since σ � ρ and τ = τ1 → τ2

since ρ � τ. Because σ � ρ � τ, we must have τ1 � ρ1 � σ1 and σ2 � ρ2 � τ2. By the

coinduction hypothesis, τ1 � σ1 and σ2 � τ2, therefore σ � τ.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1139

3.3. Closure conversion

Here is a more involved example from Jeannin and Kozen (2012). Consider the λ-calculus

with variables Var and atomic constants Const. For a λ-term e, let FV(e) denote the set

of its free variables. Let λ-Abs denote the set of λ-abstractions λx.e.

Closures are the traditional representation of functions in functional languages with

static scoping. A closure consists of a λ-abstraction paired with a copy of the environment

in effect at the site of the function’s definition. The environment is used to interpret the

free variables in the body of the λ-abstraction. Closures can be defined coinductively with

the recursive type definition

Val = Const + Cl, values

Cl = λ-Abs × ClEnv, closures

ClEnv = Var ⇀ Val. closure environments

Milner and Tofte (1991). Thus a closure is a pair {λx.e, Σ}, where λx.e is a λ-abstraction

and Σ is a closure environment. A closure {λx.e, Σ} must satisfy the additional require-

ments that FV(λx.e) ⊆ dom Σ and dom Σ is finite.

Capsules (Jeannin and Kozen 2012) are a simplified representation of the global state

of a computation that achieve static scoping in a more direct way than with closures. A

capsule is a pair 〈e, σ〉, where e is a λ-term and σ : Var ⇀ Const + λ-Abs is a partial

function with finite domain dom σ, such that

i. FV(e) ⊆ dom σ,

ii. if x ∈ dom σ, then FV(σ(x)) ⊆ dom σ.

The component σ is called a capsule environment. The set of capsule environments is

denoted CapEnv. Note that capsule environments σ : CapEnv and closure environments

Σ : ClEnv are very different things.

A capsule gives a coalgebraic representation of the global state of a computation.

Capsules are essentially elements of a final coalgebra, and in Jeannin and Kozen (2012)

informal coinductive reasoning was used extensively.

One result from Jeannin and Kozen (2012) is that capsule semantics and closure

semantics are equivalent. Each capsule 〈e, σ〉 can be coinductively mapped to a closure

〈e, σ̄〉 by

σ̄(y) =

{
{σ(y), σ̄}, if σ(y) : λ-Abs,

σ(y), if σ(y) : Const.

This definition may appear circular at first glance, since σ̄ seems to be defined in terms of

itself. But it actually defines σ̄ uniquely for the same reason that + was defined uniquely

in Section 3.1. In pseudo-ML, the definition might look like

let rec σ̄ = λy.match σ(y), with

| Const(c) → Const(c),

| λ-Abs(λx.e) → Cl({λx.e, σ̄}).
To state the relationship between capsules and closures, we define a binary relation

� on capsule environments, closure environments, and values. For capsule environments,

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1140

define σ � τ if dom σ ⊆ dom τ and for all y ∈ dom σ, σ(y) = τ(y). The definition for

values and closure environments is by mutual coinduction: � is defined to be the largest

relation such that

A. on closure environments, if Σ � Γ then

i. dom Σ ⊆ dom Γ, and

ii. for all y ∈ dom Σ, Σ(y) � Γ(y); and

B. on values, if u � v then either

i. u and v are constants and u = v; or

ii. u = {λx.e, Σ}, v = {λx.e, Γ}, and Σ � Γ.

Formally, � for closures consists of two relations defined by mutual coinduction, one

on closure environments and one on values. More precisely, the relation � is defined to be

the largest relation R on (ClEnv × ClEnv)+ (Val × Val) such that R ⊆ T (R) (symbolically,

� = νX.T (X)), where T is the monotone map

T : (ClEnv × ClEnv) + (Val × Val) → (ClEnv × ClEnv) + (Val × Val),

defined as follows:

A. for closure environments, (Σ,Γ) ∈ T (R) iff

i. dom Σ ⊆ dom Γ, and

ii. for all y ∈ dom Σ, (Σ(y),Γ(y)) ∈ R; and

B. for values, (u, v) ∈ T (R) iff either

i. u and v are constants and u = v; or

ii. u = {λx.e, Σ}, v = {λx.e, Γ}, and (Σ,Γ) ∈ R.

Theorem 4. The relation � is transitive.

Proof. Suppose Σ � Δ � Γ. By A(i), dom Σ ⊆ dom Δ ⊆ dom Γ, so dom Σ ⊆ dom Γ, and

A(i) holds for the pair Σ,Γ. Moreover, for all y ∈ dom Σ, by A(ii), Σ(y) � Δ(y) � Γ(y),

therefore Σ(y) � Γ(y) by the coinduction hypothesis on values. Thus A(ii) holds, and

Σ � Γ.

For values, suppose u � w � v. If u is a constant c, then w = c and v = c, hence B(i)

holds for the pair u, v. If u = {λx.e, Σ}, then by B(ii), w = {λx.e, Δ}, v = {λx.e, Γ}, and

Σ � Δ � Γ. By the coinduction hypothesis on closure environments, Σ � Γ, thus u � v.

Theorem 5. Closure conversion is monotone with respect to �. That is, if σ � τ, then

σ̄ � τ̄.

Proof. Let σ and τ be capsule environments and suppose that σ � τ. Then dom σ ⊆
dom τ and σ(y) = τ(y) for all y ∈ dom σ. Note that dom σ̄ = dom σ ⊆ dom τ = dom τ̄,

which gives A(i) for σ̄ and τ̄ immediately.

For any y ∈ dom σ̄, if σ(y) is a constant c, then τ(y) = c because σ � τ, and

σ̄(y) = σ(y) = τ(y) = τ̄(y), thus A(ii) holds of σ̄ and τ̄. If σ(y) is a λ-abstraction, then so

is τ(y) and they are equal, thus σ̄(y) = {σ(y), σ̄} � {τ(y), τ̄} = τ̄(y), using the coinduction

hypothesis B(ii). In both cases, A(ii) holds of σ̄ and τ̄.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1141

3.4. Bisimilarity

For set-based coalgebras, one form of the classical coinduction principle states that if two

elements are bisimilar, then their unique images in the final coalgebra are the same. In

particular, bisimilar elements of a final coalgebra are equal. Traditional proofs involving

this principle can be handled in a way similar to the applications of the previous section.

For example, in the case of A-streams, R is a bisimulation if for any σ, τ,

(σ, τ) ∈ R ⇒ hd(σ) = hd(τ) and (tl(σ), tl(τ)) ∈ R.

The relation of bisimilarity ∼ is the maximal bisimulation. This is the greatest

postfixpoint of the monotone operator

T (R) = {(σ, τ) | hd(σ) = hd(τ) and (tl(σ), tl(τ)) ∈ R},

or in other words, the greatest relation ∼ such that ∼ ⊆ T (∼). The greatest post-fixpoint

is also the greatest fixpoint, therefore ∼ = T (∼).

We can now prove coinductively that ∼ is an equivalence relation. Let us illustrate by

proving that ∼ on streams is symmetric.

Theorem 6. ∼ on A-streams is symmetric relation. That is, σ ∼ τ implies τ ∼ σ.

Proof. Assume σ ∼ τ. Then hd(σ) = hd(τ) and tl(σ) ∼ tl(τ). By the symmetry of equality

on A, hd(τ) = hd(σ). By the coinduction hypothesis on the tails, tl(τ) ∼ tl(σ). As ∼ is

maximal, τ ∼ σ.

We can also use the principle to reason about properties of stream operations. For

example, consider the two inverse stream operations

split(σ0σ1σ2 · · ·) = (σ0σ2 . . . , σ1σ3 · · ·),
merge(σ0σ1 · · · , τ0τ1 · · ·) = σ0τ0σ1τ1 · · · ,

characterized coinductively by the equations

merge(a :: σ, τ) = a :: merge(τ, σ),

split(a :: σ) = let (ρ, τ) = split(σ) in (a :: τ, ρ),

or, expressed completely in terms of destructors,

hd(merge(σ, τ)) = hd(σ) hd(split(σ)1) = hd(σ),

tl(merge(σ, τ)) = merge(τ, tl(σ)) tl(split(σ)1) = split(tl(σ))2, (3.5)

split(σ)2 = split(tl(σ))1.

Let us argue that merge is a left inverse of split.

Theorem 7. For all streams σ, merge(split(σ)) = σ.

Proof. We will prove merge(split(σ)) ∼ σ by coinduction; since equality and bisimilarity

coincide on the final coalgebra, we will have merge(split(σ)) = σ. We argue in terms of

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1142

the characterization in Equation (3.5).

hd(merge(split(σ))) = hd(merge(split(σ)1, split(σ)2)),

= hd(split(σ)1),

= hd(σ),

tl(merge(split(σ))) = tl(merge(split(σ)1, split(σ)2)),

= merge(split(σ)2, tl(split(σ)1)),

= merge(split(tl(σ))1, split(tl(σ))2),

= merge(split(tl(σ))),

∼ tl(σ),

the last step by the coinduction hypothesis. As ∼ is maximal, we can conclude that

merge(split(σ)) ∼ σ.

Why did we not argue in the last step that merge(split(tl(σ))) = tl(σ) by the coinduction

hypothesis, then conclude that merge(split(σ)) = σ because the heads and tails were equal?

We might have done so, but we wanted to emphasize that it is bisimilarity ∼, not equality

=, that is the maximal fixpoint of the relevant monotone map

T (X) = {(σ, τ) | hd(σ) = hd(τ) and (tl(σ), tl(τ)) ∈ X}.

We may not use the technique with just any property, only with those defined as maximal

fixpoints.

We could conclude equality because streams are the final coalgebra, for which bisimil-

arity and equality coincide. But except for this step, the argument works for any coalgebra

for this signature. Consider coalgebras (X, obs, cont) with observations obs : X → A and

continuations cont : X → X. The equations (3.5) can be interpreted as implicit coinductive

descriptions of maps merge : C × C → C and split : C → C × C:

obs(merge(x, y)) = obs(x) obs(split1(x)) = obs(x),

cont(merge(x, y)) = merge(y, cont(x)) cont(split1(x)) = split2(cont(x)),

split2(x) = split1(cont(x)).

Note that these equations do not define merge and split uniquely, because they do not

specify what merge(x, y) and split(x) actually are, but only describe their observable

behavior. Nevertheless, whatever they are, they are inverses up to bisimulation:

Theorem 8. For all x, merge(split(x)) ∼ x.

The proof is the same as that of Theorem 7, mutatis mutandis.

4. A coinductive proof principle

The proofs of Section 3, magical as they may seem, involve no magic – only a little sleight

of hand! The rule we are using in these examples is a special form of a more general

coinduction principle that is best explained in the language of dynamic logic (DL) and

the modal μ-calculus; see Harel et al. (2000). Our examples typically involve

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1143

— coalgebras K1, K2 viewed as Kripke models with binary relations a and b, respectively,

encoding coalgebraic destructors, and

— a kind of simulation relation π : K1 × K2 between them, often a function π : K1 → K2.

The relations a and b induce modalities [a], 〈a〉 on K1 and [b], 〈b〉 on K2. To have a

common domain to work in, we form the coproduct K = K1 + K2 whose elements are

the disjoint union of K1 and K2 with relations a and b inherited from K1 and K2.

We are typically trying to establish that a property of the form Q → [π]R holds

universally in K , where Q is a precondition defined on K1 and R is a property on K2

defined as a greatest fixpoint of the form R = νX.G ∧ [b]X. The set R is the greatest set

of states satisfying G and closed under the action of b; in the language of DL, [b∗]G.† The

property Q → [π]R says that any state in K1 satisfying Q must map under π to a state

or states in K2 satisfying R. The property G in the definition of R is typically a condition

that can be checked locally on states of K2, whereas the part of the definition involving

[b] encodes a recursive check of R on successor states. The binary relation a on K1 does

not appear here, but will appear in the coinductive proof rule to be presented in the next

section.

For example, in the application of Section 3.1 involving the transitivity of �lex on

A-streams, the statement we are trying to prove is

For all A-streams σ, ρ, τ, if σ �lex ρ �lex τ, then σ �lex τ.

Here K1 = Aω × Aω × Aω and K2 = Aω × Aω , along with relations

(σ, ρ, τ)
a−→ (tl(σ), tl(ρ), tl(τ)), if hd(σ) = hd(ρ) = hd(τ),

(σ, τ)
b−→ (tl(σ), tl(τ)), if hd(σ) = hd(τ),

(σ, ρ, τ)
π−→ (σ, τ).

In this case the relation π is a function π : K1 → K2, the projection of a triple onto its

first and third components.

The property Q is true of a triple (σ, ρ, τ) if σ �lex ρ �lex τ, and the property R is true

of a pair (σ, τ) if σ �lex τ. Transitivity states that Q → [π]R is universally valid in K . The

definition of R is R = νX.G ∧ [b]X = [b∗]G, where

G = {(σ, τ) | hd(σ) � hd(τ)}.

Above, we could alternatively have used the isomorphism Aω ×· · ·×Aω ∼= (A×· · ·×A)ω

in the definition of K1, K2, slightly simplifying the definition of the transition relations‡.

† Note that there is no explicit representation of infinite computations in the standard binary relation semantics

of the modal μ-calculus or DL. One might imagine that νX.G∧ [b]X must involve infinite sequences of b, thus

cannot be equal to [b∗]G, which is the meet of its finite approximants [bn]G; but such infinite computations

do not produce a result, thus have no bearing on νX.G ∧ [b]X.
‡ This was suggested to us by Horst Reichel.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1144

4.1. A Proof Rule

It may seem that the informal rule we are using is

Q → [π]G [a](Q → [π]R) → (Q → [π]R)

Q → [π]R
. (4.6)

However, this rule is unsound in general (this is the sleight of hand mentioned above).

Here is a counterexample, in which a = b, Q = G and π is the identity:

G Ḡ

a

a

For this example, the rule (4.6) reduces to

G → G [a](G → [a∗]G) → (G → [a∗]G)

G → [a∗]G
.

The left-hand premise is trivially true in both states. The right-hand premise is also true in

both states. It is true in the right-hand state, because G is false, therefore G → [a∗]G is true;

and it is true in the left-hand state, because G → [a∗]G is false, therefore [a](G → [a∗]G)

is false. But the conclusion G → [a∗]G is false in the left-hand state.

However, a careful look at the proofs of Section 3 reveals that we did not use any

properties of R except G ∧ [b]R → R at the very last moment. Up to that point, the

induction step actually established that

[a](Q → [π]X) → (Q → [πb]X) (4.7)

without any knowledge of X. Thus we are actually using the rule

Q → [π]G [a](Q → [π]X) → (Q → [πb]X)

Q → [π]R
, (4.8)

where X is a fresh atomic symbol. We prove below (Theorem 9) that this rule is sound.

Rules similar to this appear in different forms in the literature (Brandt and Henglein

1998; Jaffar et al. 2008; Roşu and Lucanu 2009). In most cases, the rules are Gentzen-style

with structural restrictions such as progress (aka guardedness or contraction (Brandt and

Henglein 1998)) and opacity (aka frozenness Roşu and Lucanu (2009)). In our treatment,

progress takes the form of the modalities [a], [b] and opacity is captured in the use of

the atomic symbol X.

We have mentioned that we engaged in a little sleight-of-hand. This has to do with

the use of R instead of X in the last step, which makes it seem as if we are using the

unsound rule (4.6). To be completely honest, in the proof of Theorem 1 we should replace

the sentence,

By the coinduction hypothesis, tl(σ) �lex tl(τ).

with

By the coinduction hypothesis, (tl(σ), tl(τ)) ∈ X, thus (σ, τ) ∈ [b]X and (σ, ρ, τ) ∈ [πb]X.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1145

4.2. Soundness

Theorem 9. The rule (4.8) is sound.

We give two proofs of this theorem.

Proof 1. For any P , if K � Q → [π]P , then K � [a](Q → [π]P) by modal generalization.

Substituting P for X in the second premise of (4.8), we have K � Q → [πb]P . Thus for

any P ,

K � Q → [π]P ⇒ K � Q → [πb]P .

Applying this construction inductively, we have that for all P and all n � 0,

K � Q → [π]P ⇒ K � Q → [πbn]P ,

therefore

K � Q → [π]P ⇒ K � Q → [πb∗]P .

In particular, for P = G, using the first premise of (4.8) and the definition R = [b∗]G, we

conclude that K � Q → [π]R. �
Proof 2. From DL, we have the Galois connection

� X → [c]Y ⇔ � 〈c−〉X → Y , (4.9)

where c− = {(s, t) | (t, s) ∈ c}. Specializing the second premise of Equation (4.8) at

X = 〈π−〉Q, we have

K � [a](Q → [π]〈π−〉Q) → (Q → [πb]〈π−〉Q).

But the left-hand side is a tautology of DL, therefore by modus ponens this reduces to

K � Q → [πb]〈π−〉Q. Again by (4.9), we have

K � 〈π−〉Q → [b]〈π−〉Q.

Similarly, applying (4.9) to the first premise of (4.8), we have K � 〈π−〉Q → G. Combining

these two facts,

K � 〈π−〉Q → G ∧ [b]〈π−〉Q,

therefore K � 〈π−〉Q → R, since R = νX.G ∧ [b]X. Applying (4.9) one more time, we

obtain K � Q → [π]R, the conclusion of (4.8). �
4.3. A More General Version

The rule (4.8) only applies to monotone transformations of the form T (X) = G ∧ [b]X,

for which R = νX.T (X) = [b∗]G. This is all we need for the examples in this paper.

However, one can generalize the rule to arbitrary monotone T at the expense of some

added complication in the proof system. The rule is

Γ, Q → [π]X � Q → [π]T (X)

Γ � Q → [π]R
, (4.10)

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1146

for X a fresh atomic symbol not occurring in Γ, Q or π, where R = νX.T (X). In other

words, if it is possible to prove Q → [π]T (X) from the assumptions Γ and Q → [π]X,

where X is an atomic symbol not occurring elsewhere, then it is safe to conclude Q → [π]R.

Soundness would say that for any Kripke model K satisfying Γ, if K � Q → [π]T (X)

whenever K � Q → [π]X, then K � Q → [π]R. This rule now looks more like the rules of

Brandt and Henglein (1998); Jaffar et al. (2008); Roşu and Lucanu (2009).

Theorem 10. The rule (4.10) is sound.

Proof. By induction on the lengths of proofs. Suppose it is possible to prove Q →
[π]T (X) from the assumptions Γ and Q → [π]X, where X is an atomic symbol not

occurring in Γ, Q or π. By the induction hypothesis, that proof is sound. Thus, in any

Kripke model K satisfying Γ, for any interpretation of X,

K � Q → [π]X ⇒ K � Q → [π]T (X).

In particular, for X = 〈π−〉Q, we have

K � Q → [π]〈π−〉Q ⇒ K � Q → [π]T (〈π−〉Q).

The left-hand side is a tautology of DL, so we are left with the right-hand side, which

reduces by (4.9) to K � 〈π−〉Q → T (〈π−〉Q). As R = νX.T (X) is the greatest postfixpoint

of T , we have K � 〈π−〉Q → R. The conclusion K � Q → [π]R follows from this and

(4.9).

4.4. Examples

We now describe how the other examples of Section 3 fit into this framework.

4.4.1. Recursive Types In the example of Section 3.2, the statement we are trying to

prove is

For all types σ, ρ, τ, if σ � ρ � τ, then σ � τ.

Here K1 = C × C × C and K2 = C × C , where C is the set of recursive types, along with

relations

(σ1 → σ2, ρ1 → ρ2, τ1 → τ2)

(τ1, ρ1, σ1) (σ2, ρ2, τ2)

a a

(σ1 → σ2, τ1 → τ2)

(τ1, σ1) (σ2, τ2)

b b

(σ, ρ, τ)
π−→ (σ, τ).

The relation π is a function π : K1 → K2, the projection of a triple onto its first and third

components. Note the contravariance of the left-hand a- and b-successors.

The property Q is true of a triple (σ, ρ, τ) if σ � ρ � τ, and the property R is true

of a pair (σ, τ) if σ � τ. Transitivity states that Q → [π]R. The definition of R is

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1147

R = νX.G ∧ [b]X = [b∗]G, where

G = {(σ, τ) | [b]false → (σ = ⊥ ∨ τ =
)},

that is, G holds of a pair (σ, τ) with no b-successors in K2 if either σ = ⊥ or τ =
, thus

σ � τ by local considerations.

Note that there can be an infinite b-path of pairs (σ, τ) such that σ
� τ. For example,

if σ = ⊥ → σ and τ =
 → τ, then σ
� τ and (σ, τ)
b−→ (σ, τ).

The property 〈π−〉Q in the second proof of Theorem 9 is true of the pair (σ, τ) iff

∃ρ σ � ρ � τ. The main part of the argument of Theorem 3 essentially shows that

〈π−〉Q → [b]〈π−〉Q and that 〈π−〉Q → G, thereby establishing that 〈π−〉Q is a postfixpoint

of T (X) = G ∧ [b]X.

4.4.2. Closure Conversion In the example of Section 3.3 involving the monotonicity of

closure conversion, recall that the closure-converted form of a capsule 〈e, σ〉 is 〈e, σ̄〉,
where σ̄ is defined as

σ̄(y) =

{
{σ(y), σ̄}, if σ(y) : λ-Abs,

σ(y), if σ(y) : Const.

Here we can take

K1 = CapEnv × CapEnv K2 = ClEnv × ClEnv,

where CapEnv and ClEnv are the sets of capsule environments and closure environments,

respectively, and

Q = {(σ, τ) | σ � τ} R = {(Σ, Γ) | Σ � Γ}.

The relation � on capsule environments can be defined without coinduction: σ � τ if

dom σ ⊆ dom τ and for all y ∈ dom σ, σ(y) = τ(y). The definition for closure environments

is by coinduction. In Section 3.3, it was defined by mutual coinduction on closure

environments and values, but we can consolidate this into a definition just on closure

environments: � is the largest binary relation on closure environments such that if Σ � Γ,

then dom Σ ⊆ dom Γ and for all y ∈ dom Σ, either

— Σ(y) and Γ(y) are constants and Σ(y) = Γ(y); or

— Σ(y) = {λx.e, Δ}, Γ(y) = {λx.e, Π}, and Δ � Π.

The relation R is defined as the greatest fixpoint νX.G∧ [b]X = [b∗]G, where G is true of

a pair (Σ, Γ) if dom Σ ⊆ dom Γ and for all for all y ∈ dom Σ, either

— Σ(y) and Γ(y) are constants and Σ(y) = Γ(y); or

— Σ(y) = {λx.e, Δ} and Γ(y) = {λx.e, Π} for some λx.e, Δ, and Π,

and the relation b on K2 is

(Σ, Γ)
b−→ (Δ, Π)

whenever Σ(y) = {d, Δ} and Γ(y) = {e, Π} for some d, e, and y. The relation a on K1 is

simply (σ, τ)
a−→ (σ, τ).

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1148

The monotonicity theorem says

∀σ ∀τ σ � τ → σ̄ � τ̄,

which is just Q → [π]R, where π is the closure conversion function σ �→ σ̄.

4.4.3. Bisimilarity In Section 3.4, we proved that bisimilarity is symmetric on streams

and that merge is a left inverse of split.

In the first example, the statement we are trying to prove is

For all A-streams σ, τ, if σ ∼ τ, then τ ∼ σ.

Here we take K1 = K2 = Aω × Aω with relations

(σ, τ)
a, b

−→ (tl(σ), tl(τ)) (σ, τ)
π−→ (τ, σ).

The properties Q and R are both ∼. The theorem states that Q → [π]R. The definition of

R is R = νX.G ∧ [b]X = [b∗]G, where

G = {(σ, τ) | hd(σ) = hd(τ)}.

In the second example, the statement we are trying to prove is

For all A-streams σ, merge(split(σ)) = σ.

Here we take K1 = Aω and K2 = Aω × Aω with relations

σ
a−→ tl(σ) (σ, τ)

b−→ (tl(σ), tl(τ)) σ
π−→ (merge(split(σ)), σ).

The property R is still ∼ as above, but here Q = true. In this case, the theorem Q → [π]R

reduces to [π]R. It is interesting to note that the property 〈π−〉Q in the second proof of

Theorem 9 here reduces to 〈π−〉true and holds of a pair (σ, τ) iff σ = merge(split(τ)).

4.5. Discussion

There are two sufficient conditions for the premise (4.7) of our proof rule that hold in

many applications. These conditions can be expressed in the language of Kleene algebra

with tests (KAT) Kozen (1997). They are

Qπb � Qaπ Qa � aQ. (4.11)

The condition on the left says that the relation π is a kind of simulation: under the

enabling condition Q, the action a on the left-hand side of π simulates the action b on

the right-hand side. It serves the same purpose as the DL formula Q → [aπ]X → [πb]X

for atomic X, but is slightly stronger.

Lemma 1. In any Kripke model K , if Qπb � Qaπ, then for any X, the DL formula

Q → [aπ]X → [πb]X holds universally in K .

Proof. Suppose Qπb � Qaπ in K . Then for any X, QπbX̄ � aπX̄, where the overbar

denotes Boolean negation. This implies the DL formula Q ∧ 〈πb〉X̄ → 〈aπ〉X̄, which is

equivalent to Q → [aπ]X → [πb]X.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1149

The condition on the right of (4.11) says that the enabling condition Q is preserved by

a on the left-hand side. It is equivalent to the KAT equations Qa = QaQ and QaQ̄ = 0, to

the DL formula Q → [a]Q, and to the Hoare partial correctness assertion {Q} a {Q}.

Theorem 11. If Qπb � Qaπ, then the formula

(Q → [π]G) → (Q → [a]Q) → [a](Q → [π]R) → (Q → [π]R)

is universally valid.

Proof. We show that any state satisfying Q → [π]G, Q → [a]Q, [a](Q → [π]R), and Q

also satisfies [π]R. From Q and Q → [a]Q we have [a]Q. From [a]Q and [a](Q → [π]R)

we have [a](Q ∧ (Q → [π]R)), whence [aπ]R. From Q and [aπ]R, by Lemma 1 we have

[πb]R. From Q and Q → [π]G we have [π]G. From [πb]R and [π]G we have [π](G∧[b]R),

and since G ∧ [b]R = R we have [π]R.

It follows from Theorem 11 that if Qπb � Qaπ, then the proof rule

Q → [π]G Q → [a]Q [a](Q → [π]R)

Q → [π]R

is sound, and this rule is similar to our unsound rule (4.6). However, in this case a stronger

result holds.

Lemma 2. The following is a theorem of KAT:

Qπb � Qaπ ∧ Qa � aQ → Qπb∗ � Qa∗π.

Proof. From Qa � aQ we have

Q + a∗Qa � Q + a∗aQ = a∗Q,

therefore by a star rule of Kleene algebra,

Qa∗ � a∗Q.

Using this and the first premise, we have

Qπ + Qa∗πb = Qπ + QQa∗πb � Qπ + Qa∗Qπb � Qπ + Qa∗aπ = Qa∗π.

Again by a star rule, Qπb∗ � Qa∗π.

Theorem 12. Suppose Qπb � Qaπ. The following rule is sound:

Q → [π]G Q → [a]Q

Q → [π]R
. (4.12)

Proof. From the two premises, we have Q → [π]G ∧ [a]Q, therefore

Q → νX.[π]G ∧ [a]X,

and νX.[π]G ∧ [a]X = [a∗π]G, therefore

Q → [a∗π]G.

By Lemmas 1 and 2, Q → [πb∗]G, that is, Q → [π]R.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1150

In most of our examples, the condition Qπb � Qaπ and the premises of the rule (4.12)

are satisfied. For example, for recursive types, the first premise says that if σ � ρ � τ, and

if (σ, τ) has no b-successors, then either σ = ⊥ or τ =
. The second premise says that if

σ1 → σ2 � ρ1 → ρ2 � τ1 → τ2,

then τ1 � ρ1 � σ1 and σ2 � ρ2 � τ2. The condition Qπb � Qaπ says that if

σ1 → σ2 � ρ � τ1 → τ2,

then ρ is of the form ρ1 → ρ2.

5. Conclusion

We have described a new style of informal coinductive reasoning and illustrated its use in

mathematical arguments with several examples. The technique is like induction without

a basis. We have shown that the approach is soundly based on classical coinductive

principles.

An interesting research direction is to investigate whether a similar proof principle

holds for properties and relations defined as least fixpoints. If this is indeed the case, can

we also devise a mixed principle for induction and coinduction?

In the realm of metric coinduction, a similar proof principle has been proposed in

Kozen and Ruozzi (2009). Studying connections and possible generalizations of both proof

principles will possibly involve a change in category or a more categorical formulation.

We would also like to explore whether we can incorporate other known proof techniques

such as bisimulation up-to, as in Pous and Sangiorgi (2011). We leave these investigations

for future work.

Acknowledgments

We thank Samson Abramsky, Mark Bickford, Marcello Bonsangue, Robert Constable,

Helle Hvid Hansen, Bart Jacobs, Jean-Baptiste Jeannin, Horst Reichel, Jan Rutten, Ana

Sokolova, and Hans Zantema for stimulating discussions. We thank the anonymous

referees for their valuable suggestions for improvement of the presentation and for

pointing out overlooked references.

Financial Support

The second author was partially supported by the Dutch Research Foundation (NWO),

project numbers 639.021.334 and 612.001.113. The first author was supported by the

National Security Agency.

Conflict of Interest

None.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

Practical coinduction 1151

References

Aczel, P. (1988). Non-Well-Founded Sets, Number 14 in CSLI Lecture Notes, Center for the Study

of Language and Information, Stanford, CA.

Amadio, R. M. and Cardelli, L. (1993). Subtyping recursive types. ACM Transactions on

Programming Languages and Systems (TOPLAS) 15 (4), 575–631.

Barwise, J. and Moss, L. (1996). Vicious Circles: On the Mathematics of Non-Wellfounded Phenomena,

Number 60 in CSLI Lecture Notes, Center for the Study of Language and Information, Stanford,

CA.

Brandt, M. and Henglein, F. (1998). Coinductive axiomatization of recursive type equality and

subtyping. Fundamenta Informaticae 33 (4) 309–338.

Harel, D., Kozen, D. and Tiuryn, J. (2000). Dynamic Logic. MIT Press, Cambridge, MA.

Hermida, C. and Jacobs, B. (1998). Structural induction and coinduction in a fibrational setting.

Information and Computation 145 (2) 107–152.

Ichiro, H., Jacobs, B. and Sokolova, A. (2007). Generic trace semantics via coinduction. Logical

Methods in Computer Science 3 (4:11) 1–36.

Jaffar, J., Santosa, A. and Voicu, R. (September 2008). A coinduction rule for entailment of

recursively-defined properties. In: Stuckey, P.J. (ed.) Proceedings of the 14th International

Conference on Principles and Practice of Constraint Programming. Lecture Notes in Computer

Science 5202, Springer, Berlin, 493–508.

Jeannin, J.-B. and Kozen, D. (2012). Computing with capsules. J. Automata, Languages and

Combinatorics 17 (2–4) 185–204.

Klin, B. (2007). Bialgebraic operational semantics and modal logic. In: LICS, IEEE Computer

Society 336–345.

Kozen, D. (May 1997). Kleene algebra with tests. Transactions on Programming Languages and

Systems 19 (3) 427–443.

Kozen, D., Palsberg, J. and Schwartzbach, M.I. (1995). Efficient recursive subtyping. Mathematical

Structures in Computer Science 5 (1) 113–125.

Kozen, D. and Ruozzi, N. (2009). Applications of metric coinduction. Logical Methods in Computer

Science 5 (3:10) 1–19.

Kurz, A. (2001). Specifying coalgebras with modal logic. Theoretical Computer Science 260 (1-2)119–

138.

Lambek, J. (1968). A fixpoint theorem for complete categories. Mathematische Zeitschrift 103

151–161.

Mendler, N.P. (1988). Inductive Definition in Type Theory. PhD thesis, Cornell University.

Milner, R. and Tofte, M. (1991). Co-induction in relational semantics. Theoretical Computer Science

87 (1) 209–220.

Niqui, M. and Rutten, J. (2009). Coinductive predicates as final coalgebras. In: Proceedings of the

6th Workshop on Fixed Points in Computer Science (FICS 2009) 79–85.

Paulson, L.C. (1997). Mechanizing coinduction and corecursion in higher-order logic. Journal of

Logic and Computation 7 (2) 175–204.

Pous, D. and Sangiorgi, D. (2011). Enhancements of the coinductive proof method. In: Advanced

Topics in Bisimulation and Coinduction, Cambridge University Press.

Roşu, G. and Lucanu, D. (September 2009). Circular coinduction: A proof theoretical foundation. In:

Proceedings of the 3rd Conference on Algebra and Coalgebra in Computer Science (CALCO’09).

Lecture Notes in Computer Science 5728, Springer, Berlin, 127–144.

Rutten, J.J.M.M. (2000). Universal coalgebra: A theory of systems. Theoretical Computer Science

249 (1) 3–80.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

D. Kozen and A. Silva 1152

Schröder, L. (2005). Expressivity of coalgebraic modal logic: The limits and beyond. In: Sassone,

V. (ed.) FoSSaCS. Springer Lecture Notes in Computer Science 3441 440–454.

Schröder, L. (2008). Expressivity of coalgebraic modal logic: The limits and beyond. Theoretical

Computer Science 390 (2-3) 230–247.

Schröder, L. and Pattinson, D. (2007). Rank-1 modal logics are coalgebraic. In: Thomas, W. and

Weil, P. (eds.) STACS. Springer Lecture Notes in Computer Science 4393 573–585.

Turi, D. and Plotkin, G.D. (1997). Towards a mathematical operational semantics. In: LICS 280–

291.

https://doi.org/10.1017/S0960129515000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000493

