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Camina Triples
Nabil M. Mlaiki

Abstract. In this paper, we study Camina triples. Camina triples are a generalization of Camina pairs,
first introduced in 1978 by A. R. Camina. Camina’s work was inspired by the study of Frobenius
groups. We show that if (G,N,M) is a Camina triple, then either G/N is a p-group, or M is abelian,
or M has a non-trivial nilpotent or Frobenius quotient.

1 Introduction

In this paper, we study Camina triples. Camina triples are a generalization of Camina
pairs, first introduced in 1978 by A. R. Camina in [1]. Camina’s work in [1] was
inspired by the study of Frobenius groups.

Throughout this paper, we say that (G,N) is a Camina pair when N is a normal
subgroup of a group G, and for all x ∈ G \N, x is conjugate to all of xN. Chillag and
Macdonald proved in [2] two equivalent conditions of a pair (G,N) to be a Camina
pair. They showed that if (G,N) is a Camina pair, then for every x ∈ G \ N we
have |CG(x)| = |CG/N (xN)|. Also, they proved that if (G,N) is a Camina pair, then
for all x ∈ G \ N and z ∈ N, there exists an element y ∈ G so that [x, y] = z.
In [9], MacDonald showed that if (G,N) is a Camina pair where G is a p-group, then
N is a term in both the lower and the upper central series. As was proved in [2], if
χ ∈ Irr(G) where N � ker(χ), then χ vanishes on G \N. Camina proved in [1] that
if (G,N) is a Camina pair, then either N is a p-group or G/N is a p-group for some
prime p, or G is Frobenius group with kernel N. In our first theorem, we prove some
facts about the subgroup M when (G,N,M) is a Camina triple. In this paper, we use
the same notations as in [4].

First, define Irr(G | M) = {χ ∈ Irr(G) | M � ker(χ)}.

Definition 1.1 Let 1 < M ≤ N be two nontrivial normal subgroups of a finite
group G. We say that (G,N,M) is a Camina Triple if for every g ∈ G \ N, g is a
conjugate to all of gM.

Notice that Camina pairs are special cases of Camina triples when M = N.

Theorem 1 If (G,N,M) is a Camina triple then the following are true.

(i) M is solvable.
(ii) M has a normal π-complement Q with M/Q is nilpotent, where π is the set of

primes that divide |G : N|.
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(iii) If x ∈ M, then there exists χ ∈ Irr(G | M) such that χ(x) 6= 0.
(iv) If x ∈ G \ N, then χ(x) = 0 for all χ ∈ Irr(G | M).

The following collorary is an immediate consequence of Theorem 1.

Corollary 1.2 If (G,N) is a Camina pair and x ∈ N, then there exist χ ∈ Irr(G | N)
such that χ(x) 6= 0.

Lewis showed in [8] that if V (G) < G, then for every x ∈ G \ V (G) we have
cl(x) = xG ′. Thus, if V (G) < G, then the triple

(
G,V (G),G ′

)
is a Camina triple.

So by Theorem 1, we deduce that G ′ is solvable. Therefore, G is solvable.
Our second theorem, which we consider the main result of this paper.

Theorem 2 If (G,N,M) is a Camina triple, then at least one of the following holds:

(i) G/N is a p-group.
(ii) M has a non-trivial nilpotent quotient.
(iii) M has a non-trivial Frobenius quotient with an Frobenius complement that is an

elementary abelain p-group.
(iv) M is abelian.

In closing, we prove some facts about Camina pairs using Camina triples results,
and given the fact that they are special cases of Camina triples. In [1], Camina defined
a different hypothesis that is equivalent to Camina pairs. Let G be a finite group with
a proper normal subgroup N 6= 1 and a set of irreducible non-trivial characters of G,
A = {χ1, . . . , χn}, where n is a natural number, such that

(1) χi vanishes on G \ N and
(2) there exist natural numbers α1, . . . , αn > 0 such that

∑n
i=1 αiχi is constant on

N \ {1}.
We are able to identify the characters in Camina hypothesis in [1]. First, let N be a
normal subgroup of G and θ ∈ Irr(N). The inertia group of θ in G denoted by T and
defined by {g ∈ G | θg = θ}.

Theorem 3 Let (G,N) be a Camina Pair then, A = Irr(G | N).

Our last theorem states some new conditions for a pair (G,N) to be a Camina
pair.

Theorem 4 Let G be a finite group and N C G, then the following are equivalent:

(i) (G,N) is a Camina pair.
(ii) V (G | N) = N.
(iii) There is no x in N such that χ(x) = 0 for all χ’s in Irr(G | N), and if x ∈ G \ N,

then χ(x) = 0 for all χ in Irr(G | N).

2 Camina Triples

In this section, we prove Theorems 1 and 2 along with some facts about Camina
triples. First, we prove some equivalent conditions for a triple (G,N,M) to be a
Camina triple.
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Theorem 2.1 If 1 6= M < N are two normal subgroups of a finite group G, then the
following are equivalent:

(i) (G,N,M) is a Camina triple.
(ii) |CG(g)| = |CG/M(Mg)| for every g ∈ G \ N.
(iii) For every g ∈ G \ N, we have χ(g) = 0 for all χ ∈ Irr(G | M).
(iv) V (G | M) ≤ N.
(v) For all g ∈ G \ N and z ∈ M, there exists y ∈ G such that [g, y] = z.

Proof First, we show that (i) implies (ii). Assume that (G,N,M) is a Camina triple
and let g ∈ G \ N. Notice that cl(g) =

⋃
x∈G(Mg)x. Hence, |G : CG(g)| =

|G/M : CG/M(Mg)| |M|, and so |CG(g)| = |CG/M(Mg)| as desired. We now show
that (ii) implies (iii). Assume (ii) and let g ∈ G \ N. By the Second Orthogonality
Relation, we have

|CG(g)| =
∑

χ∈Irr(G)

|χ(g)|2 =
∑

χ∈Irr(G|M)

|χ(g)|2 +
∑

χ∈Irr(G/M)

|χ(g)|2.

But we know by (ii) that |CG(g)| = |CG/M(Mg)| =
∑

χ∈Irr(G/M) |χ(g)|2. Hence, we

obtain
∑

χ∈Irr(G|M) |χ(g)|2 = 0. Since |χ(g)|2 ≥ 0 for all χ ∈ Irr(G | M), we deduce
that χ(g) = 0 for all χ ∈ Irr(G | M). Next, we prove (iii) implies (iv). Assume that
for every g ∈ G \ N, χ(g) = 0 for all χ ∈ Irr(G | M). Hence, all the generators of
V (G | M) are contained in N. Thus, V (G | M) ≤ N as desired. Now, we show that
(iv) implies (i). Assume that V (G | M) ≤ N and let x ∈ G \ N and y ∈ M. Hence,
yx /∈ N. Thus yx /∈ V (G | M). So for any χi ∈ Irr(G | M), χi(x) = χi(yx) = 0.
Recall that Irr(G) \ Irr(G | M) = Irr(G/M). Write Irr(G/M) = {φ1, . . . , φr}. For
each φi there exists φi ∈ Irr(G) \ Irr(G | M) such that φi(x) = φi(Mx) = φi(yx).
Hence, x and yx have the same character values for all irreducible characters of G.
Since the irreducible characters form a basis for the class functions, all class functions
have the same value on x and xy. This implies that x and xy are in the same class.
Hence, x is conjugate to all of xM. We conclude that (G,N,M) is a Camina triple.
Thus, (iv) implies (i).

To finish the proof of the theorem, it is enough to show that (i) is equivalent to (v).
First assume that (G,N,M) is a Camina triple; that is, if g ∈ G\N, then g is conjugate
to all of gM. Hence, if z ∈ M, then there exists y ∈ G such that y−1g y = gz. It
follows that g−1 y−1g y = z. Conversely, suppose that for all g ∈ G \ N and z ∈ M
there exists y ∈ G such that [g, y] = z. Fix g ∈ G \ N and z ∈ M. We need to
show that g is conjugate to gz. we know there exists y such that g−1 y−1g y = z.
This implies that y−1g y = gz. Hence, g is conjugate to every element in gM, and
(G,N,M) is a Camina triple as required.

The following lemma describes the relationship between two Camina triples in
the same group.

Lemma 2.2 If (G,N1,M) and (G,N2,M) are Camina triples, then (G,N1 ∩N2,M)
is a Camina triple.
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Proof Notice that 1 < M ≤ N1 ∩ N2. If g ∈ G \ N1 ∩ N2, then either g ∈ G \ N1

or g ∈ G \N2. In either case, g is conjugate to all of gM. Hence, (G,N1 ∩N2,M) is a
Camina triple as desired.

We now show that Camina pairs are special cases of Camina triples.

Lemma 2.3 The triple (G,N,N) is a Camina triple if and only if (G,N) is a Camina
pair.

Proof Observe that (G,N) is a Camina pair if and only if for every g ∈ G \ N, we
have cl(g) = gN. This occurs if and only if (G,N,N) is a Camina triple.

We now prove a fact about the center of a group G in the case when (G,N,M) is a
Camina triple. Note that it is not difficult to see that the intersection of Z(G) and the
set of elements in G \ N has to be the empty set.

Lemma 2.4 If (G,N,M) is a Camina triple, then the following are true.

(i) Z(G) ≤ N.
(ii) If K C G and K < M, then (G/K,N/K,M/K) is a Camina triple.

Proof If g ∈ Z(G), then g is only conjugate to itself. Hence g is not conjugate to all
of gM, and so g ∈ N. Therefore Z(G) ≤ N. Now, let K C G, with K < M. Hence,
1 < M/K ≤ N/K < G/K. Since every χ ∈ Irr(G | M) vanishes on G \ N, every
χ ∈ Irr(G/K | M/K) vanishes on G/K \ N/K. It follows that (G/K,N/K,M/K) is
a Camina triple as desired.

Next, consider the terms of the upper central series of G when (G,N,M) is a
Camina triple. Let Z1 = Z(G) and Zi/Zi−1 = Z(G/Zi−1) for i > 1.

Lemma 2.5 If (G,N,M) is a Camina triple and Zm < M, then Zm+1 ≤ N.

Proof By Lemma 2.4(ii), (G/Zm,N/Zm,M/Zm) is a Camina triple. So applying
Lemma 2.4(i) to G/Zm, we get Z(G/Zm) ≤ N/Zm. Hence Zm+1 ≤ N as desired.

Now we need to state the following very useful theorem, which is Theorem D in
[7], due to Berkovich.

Theorem 2.6 Let N be a normal subgroup of G and suppose that every member of
cd(G | N ′) is divisible by some fixed prime p. Then N is solvable and has a normal
p-complement.

We need the next lemma to prove the remaining parts of our first theorem.

Lemma 2.7 If (G,N,M) is a Camina triple, then M is solvable and has a normal
p-complement for every prime p that divides |G : N|.

Proof Let χ ∈ Irr(G | M). We know by Lemma 2.1 that χ(g) = 0 for all g ∈ G \ N.
By the discussion in [4, p. 200]. we deduce that for every prime p divisor of |G : N|,
p divides χ(1) for all χ ∈ Irr(G | M ′). So by Berkovich’s theorem, M is solvable and
M has a normal p-complement.
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Now we show that if (G,N,M) is a Camina triple, then M has a normal π-
complement, where π is the set of primes that divide |G : N|. This proves the re-
maining parts of Theorem 1.

Lemma 2.8 If (G,N,M) is a Camina triple, and π = {p prime | p divides |G : N|},
then M has a normal π-complement Q such that M/Q is nilpotent.

Proof Since (G,N,M) is a Camina triple, by Lemma 2.7, we know that M has a
normal p-complement for every p ∈ π. Now let Q be the intersection of these
normal p-complements. Hence, Q is a normal π-complement of M. To prove that
M/Q is nilpotent, it will be enough to show that any finite group having a normal
p-complement for every prime p is nilpotent. Let G be a finite group that has a nor-
mal p-complement for every prime p. We work by induction on |G|. If |G| = 1, then
the result is trivial, so we may assume G > 1. Let p be a prime, and we show that G
has a normal Sylow p-subgroup. If G is a p-group, then this is trivial. Thus, we may
assume that |G| is divisible by some prime q which is not p. By hypothesis, G has
a normal q-complement N. Observe that N < G, and so the induction hypothesis
implies that N is nilpotent. Hence, N has a normal Sylow p-subgroup P and thus,
P is characteristic in N. But G/N is a q-group, so P is a Sylow p-subgroup of G. It
follows that G has a normal Sylow p-subgroup as required.

The following lemma is very useful.

Lemma 2.9 Let (G,N,M) be a Camina triple. If x ∈ G \ N, o(x) = m, and y ∈
CM(x), then the order of y divides m.

Proof Since xy ∈ xM, we know that xy is a conjugate to x. Thus, xy has order m.
Hence xm ym = 1, and so, ym = 1 as desired.

We show in the next lemma that if G/N is not a p-group for any prime p, then
M ∩ Z(G) = {1}.

Lemma 2.10 Let (G,N,M) be a Camina Triple, and G/N is not a p-group for any
prime p, then M ∩ Z(G) = {1}.

Proof If G/N is not a p-group, then we can find x ∈ G \ N such that o(Nx) = pa,
and y ∈ G \ N such that o(N y) = qb, where p, q are two distinct primes. Let n be
the p ′-part of the order of x, and m the q ′-part of the order of y. Notice that xn /∈ N
and ym /∈ N. Also, the order of xn is pα and the order of ym is qβ . Hence, CM(xn) is a
p-group and CM(ym) is a q-group. We know that M ∩ Z(G) ⊆ CM(xn) ∩CM(ym) =
{1} as desired.

In the next result, we prove that if G is nilpotent, then G/N and M are p-groups
for the same prime p.

Lemma 2.11 Let (G,N,M) be a Camina Triple, if G is nilpotent then M and G/N
are p-groups for some prime p.
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Proof Since G is nilpotent, Z(G) cannot intersect with M trivially. Hence, by
Lemma 2.10, G/N is p-group for some prime p. Now let x ∈ G\N where o(Nx) = pa

and let n be the p ′-part of the order of x. Notice that xn /∈ N and the order of xn is
pα. Hence, CM(xn) is a p-group. Thus, M ∩ Z(G) is a p-group. Now suppose that
there exists a prime q 6= p such that q divides |M|. Hence, there exists y ∈ M where
the order of y is qm. Since G is nilpotent and

(
o(xn), o(y)

)
= 1, we have y ∈ CG(xn).

But, by Lemma 2.9, we know that o(y) divides the order of xn. Which leads to a
contradiction, and M is a p-group.

We are now ready to prove Theorem 2.

Proof of Theorem 2 If G is nilpotent, then by Lemma 2.11 we have (i) and (ii) hold.
So we may assume that G is not nilpotent. If G/N is a p-group, then (i) holds. As-
sume that G/N is not a p-group, and let π = {p : prime such that p divides |G/N|},
by Lemma 2.8, M has a normal π-complement Q such that M/Q is nilpotent. If
Q 6= {1} and proper in M, then (ii) holds. Also, if Q = {1}, then M is nilpotent and
(ii) holds. If M = Q, then (|M|, |G/N|) = 1. In this case, we know that maybe M
does not have a nilpotent quotient. If M is abelian, then (iv) holds. So we may assume
that M is not abelian. By Theorem 1, we know that if (G,N,M) is a Camina triple,
then M is solvable. Hence, if M is not abelian, then we can consider K to a maximal
normal subgroup of M such that M/K is not abelian. Note that (M/K) ′ is the unique
minimal normal subgroup of M/K. Therefore, the group M/K satisfies the hypoth-
esis of Theorem 12.3 of [4]. So either M/K is a p-group, and hence M/K is nilpotent
and (iii) holds, or M/K is a Frobenius group with an abelian Frobenius complement
and (M/K) ′ is the Frobenius kernel and is an elementary abelian p-group, and (iv)
holds as desired.

3 Camina Pairs

We now prove some results about Camina pairs using Camina triples results, given
the fact that they are special cases of Camina triples. In [1], Camina defined a dif-
ferent hypothesis that is equivalent to Camina pairs. Let G be a finite group with a
proper normal subgroup N 6= 1 and a set of irreducible non-trivial characters of G,
A = {χ1, . . . , χn}, where n is a natural number, such that

(1) χi vanishes on G \ N and
(2) there exist natural numbers α1, . . . , αn > 0 such that

∑n
i=1 αiχi is constant on

N \ {1}.
We are able to identify the characters in the Camina hypothesis in [1]. First, let N be
a normal subgroup of G and θ ∈ Irr(N). The inertia group of θ in G denoted by T
and defined by {g ∈ G | θg = θ}.

Theorem 3.1 Let (G,N) be a Camina Pair. Then A = Irr(G | N).

Proof First, we show that A ⊆ Irr(G | N). To see this, suppose χ j ∈ A \ Irr(G | N).
This implies that χ j ∈ Irr(G/N). On the other hand, since χ j ∈ A, we have that
χ j(x) = 0 for all x ∈ G \ N. This implies χ j(xN) = 0 for all xN ∈ G/N \ {N},
and hence, χ j is a multiple of the regular character of G/N. Since N < G, we know

https://doi.org/10.4153/CMB-2013-014-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-014-0


Camina Triples 131

that the regular character of G/N is not irreducible, and so we have a contradiction,
since it is not possible for an irreducible character to be a multiple of a reducible
character. Thus, no such χ j exist in A. Therefore, A ⊆ Irr(G | N). On the other
hand, for every 1N 6= θ ∈ Irr(N) and by Theorem 6.11 in [4], there exist χi ∈ A
such that χi ∈ Irr(G | θ). Notice that θG(g) = 0 if g /∈ N, and if g ∈ N, then
θG(g) = 1

|N|
∑

x∈G θ
x(g), hence

θG(g) =
1

|N|
|T|
(
θ1(g) + · · · + θn(g)

)
= θG(g) = |T : N|

(
θ1(g) + · · · + θn(g)

)
where θi , i = 1, . . . , n, are the distinct conjugates of θ in G. Note that χi(g) = 0 if
g /∈ N, and if g ∈ N, then χi(g) = a

(
θ1(g) + · · · + θn(g)

)
, where a is a non-negative

integer. Hence χi = cθG. Thus, χi is the unique irreducible constituent of θG. Thus,
| Irr(G | θ)| = 1, and Irr(G | θ) ⊆ A. Since Irr(G | N) =

⋃
16=θ∈Irr(N) Irr(G|θ), we

have |A| = | Irr(G | N)|. And since A ≤ Irr(G | N), we have A = Irr(G | N) as
desired.

Our last result in this section states some new conditions for a pair (G,N) to be a
Camina pair.

Theorem 3.2 Let G be a finite group and N C G, then the following are equivalent:

(i) (G,N) is a CP.
(ii) V (G | N) = N.
(iii) There is no x in N such that χ(x) = 0 for all χ’s in Irr(G | N) and if x ∈ G \ N,

then χ(x) = 0 for all χ in Irr(G | N).

Proof Notice that (iii) implies (ii) is trivial. To prove (ii) implies (i), assume that
V (G | N) = N, by Theorem 2.1, (G,N,N) is a Camina triple. Thus, by Lemma 2.3,
(G,N) is a Camina pair. To prove (i) is equivalent to (iii), by Lemma 2.3 and Theo-
rem 2.1, (G,N) is a Camina pair if and only if V (G | N) ≤ N.
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