M-PRIMARY ELEMENTS OF A LOCAL NOETHER
LATTICE

E. W. JOHNSON AND J. A. JOHNSON

Introduction. In this paper, we consider the extent to which a local
Noether lattice (%, M) is characterized by the sub-multiplicative lattice,
denoted §.%, of M-primary elements. (Here we use the notation (&, M) to
indicate that M is the maximal element of .#.) In particular, we call &
M-complete if, given any decreasing sequence {4; of elements and any
n = 1, it follows that 4, £ 4 VvV M" for large 7, where 4 = AA4;. And we
show that, given two M -complete local Noether lattices (£, M;) and
(&, My), with 6.7 = 6.%,, it follows that ¥, =~ % ,. Further, we show that
any local Noether lattice (&, M) is a sublattice of a local Noether lattice
(&*, M) which is M-complete and such that 6. = §.*.

1. Our first lemma is a basic tool.

LemMmA 1.1. Let (&£, M) be a local Noether lattice. If A, B € £ and k =0,

then

i) A4V M"): B =< (4:B) v M*
and

@) AV M)ANBYV M)=(AANB)V M
for some n.

Proof. Let k be fixed. Then by the descending chain condition in %/ M* [1],
((4 vV M™):B) V M*isconstant forlargen,say forn = K = k. Itfollows that
forn =K, ((AVM"):B)V M*)B=(((AVME):B)yV M*) B4V M"V M*B.
Hence (((4 vV M™):B) Vv M*)B = A V M*B, by the Intersection Theorem. If
now B is assumed to be principal, then ((4 V M"):B) V M* < (4:B) Vv M*,
andalso (4 VM) AB= AV M*B)y AB= (4 A B)V M-

We now assume that there exist elements for which (ii) fails, that 4 is
maximal in this respect, and that B is an arbitrary element for which
A4V M)YANBYV M)£ A AB)V M for all n. Then B £ A4; hence
there exists a principal element E < B with E £ 4. Then 4 < 4 V E, and
hence it follows from the maximality of 4 that for each integer & there exists
an integer K (&) = h such that

((AV E)V ME®D) N (BY ME®) < ((AV E)AB)V M.
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Then for n = K (k) and for & sufficiently large,

AVMYNBVM)YSAVM)YNAVEVM)A BV M
4V M) AN (((AV E)AB)V M
AV M)A ((AAB)V (EV M)
(AANB)V (A V M)A (ENV M)

(4 AB)V (A A E)V M

(4 A B) Vv M,

A IA A IIA A T

by the principal case. This establishes (ii).
Now, let By, ..., B, be principal elements. By an easy induction on (ii)
we can choose K so that

i/i\l((A:Bi) v M) £ </=\1 (A:B,-)) v M*

for» =z K. Hence, if B = B; V ... V By, then for sufficiently large #,

S

4V M":B = 1/;\1 (4 Vv M":B) = \ ((4:By) v M*)

i

< </\ (4 :Bi)> v M* = (4:B) v M,
i=1
by the principal case of (i).

TaeorREM 1.2. Let (L1, M1) and (&L, M,) be local Noether lattices and
¢: 8L 1 — 6L 5 a multiplicative lattice homomorphism such that ¢(My) = M,.
If £y is My-complete, then

(i) ¢ extends to a homomorphism o of &1 into £ s,
(ii) @ s one-to-one if ¢ is one-to-one,
(iii) @ is onto if ¢ is onto and L1 is Mi-complete,
(iv) @ preserves residual division if ¢ does.

Proof. Define @(4) = N\i¢(4 V M,?). Then since &, is My-complete,
p(A) V Ma" 2 ¢(A V Mi%) V My = (A V M™) = (4) V My
for large 7, and hence ¢(4) V My* = ¢(4 V M.*). Using this, we have
o(4) V 2(B) V My" = (4 V Mi") V (B V M1*)
= oA VBV M =¢(dV B)V My,

for all %, so that $(4) V ¢(B) = #(4 V B), by the Intersection Theorem.
Similarly, we see that ((4)¢(B)) V My* = ¢(AB) V M," for all #, so that
2(4)p(B) = #(4B). To see_that ¢ preserves the meet operation, we use
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Lemma 1.1. Hence

[2(4) A @(B)]IV Me* = ((¢(4) V M) A (2(B) V M3™)) V M
= (¢4 V M") N ¢(BV M) V o(MiF)

e((4 V M) N (BYV M™) V M)

= ¢((4 A B) V M)

= (4 AN B) V M;*

for some %, so that $(4) A (B) = (4 A B). This establishes (i).
Now, assume that ¢ is one-to-one. If (4) = @(B), then

e(d V M") = ¢(4) V My" = o(B) V My = ¢(B V M),

and 4 V My" = B V M," for all n. Hence 4 = B, which establishes (ii).
We now assume that ¢ maps 6.1 onto 8.% 5 and that .¥; is M;-complete.
Assume that D € %s. For each 4, let C; be the least element of .%; such that
C, =z My and ¢(C;) = D V My'. Set C = A; Ci. We see that C V My* = C,
for all 7, and hence (C) = D, which establishes (iii).
To see that @ preserves residuation when ¢ does, we observe that

(2(4):6(B)) V My* = (((4) V Ms*):(2(B) V M") V M
and (4 V My):(BV M)V M* = (4:B) V M:* for large n, from which
the relation follows.

CorOLLARY 1.3. Let (&1, M1) and (£s, Ms) be local Noether lattices and
{oin L1/ Mt — Lo/ MY a sequence of homomorphisms of £/ Myt onto
o) Myt such that ¢.y1 extends ¢; for all 1. If &£y is Ms-complete, then Ly is
embeddable in L s. If also L1 is Mi-complete, then L1 is isomorphic to Fs.

Proof. Define 8¢p: 6.L1— 6.L2 by 80(Q) = A:iei(Q V M?). It is easily
seen that ¢ is an isomorphism.

If the main concern is the embedding of .%; in the lattice of ideals of a
local ring, then the assumption of M s-completeness is not restrictive.

COROLLARY 1.4. Let (R, p) be a local ring and (&£, M) a local Noether
lattice. If there exists a sequence ¢; of isomorphisms of £ /M onto the ideals
of R/pt in such a way that ¢.11 extends ¢, for all i, then £ is embeddable in the
lattice of ideals of the p-adic completion (R*, p*) of R. If & is M-complete,
then this embedding is onto.

Proof. The ideals of R/p* are the same as the ideals of R*/p*?, and the
lattice of ideals of R* is p*-complete.

2. Let (&, M) be a Noether lattice. In this section we construct a local
Noether lattice (£*, M*) which is M*-complete and in which % is embedded
in such a way that £*/M** = ¥ /M for all 4, thus generalizing Corollary 1.4.

To begin, we let £* be the collection of all formal sums Y_;-; 4, of elements
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of & such that 4; = A1 V M?, for all 7. We denote the elements of Z*
by capital letters 4, B, ..., and for 4 € X* welet 4 = Y71 4.
On £* we define

(2.1) A £ Bif A, £ B, forall 4,
(2.2) AB =Y (4:B; vV M.
[

Then it is easily seen that any family % of elements of £* has least upper
bound Y S;, where S; = V. v A ;. And it is immediate that 0* = > M'is a
least element for £*; thus £* is a lattice. Actually, £* can be seen to be a
collection of representatives of equivalence classes of Cauchy sequences of
% under the metric d(C, D) = 1/21if CV M* =D V M*and C vV M1
D vV M1,

THEOREM 2.1. Z* satisfies the ascending chain condition.

Proof. Let C(1) < C(2) = ... be an ascending chain in £*, so that for
each j, C(1); £ C(2), £ ... is an ascending chain in .%. Choose N so that
C(N)y = C(N 4+ 2)1forz = 0,andset B(n); = C(n), .1 A Miforallz,n = 1.
Then

M'z B(n); 2 B(n) 1 =2 MB(n);
thus B(n) = 3>.;B(n); is an element of the Noether lattice R(%, M) of

[2]. Moreover, B(n) < B(n + 1) in R(Z, M), and hence there is an integer
K = N such that B(K) = B(n) for all # = K. Hence

C(K)i1 A M* = B(K); = B(n); = C(n); A\ M*!
for » = K and for z = 0. Now, assume that C(K), = C(K + 7), for all
72 = 0. Then
CEK+1)m1=CEK+1)ma ANCK+1),=CK+1)m1 A CK),
= CE + )1 A (CK) 1 VM) = CK)r1 V (CK + 4)ra A M7)
= CK)r1 V (C(K) 1 A M7) = C(K) 1.
Since C(K); = C(K + 1) for all ¢ = 0, the theorem follows.

Note that if E = {E} is any sequence of elements of ¥ such that, for
each #,

(2.3) Ei1 £ E; VvV M" forlarge ¢

and if D, = A:(E; V M"), then D = Y D, € £* We call D the derived
element in L* of {E. The following lemma gives some basic properties of
Z*. We omit the_proof.

LeMMA 2.2. Let A, B be elements of L*. Then
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(i) A A B is the element of £* derived from {A, A\ Bj},
(ii) A:B is the element of £* derived from {A ;:B},
(iii) ZL* is modular,
(iv) If {44} is a sequence of principal elements of £ satisfying (2.3), then
the derived element of £* is principal.

We can now prove the following result.
THEOREM 2.3. F* isa local Noether lattice with maximal element M* = 3 M.

Proof. We must show that every element of £* is the join of principal
elements. Hence, assume that B, C € ¥* with B < C. We will show that
there exists a principal element F € £* with F £ C and F £ B. Now,
since B; < C; for sufficiently large 7, say for ¢ = K, we choose Ex principal
in % so that Ex £ Ck, Ex £ Bk. Then

[Cxr1 A (Ex V M®)]V ME = (Ex V M%) A (Cxy1 V MX)
= (EK \Y ]MK) A Cx = Ex V MK:

and hence Cxi1 A (Ex V M¥) £ Bx and there exists a principal element
EK+1 é CK+1 N (EK Vv MK), EK+1 $ BK. If now EK+1, e ooy EK+n are chosen
so that Egyit1 S Cryirr A (Exrs V M) and Exyi41 £ Bx, 024 < n — 1,
then also Cxint1 A (Exin V M%) £ Bg, and thus Egi,4+1 can similarly be
chosen. Setting E; = Eg for 1 £ 4 £ K, the element F of .£* derived from
{E} is principal with F £ C. And since Ex.; V M¥ £ Bg, F £ B. It follows

that every element of £* is the finite join of principal elements.

Now, for C € &, set C* = Y. (C V M?*). By Lemma 1.1, it follows that
(BV C)* =B*V C* (B A C)*=B* A C* (BC)* = B¥C*, and (B:C)* =
B*:C*; thus if we identify C with C* we have the following result.

THEOREM 2.4. Let (£, M) be a local Noether lattice. Then £ can be extended
to a local Noether lattice (£*, M) such that
(i) ZL* is M-complete,
(i) L*/ Mt = L/ M? for all 1,
and
(ili) 6.* = 6.Z.
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