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Abstract

In this paper, efficient algorithms are given to test the intersection
property and some of its variations on flag-transitive coset geome-
tries. These algorithms are then applied to geometries of some
sporadic groups, namely the Mathieu groups M11, M12, M22 and
M23, the Janko groups J1, J2 and J3 and the Higman–Sims group HS.

1. Introduction

In incidence geometry, the main question that is still open nowadays is, as mentioned by
Mauro Biliotti and Antonio Pasini in [1]: ‘What are the right axioms for good geometries?’

In [9], a synthesis of the work that has been going on in that direction for the last fifteen
years is presented, and a set of axioms is given. Such work has been heavily based on
computer experiments; see [9] for a bibliography on the subject. We refer the reader also
to the paper by Michel Dehon [11], where efficient algorithms to test the flag-transitivity
of a geometry are given, and the paper by Dehon and Leemans [13], which describes two
algorithms that can be used to obtain classifications of geometries that satisfy the axioms
of [9]. There is a need to test new properties on the lists of geometries that have already
been obtained, in order to attempt to extend the list of axioms given in [9].

The intersection property (IP) has been extensively studied for a long time. It had already
appeared in the work of Jacques Tits as early as 1956 (see [23]), even before the birth of
geometric buildings. It is one of the most important properties in incidence geometry.

As Francis Buekenhout pointed out in [7], it is often tedious to check this property in
full detail for geometries over a non-linear diagam. However, the (IP) was contained in the
axioms that Buekenhout imposed on his geometries from the beginning [3], although for
technical reasons it was not initially included in the set of axioms used by Buekenhout and
Dehon when they started their experimental work.

All these arguments show that it is important to have an efficient algorithm to test the
intersection property.

There are several versions of this property, as shown in the paper by Biliotti and Pasini [1],
and later on by Pasini in [22]. We decided to investigate (and we describe in this paper)
the version that seems to be the most commonly used. This was introduced by Buekenhout
in [3], and is the property referred to as the (IP) in reference [6] (see also, for instance, [4, 5]
for nice applications of this property). We have also studied some weakened forms of the
property, namely the properties (IP)n, (WIP)n and (WIP). Our motivation was that the
condition (IP) might be too strong to include in the set of axioms of [9]; we note that the
(IP)2 has already been included in these axioms. Moreover, it is easy to derive algorithms
to test these weakened forms from the algorithm that is used to test the (IP).
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An algorithmic analysis of the intersection property

In this paper, we describe an algorithm to test the intersection property and some of
its variants on a flag-transitive coset geometry. We implemented this algorithm using the
computer algebra package Magma [2].We then used this program to test the above properties
on a series of geometries for the Mathieu groups M11, M12, M22 and M23, the Janko groups
J1, J2 and J3, and the Higman–Sims group HS. This shows that the algorithm described in
this paper may be used on rather large geometries (that is, geometries with more than one
million elements).

The paper is organised as follows. In Section 2, we recall some definitions and fix the
notation. In Section 3, we describe algorithms to test both the intersection property itself and
some weaker forms of it. We apply these algorithms in Section 4 to lists of geometries for
the eight smallest sporadic simple groups. In Section 5, we mention some results obtained
for the Suzuki group Sz(8), and for inductively minimal geometries. Finally, in Section 6,
we give the programs that we used to obtain the results given in Section 4. These programs
are written in Magma.

There are two electronic appendices to the paper. The source code given in Section 6
is provided as a downloadable text file in Appendix A. This file can be loaded in Magma
using the ‘load’ command. Appendix B is a gzipped tar archive of text files. These text files
contain the maximal parabolic subgroups of the geometries for the eight smallest sporadic
groups mentioned in Section 4. The archive also contains a README file, which explains
how to use the files in Magma.

2. Definitions and notation

We assume knowledge of the basic notions in incidence geometry, as given, for instance,
in [8] or [22].

Let �(X, ∗, t, I ) be an incidence geometry. Given a type i ∈ I , for any flag F of � we
define the i-shadow σi(F ) as the set of elements of type i incident with F .

We define the intersection property (IP) as it appears in [3].

(IP) For every type i, the intersection of the i-shadows of a variety x and a flag F is
empty, or it is the i-shadow of a flag incident to x and F . The same holds on the
residues.

In earlier work, the second author, together with co-workers including Francis Bueken-
hout, Michel Dehon and Philippe Cara, imposed a condition denoted by (IP)2. This condition
requires that all rank-2 residues of � satisfy the (IP). If � is a geometry of rank n, we could
define a property (IP)k in the following way (for k = 2, . . . , n), as suggested by Francis
Buekenhout.

(IP)k For every residue R of rank k of �, for every type i in the set of types of R,
the intersection of the i-shadows of a variety x and a flag F is empty, or it is the
i-shadow of a flag incident to x and F .

The following lemma is obvious.

Lemma 2.1. Let � be a geometry of rank n. Then � has the (IP) if and only if � has the
(IP)k for all k ∈ {2, . . . n}.

We may weaken the (IP)k property in the following way.

(WIP)k For every residue R of rank k of �, there exists a type i in the set of types of R
such that the intersection of the i-shadows of a variety x and a flag F is empty, or
it is the i-shadow of a flag incident to x and F .

Moreover, as in the definition of the (IP), we define the (WIP) as follows.
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(WIP) For at least one type i, the intersection of the i-shadows of a variety x and a flag
F is empty, or it is the i-shadow of a flag incident to x and F . The same holds on
the residues.

Again, the following lemma is obvious.

Lemma 2.2. Let � be a geometry of rank n. Then � has the (WIP) if and only if � has
the (WIP)k for all k ∈ {2, . . . n}.

3. Algorithms

The definitions of the properties (IP)k , (WIP)k , (IP) and (WIP) may be easily translated
into programs. The problem is that we would like these properties to be checkable on
rather large geometries – for instance, on geometries with about a million elements. The
geometries that we are interested in are constructed from groups by using Tits’ algorithm,
which we now recall.

Theorem 3.1 (Tits’ algorithm [24]). Let I be a finite set. Let G be a group, and let (Gi)i∈I

be a collection of subgroups of G. Let

X = {Gig|i ∈ I, g ∈ G}; t : X → I : Gig → i; ∗ = {(Gig, Gjh) | Gig∩Gjh �= ∅}.
Then � = �(G; (Gi)i∈I ) = (X, ∗, t, I ) is an incidence structure having a chamber. More-
over, G acts by right multiplication as an automorphism group of �. Finally, G is transitive
on the flags of rank at most 2.

When � is constructed using Tits’ algorithm, we say that � is a coset geometry. Most
of the time, we are interested in flag-transitive coset geometries. These are geometries
�(G; (Gi)i∈I ) on which the group G acts flag-transitively. We describe an algorithm to test
the properties (WIP)k and (IP)k on a flag-transitive coset geometry

� := �(G; (Gi)i∈{1,...n}) of rank n � k � 3.

When k = 2, it is well known that � has (IP)2 if and only if all its rank-2 residues are either
partial linear spaces or generalized digons. Therefore, this property can be easily checked
just by looking at the diagram of �.

If � is a geometry of rank n > k, we test property (IP)k on � by checking that all residues
of rank k of � satisfy the (IP)k . We may thus assume without loss of generality that � is a
geometry of rank k.

We must check that for every type i ∈ I = {1, . . . k}, for every element x and for every
flag F , if σi(x) ∩ σi(F ) �= ∅, then there exists a flag F ′ such that F ′ is incident to x and
F and σi(x) ∩ σi(F ) = σi(F

′). We make some observations that will help lead us to an
efficient algorithm.

• Since � is flag-transitive, we have only to check that property for one element x of
each type.

• Moreover, we may assume that x is not of type i, for otherwise the property is
obviously true. Similarly, we may assume that i /∈ t (F ).

• If x and F are such that σi(x) ∩ σi(F ) �= ∅, then there exists an element of type i,
say ∞, incident to both x and F . Thus x and F belong to the residue of ∞ in �.

• Since � is flag-transitive, we may assume that ∞ is Gi and that x is Gj .
• We may assume that F is not the empty flag; otherwise the property is obviously true.
• Moreover, the flags F for which we must check the property are in the residue of Gi

in �.
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For every type i in I
Take one element of type i, say G_i
For every type j in I\{i}

Take one element of type j, say G_j
Take all flags of nonempty type in the set S of all subsets

of I\{i}
Compute their orbits O under the action of the stabilizer

of G_i and G_j
For every orbit o in O

Take one representative of o, say F
Compute the intersection int of the i-shadows of x and F
Let a be the minimum of the cardinalities of the i-shadows
of x and F
If #int is not O or 1

If #int = a
If G_j is not incident with F

Let S’ := S \ {t(F)}
Else S’ := {}

Else
S’ := S \ {Non-empty subsets of t(F)}

Search for a flag F’ of type in S’ in the residue
of G_i and G_j such that F’ is incident to F
and the i-shadow of F’ is int

If no such F’ exists, the geometry is not IP_k. Stop
If such an F’ is found, continue the loop on o

After the loop on i, if the algorithm was not stopped, the
geometry satisfies IP_k

Figure 1: An algorithm to test whether a geometry � of rank k satisfies the (IP)k .

• We may compute the action of the stabilizer of ∞ and x in G and its orbits on the
flags F of type a subset of I\{i}. Then, for each orbit, we take one representative F

and compute its i-shadow σi(F ).
• Let α = |σi(x) ∩ σi(F )|. It is obvious that 0 � α � min(|σi(x)|, |σi(F )|).
• If α = 0, then x and F have non-intersecting i-shadows, and nothing further needs

to be done.
• If α = 1, then x and F are incident to a same element y of type i and σi(x)∩σi(F ) =

σi(y).
• If α = min(|σi(x)|, |σi(F )|) and x is incident with F , then we take F ′ = {x} or F ,

depending on whether or not α = |σi(x)|.
• Thus it is only:

(i) when 1 < α < min(|σi(x)|, |σi(F )|), or
(ii) when α = min(|σi(x)|, |σi(F )|) and x and F are not incident,
that we have to search for F ′. Moreover, in the first case, we know that if t (F ′) ⊆ t (F ),
then |σi(F

′)| � |σi(F )|. Therefore we need only to look for flags F ′ of type t (F ′)
such that t (F ′) ⊆ I\{i} and t (F ′) �⊆ t (F ). In the second case, we may assume that
t (F ′) �= t (F ), for otherwise this would imply that F = F ′, and F ′ would not be
incident with x.

Figure 1 gives an algorithm that follows from the above observations. In this algorithm,
we describe how to check for property (IP)k on a geometry of rank k. One may easily
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change the algorithm in order to check for the (WIP)k . Indeed, it would suffice in that case
to find one value of i for which the property is satisfied.

4. Results for sporadic groups

In this section, we give the results that were obtained on lists of geometries for sporadic
groups, using our programs. The lists that we decided to look at are those of residually
weakly primitive and (2T )1 geometries for the eight smallest sporadic groups. We tested
for the properties (WIP)i and (IP)i on geometries that are available in [14], [12], [18], [20],
[15], [19] and [21], for the groups M11, M12, M22, M23, J1, J2, J3 and HS, respectively.
The geometries listed in this section are available in Appendix B of this paper . The results
obtained are summarized in Tables 1–8.

Tables 1 and 2 summarize the results for the (IP)3 and (WIP)3 properties. In Table 1, we
give, for a group G and for a given rank r:

• the number of geometries of rank r thatGhas (This is the number of geometries that are
firm, residually connected and (IP)2, and on which the group G acts flag-transitively,
residually weakly primitively and locally 2-transitively; see [9] for definitions.);

• how many of them satisfy, respectively: (i) the (IP)3, or (ii) the (WIP)3 but not the
(IP)3, and how many do not satisfy the (WIP)3.

Table 1: Number of geometries that are (IP)3, (WIP)3 but not (IP)3, and not (WIP)3.

Group Rank # of geometries (IP)3 (WIP)3 but not (IP)3 not (WIP)3

M11 3 13 6 1 6

4 11 2 0 9

M12 3 18 7 1 10

4 18 4 0 14

5 1 1 0 0

M22 3 25 5 8 12

4 16 5 4 7

5 9 0 1 8

M23 3 13 5 1 7

4 21 5 2 14

5 10 2 1 7

J1 3 1 0 0 1

4 2 1 0 1

J2 3 19 8 3 8

4 3 1 0 2

J3 3 17 5 8 4

HS 3 30 8 5 17

4 41 8 1 32

5 8 1 0 7

6 1 0 0 1
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In Table 2, we cite the references for the geometries that satisfy the (IP)3, and those that
satisfy the (WIP)3 but not the (IP)3. These numbers refer to the papers cited above for the
corresponding groups. For instance, for the Mathieu group M22, geometries 3.1, 3.3, 3.6,
3.12 and 3.24 in [18] satisfy the (IP)3.

Tables 3 and 4 summarize the results for the (IP)4 and (WIP)4 properties in the same
way; likewise, Tables 5 and 6 refer to the properties (IP)5 and (WIP)5). Finally, Tables 7
and 8 summarize the results for the (IP) and (WIP) properties in the same way.

Since there is only one geometry of rank 6 among those that we looked at, we did not
compile a table for the (IP)6 and the (WIP)6. This geometry, which is number 6.1 for HS,
is not (WIP)6.

Table 2: References for geometries that are (IP)3, and those that are (WIP)3 but not (IP)3.

Group (IP)3 (WIP)3 but not (IP)3

M11 [14] 3.3, 3.5, 3.11, 3.12, 3.13, 3.18 3.4

4.1, 4.4 -

M12 [12] 3.2, 3.4, 3.5, 3.7, 3.9, 3.16, 3.19 3.6

4.9, 4.12, 4.19, 4.20 -

5.1 -

M22 [18] 3.1, 3.3, 3.6, 3.12, 3.7, 3,8, 3.11, 3.13,

3.24 3.17, 3.18, 3.23, 3.25

4.3, 4.9, 4.14, 4.15, 4.16 4.8, 4.11, 4.12, 4.13

- 5.2

M23 [20] 3.2, 3.3, 3.5, 3.6, 3.9 3.13

4.2, 4.4, 4.8, 4.17, 4.19 4.11, 4.12

5.3, 5.9 5.8

J1 [15] - -

4.1 -

J2 [17] 3.1, 3.2, 3.3, 3.4, 3.9, 3.16, 3.17, 3.18 3.7, 3.8, 3.10

4.2 -

J3 [19] 3.2, 3.3, 3.4, 3.7, 3.9 3.1, 3.5, 3.6, 3.10,

- 3.13, 3.14, 3.15, 3.17

HS [21] 3.2, 3.4, 3.7, 3.13, 3.14, 3.19, 3.24, 3.25 3.1, 3.10, 3.20, 3.28, 3.29

4.1, 4.3, 4.5, 4.7, 4.8, 4.14, 4.15, 4.16 4.40

5.6 -

- -
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Table 3: Number of geometries that are (IP)4, (WIP)4 but not (IP)4, and not (WIP)4.

Group Rank # of geometries (IP)4 (WIP)4 but not (IP)4 not (WIP)4

M11 4 11 2 0 9
M12 4 18 3 0 15

5 1 1 0 0
M22 4 16 3 1 12

5 9 0 1 8
M23 4 21 3 1 17

5 10 1 1 8
J1 4 2 1 0 1
J2 4 3 1 0 2
HS 4 41 5 0 36

5 8 1 0 7
6 1 0 0 1

Table 4: References for geometries that are (IP)4, and those that are (WIP)4 but not (IP)4.

Group (IP)4 (WIP)4 but not (IP)4

M11 [14] 4.1, 4.4 -
M12 [12] 4.9, 4.19, 4.20 -

5.1 -
M22 [18] 4.3, 4.9, 4.14 4.11

- 5.2
M23 [20] 4.2, 4.8, 4.19 4.11

5.3 5.9
J1 [15] 4.1 -
J2 [17] 4.2 -
HS [21] 4.1, 4.3, 4.7, 4.8, 4.14 -

5.6 -
- -

Table 5: Number of geometries that are (IP)5, (WIP)5 but not (IP)5, and not (WIP)5.

Group Rank # of geometries (IP)5 (WIP)5 but not (IP)5 not (WIP)5

M12 5 1 0 0 1
M22 5 9 0 1 8
M23 5 10 1 0 9
HS 5 8 0 1 7

6 1 0 0 1
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We used a computer with a Pentium III Xeon processor at 2.0 Ghz and 3 gigabytes of
memory (Rimm at 800Mhz) under Red Hat Linux 7.0 and Magma 2.10. Table 9 gives, for
a group G and a rank r , the number n of geometries that G has (see the note above Table 1
above) and the time needed for a complete analysis of all the n geometries of rank r that
G has. By this we mean the time needed to determine which ones are (IP)i , (WIP)i (for
i = 3, . . . r), (IP) and (WIP).

Table 6: References for geometries that are (IP)5, and those that are (WIP)5 but not (IP)5.

Group (IP)5 (WIP)5 but not (IP)5

M12 [12] - -

M22 [18] - 5.2

M23 [20] 5.3 -

HS [21] - 5.6

- -

Table 7: Number of geometries that are (IP), (WIP) but not (IP) and not (WIP).

Group Rank # of geometries (IP) (WIP) but not (IP) not (WIP)

M11 3 13 6 1 6

4 11 2 0 9

M12 3 18 7 1 10

4 18 3 0 15

5 1 0 0 1

M22 3 25 5 8 12

4 16 3 1 12

5 9 0 1 8

M23 3 13 5 1 7

4 21 3 1 17

5 10 1 0 9

J1 3 1 0 0 1

4 2 1 0 1

J2 3 19 8 3 8

4 3 1 0 2

J3 3 17 5 8 4

HS 3 30 8 5 17

4 41 5 0 36

5 8 0 1 7

6 1 0 0 1
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The results obtained for the sporadic groups tend to show either that the (IP) is too strong,
or that it calls for another axiom. Indeed, it reduces the maximal rank for geometries of M11,
M12, M22 and HS to 4. This is somehow not intuitive – for instance, since M11 is a maximal
subgroup of M12, it is therefore natural to expect the maximal rank of a geometry of M11
to be less than the maximal rank for M12. The same holds for M22 and HS. On the other
hand, the (IP) seems to be a good property in the sense that it ’kills’ a lot of geometries,
and therefore reduces the number of geometries that are obtained for a given group. In any
case, we consider that it is still too early to decide whether or not to include the (IP) or one
of its weakenings in the set of axioms of [9]. We recall the property (2T )1, which asks that
the stabilizer of a flag F of corank 1 in a geometry � act two-transitively on the residue �F

of F . Buekenhout, Dehon and Leemans started to test this property as early as in 1993, but
they decided (together with Cara) to include it in the set of axioms only in 2000.

Table 8: References for geometries that are (IP), and those that are (WIP) but not (IP).

Group (IP) (WIP) but not (IP)

M11 [14] 3.3, 3.5, 3.11, 3.12, 3.13, 3.18 3.4

4.1, 4.4 -

M12 [12] 3.2, 3.4, 3.5, 3.7, 3.9, 3.16, 3.19 3.6

4.9, 4.19, 4.20 -

- -

M22 [18] 3.1, 3.3, 3.6, 3.12, 3.24 3.7, 3,8, 3.11, 3.13,

- 3.17, 3.18, 3.23, 3.25

4.3, 4.9, 4.14 4.11

- 5.2

M23 [20] 3.2, 3.3, 3.5, 3.6, 3.9 3.13

4.2, 4.8, 4.19 4.11

5.3 -

J1 [15] - -

4.1 -

J2 [17] 3.1, 3.2, 3.3, 3.4, 3.9, 3.16, 3.17, 3.18 3.7, 3.8, 3.10

4.2 -

J3 [19] 3.2, 3.3, 3.4, 3.7, 3.9 3.1, 3.5, 3.6, 3.10, 3.13,

3.14, 3.15, 3.17

HS [21] 3.2, 3.4, 3.7, 3.13, 3.14, 3.19, 3.24, 3.25 3.1, 3.10, 3.20, 3.28, 3.29

4.1, 4.3, 4.7, 4.8, 4.14 -

- 5.6

- -
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5. Results on other almost simple groups

We also tested our program on other almost simple groups. We make some observations
on the results obtained.

For the Suzuki simple group Sz(8), there are 147 geometries of rank three that satisfy
the axioms of [9] (see [16]). All these geometries are thin. Of these, only 27 satisfy the (IP),
and 48 are (WIP) but not (IP). Therefore the (IP) seems to be a good axiom to use in order
to reduce the number of thin geometries that we obtain. It took 12 seconds to obtain these
results.

For a symmetric group Sym(n) with n � 7, we found with our programs that the only
inductively minimal geometry of rank n − 1 satisfying the (IP) is the one with a linear
diagram. Cara and Leemans then proved in [10] that this is the case for any value of n.

Table 9: Computing times.

Group Rank # of geometries Computing time

M11 3 13 1.4 secs

4 11 6.5 secs

M12 3 18 6.6 secs

4 18 45.8 secs

5 1 7.3 secs

M22 3 25 30 secs

4 16 57 secs

5 9 6 min 20 secs

M23 3 13 2 min 45 secs

4 21 20 min 08 secs

5 10 2 h 47 min 19 secs

J1 3 1 0.4 secs

4 2 13 secs

J2 3 19 6.3 secs

4 3 5.3 secs

J3 3 17 12 min 50 secs

HS 3 30 7 min 39 secs

4 41 5 h 16 min 31 secs

5 8 1 h 57 mins 15 secs

6 1 2 h 15 min 17 secs
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6. Programs

/*-----------------------------------------------------------
"Shadow" receives an element h of G and two subgroups Gi and Gj
of G.
It returns a sequence containing one representative of each
right coset of Gj meeting Gi.

-----------------------------------------------------------*/
Shadow := function(h,Gi,Gj);

return [t*h : t in Transversal(Gi,Gi meet Gj)];
end function;

/*-----------------------------------------------------------
"Intersection" receives two sequences of elements of G that are
representatives of the cosets of Gi forming the i-shadows
of an element x and a flag F.
It returns a sequence containing a representative of each coset
of Gi appearing in both shadows.

-----------------------------------------------------------*/
Intersection := function(coef1, coef2, Gi);

int := [];
for x in coef1 do

for y in coef2 do
if x*yˆ-1 in Gi then

Append(˜int, x); break y;
end if;

end for;
end for;
return int;

end function;

/*-----------------------------------------------------------
"AreIncident" receives a set x of subgroups of G, a set of
indices corresponding to subgroups of x having a right coset

in the flag F, an element h of G such that x[r]*h is a right
coset of F, a set r2 of indices corresponding to the subgroups
of x having a right coset in the flag F’ and an element t of G
such that x[r2]*t is a right coset of F’.
It checks whether all elements of F are incident to all elements
of F’ or not.

-----------------------------------------------------------*/
AreIncident := function(x, r, h, r2, t);

ok := true;
for y in r do

yh := {z*h : z in x[y]};
for z in r2 do

zt := {w*t : w in x[z]};
if IsEmpty(yh meet zt) then

ok := false; break y;
end if;

end for;
end for;
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return ok;
end function;

/*-----------------------------------------------------------
"Search" performs the search for a flag F’ incident to x and F
and such that its i-shadow is equal to the intersection of
the i-shadows of x and F.
It returns "true" if such an F’ exists; "false" otherwise.
- alpha is the minimum of the cardinalities of the i-shadows

of x and F;
- Gfprime is the stabilizer of a flag F’.
- Gi is the stabilizer of x;
- Gj is the stabilizer of F;

-----------------------------------------------------------*/
Search := function(alpha, Gfprime, Gi, Gj, inte, x, r, h, r2);

if alpha ne (#Gfprime) / (#(Gfprime meet Gi)) then return false;
else

for t in Transversal(Gi meet Gj, Gi meet Gj meet Gfprime) do
shadowt := Shadow(t,Gfprime,Gi);
if #Intersection(shadowt,inte,Gi) eq alpha then

if AreIncident(x, r, h, r2, t) then
return true;
end if;

end if;
end for;
return false;

end if;
end function;
/*----------------------------------------------------------

"Property" checks whether, for a given type i and a given
element Gj of type j, for every flag F such that the i-shadows
of Gj and F have at least one element in common, there exists
an F’ such that F’ is incident to x and F and the i-shadow of F’
is the intersection of the i-shadows of x and F.
- k is a set of subsets of the set of types of the geometry;

These subsets of types are the types that the flags F may have.
-----------------------------------------------------------*/
Property := function(G,x, j, i, k);

ipn := true;
Gi := x[i];
Gj := x[j];
shadowx := Shadow(Id(Gj),Gj,Gi);

for r in k do
Gf := G;
for y in r do

Gf := Gf meet x[y];
end for;
phi, L := CosetAction(Gi, Gi meet Gf);
phiinv := Inverse(phi);
O := Orbits(phi(Gi meet Gj));
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for o in O do
o2 := phiinv(o);
shadowF := Shadow(Representative(o2),Gf,Gi);
inters:=Intersection(shadowx, shadowF, Gi);
alpha := #inters;
ok := true;
k2 := {};
if not (alpha in {0, 1}) then

if alpha eq Min(#shadowx,#shadowF) then
if #(Set(x[j]) meet

Set({xx*Representative(o2): xx in Gf})) eq 0 then
ok := false;
k2 := k diff {r};

end if;
else

ok := false;
k2 := k diff Subsets(r);

end if;
Include(˜k2,{});
while not ok and not(IsEmpty(k2)) do

Gfprime := G;
r2 := Representative(k2);
for y in r2 do

Gfprime := Gfprime meet x[y];
end for;
if Search(alpha, Gfprime, Gi, Gj, inters,

x, r, Representative(o2), r2) then
ok := true;

else
k2 := k2 diff {r2};

end if;
end while;
if not(ok) then

ipn := false; break r;
end if;

end if;
end for;

end for;
return ipn;

end function;
/*----------------------------------------------------------

"IPn" receives a CosetGeometry cg and an integer n and checks
whether cg satisfies the properties (IP)_n and (WIP)_n.

-----------------------------------------------------------*/
IPn := function(cg, n);
ipn := true;
wip := true;
wipn := true;
if Rank(cg) ge n then

wipn := true;
G := Group(cg);
t := Types(cg);
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subt := Subsets(Set(t),#t-n);
for y in subt do

r := Residue(cg,y);
G := Group(r);
x := MaximalParabolics(r);
I := {1..n};
wip := false;
for i in I do

iipn := true;
for j in I diff {i} do

c := Subsets(I diff {i});
Exclude(˜c,{});
if not(Property(G,x,j,i,c))
then

ipn := false; iipn := false; break j;
end if;

end for;
wip := wip or iipn;

end for;
wipn := wipn and wip;

end for;
end if;
return ipn, wipn;
end function;
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Appendix A.

This appendix contains the source code of the paper (Section 6) as a text file. This file
can be loaded in Magma using the ‘load’ command, and is available at

http://www.lms.ac.uk/jcm/7/lms2004-015/appendix-a.

Appendix B.

This appendix comprises a gzipped tar archive of text files that contain the maximal
parabolic subgroups of the geometries for the eight smallest sporadic groups mentioned in
Section 4. The archive also contains a README file, explaining how to use the files in
Magma, and is available at

http://www.lms.ac.uk/jcm/7/lms2004-015/appendix-b.
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