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1. Introduction. Let A be the matrix aigebra of type
n Xn over a finite algebraic number field F, and V the
module of matrices of type nXm over F. V is naturally
an A-left module. Given a non-singular symmetric matrix S
of type m Xm over F, we have a bilinear mapping { of V
on A such that f(x,y) =xSy' for elements x and y in V
where y' is the transpose of y. In this case, corresponding
to the arithmetic of A([1]), the arithmetical theory of V will
be discussed to some extent as we establish the arithmetic of
quadratic forms over algebraic number fields ([2]). In this
note, we shall define a lattice in V with respect to a maximal
order in A and determine its structure (Theorem 1), and
after giving a structure of a complement of a lattice (Theorem 2),
we shall give a finiteness theorem of class numbers of lattices
under some assumption (Theorem 3).

2. Definition and structure of a lattice. The matrix
in A whose entries are all zero except the 1-1

unit €
11
entry 1 is used very effectively and will be denoted simply by «.
Consider €V and egAe =Fe . The latter is isomorphic to F
and the former may be considered as a vector space over the
latter;namely ¢V may be considered as a quadratic space over
an algebraic number field Fe in the sense of [2]. The structure
of V as an A-module is easily derived from that of ¢V since
V=AeV. However, arithmetical properties of V are not

so simply obtained from those of ¢V, since the arithmetic of

V depends on maximal orders in A. Let us take and fix a
maximal order (¥ in A throughout this note.
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Definition. A system of elements xi, ...,%x in V is
_— m

said to be a basis of V (over A) if V =Ax1 + ...+ Axm is a
direct sum of A-submodules Ax  and if each Axi is a minimal
i

A-left module.
When ex =x for an element x in V, we say x is
e-invariant. If all x, of a basis of V are e-invariant, we say
i
the basis is an e-invariant basis,
Definition. A subset L of V is said to be an (F-lattice

if 1) L is an a-left module, 2) L contains a basis of V,
and 3) for a basis Xpoooon X s there exists an element ¢ in

F such that gpL.":-@‘x1 + ... +Oxm.

Obviously the property 3) does not depend on a choice of
a basis. Also, we see that for any basis Xypooa X s there
m

exists an element p in F such that pxi, ...,px 1is a basis
of V contained in the lattice L. This shows that any
@-Iattice contains an e-invariant basis.
THEOREM 1. Given an (*-lattice L, there exists an
e-invariant basis e ,...,e suchthat L=, e +... + e
1 m 11 m

with some (J)-left ideals . in A which satisfy deCck
i i i

m

for i=1,...,m.

Proof. Let xi, L, X be an e-invariant basis of V
—_— m

which is contained in L. Put U = sz + ... 4+ Axm. Let

A.1={TGA.]Txi€L+U}. Then L zA x mod U. Put

di =Ais + §522 + ...+ aenn where sﬁ are matrices whose
entries are all zero except the i-i entries 1. We shall show
that Qi is an J-left ideal in A. qi is clearly an (F-left
module, and it contains Co, since Aib A and
Q13 6—’:+0~522+... +aenn. Take ¢ in F such that

LC +...+0 . The X = =AxC§x=
oL C Ux, *m n el %, =ed X, = eh X, 1
05 Xi' Therefore <paiic (e, since xi is e-invariant and
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Ax1 is isomorphic to Ae as a minimal left A-module. Take
8 in F suchthat8ce (% and B8ge ¢ & for i=2,...,n).
11
Then eq,gicaes + 08ge__+... +A0ge C O and Cz1
on

22
is an (J-left ideal as asserted. Obviously di e C Qi’
-1
and L= dixi mod U. Now consider di in the sense of
ideal theory in A([1]). We can take ORRRRTE in Qi and
r
-1
Byro- B in di such that Biai ...+ arar =1, because
-1
4 " ﬂi is 2 maximal order which naturally contains 1. If

we put ¢.x, = +u, with £ in L and u, in U, then
i1 i i i i

z . Si =x , = ,
+ Biui ince sx1 Xi x1 Zsﬁi1,+Zss

La.
ii
ut = . It is e-1 iant, d = =
put e, sﬁiii is ¢ mvaman1 an Qiei Qi( Eﬁizi)
= [y p - = = L. i
6218( Biﬂi) 41( ﬁili)CQi 01 L=dL=L. Since

di"i :Q,%,zLmod U, L=ge +L N U (direct).

. Now

=Z
x1 ﬁiﬂ

IV
T

Now LN U is an Co-lattice in U, and we can complete the
proof of Theorem 1 by induction on the number of basis elements.

3. Complement of a lattice.

Definition. L*={te V|f(x,t)¢ G for all x in L}
is called a complement of L, where 3" is the transpose of

a.

53 ei, Y is an £ -invariant basis, we can find an
e

€ -invariant basis e ,... ,em such that f(e_, eq:) =g or O
1 m i
according as i=j or i# j by the well known argument in ¢V.
* *
We call e ,...,e a dual basis of e ,...,e
1 m i

m

THEOREM 2. If L= (e, +... +Q_e_ asin

h A Q* * Q* * ok * *

eorem 1, en = 1.ei + ... + *mem where ei,. .. ,em

is a dual basis of CEERETL A and . are (F-left ideals such
1

that (7.( QT)' = 00' in the groupoid of normal ideals of A,
i i

= %
where (CZ;)‘ are the transposes of C?i-
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£ % * %
Proof. We have f(L,d.e.)=f({.e., d.e)
i1 i1 i1
%

* .
= a.li (Qi) Cdi(dl) = (J3'. On the other hand, if

f(L, ae Q)Cﬁ[", then dis a'' < 30" and ea' ¢ 47100'
1

1

* * * * * %
=(Q.)". Therefore, acé€ a , and ce. =cce. €Q e,
i i i i ii
which proves Theorem 2.
COROLLARY. (L*)* = L.
4. Finiteness of class number of lattices. For an

(F-lattice L, we consider eL. It is an Ie-module contained
in €V, where I denotes the ring of all algebraic integers of
F. Clearly, e¢L contains a basis of ¢V over Fe, namely
an ¢ -invariant basis of V contained in L. If L = Qie1 + ...

fore, = ool + LW
+ amem as before, then eL =¢ Qiei € arnern e can
take an element ¢ in F such that wﬂic J[1], where A [I]

is the maximal order in A consisting of all matrices whose
entries are algebraic integers in F. Then g¢ed. e,
ii

=pe Qee Cel[l]ce, =le.. Therefore gt LCIe1+... + Ie
1 1 1 1

’
m

which shows that €L is a lattice in a quadratic space €V in
the usual sense [2].

Definition. We say L is integral if f(L,L)C 3Q".

This definition is equivalent to L C L*, where L¥* is
the complement of 1. Now we consider an 3-lattice e L.
It is not necessarily contained in L, but we can take an element

£ in F suchthat (Que L C L. When L is integral, fueL
is naturally integral.

Definition. The volume of €L in sense of [2; p.229] is
called the €-volume of L.

Lastly, a class of O-lattices is introduced in a natural
way. An A-automorphism T of an A-module V is called an
automorphism of V if it satisfies f(T(x), T(y)) =f(x,y). We
say that two Cy—lattices belong to the same class if and only if
they are mapped into each other by some automorphisms of V.
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If L and L' belong to the same class, then ¢ L. and e L!
belong to the same class in €V 1in sense of [2], and conversely.
For, an automorphism of V induces an automorphism of ¢V,
and an automorphism of €V can be extended to that of V for
V =AeV. In this case, ﬁ-s I, and ﬁs L' naturally belong to
the same class. Now we have the last theorem.

THEOREM 3. The number of classes of all integral
O} -lattices with the same € -volume is finite.

Proof. Let L be an integral (J-lattice with the given
¢ -volume. Then we can take p in F such that Opﬁ LCL
as above. Here the choice of p does not depend on L; namely
we could choose p such that pe € (}. Next, we take an element
v in I suchthat v@ C @[I]. Then CuveL CL, and
pwve L is integralin €V, since f(pvel, puveL)C It . Since
pve L. has a fixed volume and it is an integral lattice, it can
belong to only a finite number of classes in ¢V by [2; p. 309].
Therefore, wve L can belong to only a finite number of
classes in V. Let us denote these finite number of classes by

K1, .o ,Kt. Then for any automorphism T of V,

T(Puvel) =T (Ki) for some automorphism T' and some 1

(1<i<t). Then S(Opvel) -‘-Ki with S = T'-iT. Therefore

K.C S(L). On the other hand, S(L) C K. since
i i
S(L)C S(L)*xC Ki*. However, there are only a finite number
* &
of (J-lattices between Ki and Ki’ because K, and K, £ are
i i

finite I-modules. This completes the proof of Theorem 3.
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