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Abstract

Finite matrices with entriespu Fl}(xi, • • -, xk), where {ptJ} is stochastic and
Fij(-) is a fc-variate probability distribution are discussed. It is shown that the
matrix of fc-variate Laplace-Stieltjes transforms of the ptJ i ^ / x i , • • •, xk) has a
Perron-Frobenius eigenvalue which is a convex function in k variables in a suitably
denned region. The values of the partial derivatives near the origin of this maximal
eigenvalue are exhibited. They are quantities of interest in a variety of applications
in Probability theory.

1. Introduction

A natural combination of the theories of stochastic matrices and of distribu-
tion functions, which arises in a large number of problems of analytic Probability
theory, is the theory of semi-Markov matrices.

In this paper we wish to consider properties of semi-Markov matrices involv-
ing multivariate distributions.

DEFINITION, k-variate semi-Markov matrix. Let Q(x) be an m x m matrix,
whose entries are real valued functions denned on Rk such that each entry 2 y ( x )
may be written as:

where Fij(xl, • • •, xk) is a fc-variate probability distribution and where ptJ 2: 0,
YJ=IPIJ = 1> ' = 1>''"» m> then Q(x) is a A:-variate semi-Markov matrix.

We note that if ptj = 0, the probability distribution Fy(*) may be arbitrarily
chosen.
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DEFINITION. Irreducible semi-Markov matrix. The semi-Markov matrix (Q(x)
is called irreducible if and only if the stochastic matrix/" = {Pij\ is irreducible.

DEFINITION. Nondegenerate k-variate semi-Markov matrix. The semi-Markov
matrix Q(x) is nondegenerate fc-variate if and only if for every v = 1, • • •, k there
exists a pair of indices (i,j) such that_py > 0 and the corresponding distribution
Ftj(xi> ' ' •> xk) has a marginal distribution FtJ(+ao, • • •, xv, • • •, +oo) which is
not degenerate at zero.

The nondegeneracy condition eliminates the case where one or more of the
^-variables xt, • • •, xk are actually redundant.

Henceforth we assume that Q(x) is an irreducible and nondegenerate k-
variate semi-Markov matrix.

We now consider the fc-dimensional Lebesgue-Stieltjes integrals:

J R
= exP E- Z Cv<K,.---,«Gy(xi. * * •. xk),

J Rk v = l

which we refer to as the Laplace-Stieltjes transforms of the entries 2.v(xi» ' ' '» xk)
of Q(x).

The functions ?y(^ l 5 • • •, £k) are obviously denned for Re £,1 = 0, • • •,
Re £k = 0, but they may not be defined anywhere else. We are mainly interested
in the cases where the domain of definition of the qtj{£,) is larger, as is the case
in most applications.

We distinguish the unilateral and the bilateral cases.
In the unilateral case, we assume that all Fu(xx, • • •, xk) corresponding to

indices i,j such that/?;j- > 0, concentrate all their mass on the positive orthant
Xx =g 0, • • •, xk ^ 0. In this case all integrals in (2) exist for all £ with Re £t ^ 0,
• • •, Re£k ^ 0. Moreover all the functions ^i j (^1, • • •, ^ ) are jointly analytic in
Rs£x > 0, • • •, Re £k > 0 and any function obtained by setting some but not all of
its variables equal to zero is analytic inside the corresponding part of the boundary
of the set Re£x > 0, • • •, Re £k > 0. The latter statement is obvious if we realize
that setting one or more, but not all of the ^-variables equal to zero, corresponds
to taking the Laplace-Stieltjes transforms of suitable 'marginal' distributions of
Qij(xx,---,xk).

The bilateral case encompasses all distributions not in the unilateral case.
In our discussion of the bilateral case we shall assume that there exist 2k

real numbers £{ and £", i = 1, • • •, k such that:

(3) -oo g £ ' < 0 < £ ^ +oo, i = l,--;k

and such that in the 'box':

(4) £'g^c;, i = l, ••-,&,

all functions qtj{^x, • • •, £,k) are analytic in £1 ; • • •, £k.
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In order to discuss both cases simultaneously, we shall refer to the domain D
in the unilateral case as the open positive orthant £x > 0, • • •, £k > 0 and in the
bilateral case as the box t," g ft g £ ; , • • • , & ' g £t g &.

2. The Perron-Frobenius eigenvalue of

The matrix q(4) with entries q ^ i , • • •, £k) is an irreducible, nonnegative
matrix for every real point <* in the domain D or on its boundary. It follows from
the classical theory of nonnegative matrices, [1, 4], that q(%) has an eigenvalue
of maximum modulus, which is real, positive and of geometric and algebraic
multiplicity one. Denoting this, the Perron-Frobenius eigenvalue, by p{£) =
p(£i, • • •, £&), we set out to discuss the properties of p(€) as a function of £ over
the domain D. In the simpler case where k = 1, this was done by H. D, Miller [3].

We shall assume that the reader is familiar with the basic properties of non-
negative matrices as discussed in the references listed above.

LEMMA 1. All functions <7 ,,(£), / , / = 1, • • •, m are convex functions over the
domain D and its boundary, i.e. for £ and r\ in the closure D, we have:

(5)

for allO ^ a rg 1, and all i,j = 1, • •, m.
Moreover if £ # r\ andO < <x < 1, strict inequality must hold in (5) for at least

one pair (i,j).

PROOF. Since for all real fc-tuples (xt, • • •, xk), the function exp [—Xv=I £vxvl
is strictly convex over the domain D, the inequality (5) follows immediately from
the definition of qij{^)-

To prove the next statement we must clearly consider only those pairs (i,j)
for which ptJ > 0. The corresponding Laplace-Stieltjes transform #y(£i , • • •, £k)
is strictly convex with respect to all the variables which explicitly occur in it. The
variables £r which do not explicitly occur in q ^ t , • • •, £k) correspond to variables
xr in Fij(xi, • • •, xk) with respect to which the marginal distributions are degene-
rate at zero.

The nondegeneracy assumption may bs restated as saying that every variable
<!;„, v = 1, •••,& must occur explicitly in at least one of the functions

£ i > " • • > £ * ) •

Let now £ # >/• In particular £v # ^v. Let (i,j) be a pair such that
'••>£*) contains <!;„ explicitly, then for 0 < a < 1

since <7;j(-) is jointly strictly convex in all variables upon which it explicitly depends.

DEFINITION. Superconvex Matrices. Le t /be a positive function denned on the

https://doi.org/10.1017/S144678870001065X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001065X


110 Marcel F. Neuts and Peter Purdue [4]

convex set F e K. Then/ i s superconvex if log/ is a convex function on F. Clearly,
/ i s superconvex if and only if for each £, t\ e F,

f(a(+pn) ^ U{t)TU{n)Y; ^ = U P , ^ o.
A matrix A{^) = [-4y(§)] is superconvex if for each (i,j), A^) is superconvex

on F.

The proofs of the following lemmas can be found in reference (2) or (3).

LEMMA 2. Iff is superconvex on F, then it is convex there.

LEMMA 3. Let •y(ij) be any non constant positive linear function on F. Then y(£)
is not superconvex.

Following Kingman (2) we let C denote the class of all superconvex functions
along with the function which is identically zero on F.

LEMMA 4. C is closed under addition, multiplication and raising to any positive
power. If for each n,fn e C, so does lim

LEMMA 5. Let A{^) be a superconvex matrix on F and let p(£) denote its largest
eigenvalue. Then p(£) 6 C.

LEMMA 6. Let A(£) be a superconvex matrix on F and suppose /?(£) is not a
constant function. Then p(£) is strictly convex on F.

PROOF. By lemma's 2 and 5, p(^) is convex on F, Suppose now that />(£) is in
fact linear. Then by lemma 3, since p is not constant, p(£) is not superconvex. This
contradiction implies that p(t;) is strictly convex on F.

THEOREM 1. Let £ = a + i z -where { e D .

(a) The Perron Frobenius eigenvalue, p(g) is analytic at £ = a in the domain D.

(b) p(a) is a strictly convex function of a in D, suitably continuous on the
boundary.

PROOF, (a) As in the univariate case, Miller [5], for each real a, p(a) is a simple
root of the determinantal equation \zl—q{a)\ = 0. Since \zl— q(o)\ is an analytic
function of the k+1 complex variables, z, a1,- • -,ak, the result follows from the
implicit functions theorem for analytic functions.

(b) We need only show that qij(o) is a superconvex function for each (i,j).
This follows at once since

* [J
for 4 = o + ix, ^' = a' + ix', 4, c,' e D, and a • X — a1Xi + - • - + akXk. This is just
Holder's inequality for a Banach space with a finite measure. Consequently q(a)
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is a superconvex matrix and so p{a) is convex. By lemma 1 p(a) is not constant
and so by lemma 6 p(a) is strictly convex on D.

By suitably continuous on the boundary D we mean that if §* = a * + /T* € D
and if £„ -> ^* where £„ e Z) then p(ffn) ->• p(<r*). Hence we have p(a) is strictly
convex on D.

The entries of q{^) are all suitably continuous on the boundary and hence
is suitably continuous on the boundary, since convergence of a sequence of

positive matrices entails convergence of their Perron-Frobenius eigenvalues to that
of the limit matrix.

The theorem 1 implies in particular that p(£) is a continuously differentiate
function of £ in D. In the unilateral case one may easily verify that p(£) is also
suitably differentiable at all boundary points of the positive orthant D, with the
possible exception of the origin.

In many applications, see Neuts [6], the quantities

(11) Mj

play a fundamental role. In the unilateral case, the derivatives at 0 are to be under-
stood in the same 'suitable' sense as in theorem 1.

We denote by a[v), the mean with respect to the variable xv of the probability
distribution Hi{xt ,•••, xk) defined by:

(12) Hi(x1,--;xk) = YPijFij(xi,---,xk), i = 1, • • •, m

i.e. ajv) is given by:

(13) a « = f xvdXu...,XkHi(x1,--;xk),

provided the integral (13) converges absolutely. In this case a^v) is also given by:

where the derivative is in the suitable sense in the unilateral case.
Furthermore, let nu • • •, nm be the stationary probabilities associated with

the matrix P, i.e. the row-vector n = (nl,- • -,nm) is the unique solution to the
equations:

(15) n = nP, n • e = 1,

where e is the columnvector with all its components equal to one.

THEOREM 2. The quantities Mj are given by:

(16) Mj = - £ « , < # > .

https://doi.org/10.1017/S144678870001065X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870001065X


112 Marcel F. Neuts and Peter Purdue [6]

In the unilateral case, this is provided the means a.\J\ i = 1, • • •, m exist. In
the bilateral case, our earlier assumptions encompass the existence of these means.

PROOF. Let x(t;) and j (£) be right and left eigenvectors of q(^) corresponding
top(£), normalized such that )>(£) • x(£) = 1, and j>(£) • e = 1. It is known that such
a normalization is possible and uniquely determines x and y for every £. Moreover
as £ tends (suitably) to 0, we have that }>(£) -> n and x(f) -»• e, componentwise.
The components of x(£) and y(£) are (suitably) continuously differentiable
functions of % in D.

We have that:

(17) E « , / « i ' • • •• &)*X£i . • " . « = P(ZI '•••- SMZi >••% &),
J = l

for v = 1, • • •, m and all % in D.
Differentiation with, respect to £ ; yields.

P (£ i . • • •» ?») — x ^ i ' • • •> £*)+*v( l i»•" •, Q — p(ii ,-•; &

(18) % ^ '

Upon letting ^ -> 0 (suitably) and noting that p(0) = 1, we obtain.

(19)

for v = 1, • • •, m.
Multiplying by ny in (19), summing on v and applying (15), it follows that:

(20) Mt= - f>va<'>.

REMARK. Formally, the quantities Mt appear in the same manner as the first
moment does from the Laplace-Stieltjes transform of a probability distribution. A
natural question to ask is whether p(^t, • • •, %k) is itself the transform of a prob-
ability distribution. The answer is negative in general. Consider the following
example of a 2 x 2 univariate semi-Makov matrix

Pit = P22 = °» P12 = P21 = 1-
It is easy to see that:

where fx(O and f2(£) are the Laplace-Stieltjes transforms of the probability
distributions -Fi2(0 and F21(-). It is well-known that/x(^) a n d / 2 ( 0 can be chosen
so that their product is not the square of a Laplace-Stieltjes transform of a prob-
ability distribution, e.g.:

MO = e-", MO =
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