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Abstract
Dmitri Gallow has recently proposed an ingenious accuracy-first vindication that our
credence should be updated in accordance with conditionalization. This paper extends his
idea to cases where we undergo only a partial learning experience. In particular, I attempt
to vindicate, in the spirit of accuracy-first epistemology, that when we undergo what is
called ‘Jeffrey partial learning’ in this paper, our credences should be updated in accordance
with Jeffrey conditionalization, or at the very least, the update should be rigid. In doing so,
I propose what I call the ‘Jeffrey-accuracy function.’ This function is not strictly proper
and, at first glance, seems to rationalize ill-motivated credence updating. However, this
turns out not to be the case.
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1. Conditionalization and value changes

For the past few decades, accuracy-firsters, who regard accuracy as the only ultimate
epistemic value, have tried to vindicate various Bayesian epistemic norms such as
probabilism, conditionalization, the Reflection Principle, and the Principal Principle.
Some seem successful; some seem not. Their approach to probabilism is generally well
accepted as an outstanding epistemic vindication of why our credences should be
probabilistically coherent. However, the accuracy-first approach to conditionalization
had seemed to run counter to orthodox Bayesianism – that is, this approach had
appeared to lead to somewhat unanticipated results, such as denying conditionalization
or appealing to an ill-founded decision-theoretic rule.1

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article, distributed under the
terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

1There is extensive literature containing accuracy-first projects that aim to vindicate various Bayesian
norms. Among them, Pettigrew (2016) is one of the most representative. Some readers may disagree with my
assessment of the accuracy-first approach to conditionalization. This may be, in particular, because certain
works, such as Greaves and Wallace (2006), are widely recognized as successfully vindicating a version of
conditionalization. However, readers should note that the discussion that follows is largely unrelated to their
vindication of conditionalization. Generally, Greaves and Wallace (2006) is regarded as a vindication of a
synchronic version of conditionalization, often referred to as ‘Plan Conditionalization.’ See Easwaran (2013)
and Pettigrew (2016). In this paper, I will focus not on the synchronic version of conditionalization but on its
diachronic version. Of course, there have been several attempts to vindicate this version, for example,
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Fortunately, Gallow (2019) recently provided an ingenious accuracy-first way to get
out of this predicament. His breakthrough idea is that what is changed as a result of learning
experiences is the way credences are epistemically valued – not credences per se. According
to his suggestion, the changes in credences are rationalized by the changes in epistemic
values and the decision-theoretic principle of maximizing expected epistemic values.

To see this, let me introduce several notations and terminology. Let ‘V’ be an
epistemic value function. This function takes a credence function c and a world w
as input and returns a real number representing the epistemic value of c at w.
Relatedly, accuracy-firsters take it that the epistemic value of c at w, i.e., V c;w� �, is
entirely determined by its proximity to the truth function of w – in other words,
the epistemic value of c at w is identified with its accuracy at that world. In what
follows, I will use interchangeably ‘epistemic values’ and ‘accuracies’.

With this accuracy function V in hand, the accuracy-firsters provide a decision-
theoretic way of rationalizing our credence updating. Let ‘Ep c;V� �’ be the expected
accuracy of c by the light of p.2 This is defined as follows:

Ep c;V� � :�
X

w2W p w� �V c;w� �:

This is a weighted average of the accuracies of c at each world w, with a weight being your
credence that w is actual. Now, an accuracy-first updating rule, which may be called ‘the
principle of maximization of the expected accuarcy (MEA)’, can be formulated, as
follows:

MEA. Suppose that an accuracy function V is legitimate, and that an agent's credence
function p is probabilistically coherent. Then, the agent's credence updating from p to p0 is
rational if it holds that:

p0 � arg maxc Ep c;V� �� �
: (1)

It is noteworthy that MEA might rationalize ill-motivated credence updating unless the
accuracy function V is constrained in a reasonable way. Suppose, for example, that there
is an accuracy function V such that Ep p;V

� � ≤ Ep p�;V
� �

but p≠ p�. According to MEA,
then, an agent, whose credence function is p, could update their credence function to p�.
Notably, this updating is still rationalized byMEA even though no new relevant evidence
is obtained.

Accuracy-firsters, of course, do not need to worry about this point. Several
constraints have been imposed on legitimate accuracy functions. Among these
constraints, Strict Propriety can play a role in preventing the ill-motivated updating.3

Strict Propriety. Suppose that an accuracy function V is legitimate, and that a credence
function p is probabilistically coherent. Then, for any credence function c ≠ p

� �
,

Leitgeb and Pettigrew (2010) and Pettigrew (2016). As Gallow (2019) points out, the vindication in Leitgeb
and Pettigrew (2010) relies on an ill-founded decision-theoretic rule – in particular, the rule in question
cannot, mathematically speaking, be regarded as a weighted average. On the other hand, the attempt in
Pettigrew (2016) leads to a diachronic rule that differs from conditionalization – namely, what is called
‘Brute Laplacian Imaging.’

2Every credence function in this paper is assumed to be defined over the same opinion set, which is also
assumed to be the power set of a finite, non-empty set of possible worldsW. Thus, propositions are regarded
as members of the power set. For the sake of notational simplicity, I often use w rather than wf g if there is no
danger of confusion. For example, I will use p w� � instead of p wf g� �.

3There are several arguments for Strict Propriety. Some discussions about the relationship between Strict
Propriety and ill-motivated credence updating can be found in Gibbard (2007), Joyce (2009), and Oddie
(1997).
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Ep p;V
� �

> Ep c;V� �:

This constraint states that a legitimate accuracy function leads us to expect our own credence
function to be valued more highly than any other credence functions. Thus, if V is strictly
proper, MEA does not rationalize that a credence function is updated to another function
despite the absence of relevant evidence. With the help of Strict Propriety, our credence
function can rationally remain unchanged until we obtain some new evidence.

What about when we do obtain some evidence? Orthodox Baysians require us to
update our credence function in accordance with conditionalization:

Conditionalization. Suppose that an agent learns that E is true, and nothing more,
thereby updating their credence function from a probabilistically coherent credence
function p to another function pE . Then, pE results from conditionalizing p on E if and
only if pE �� � � p��jE�, where p E� � > 0.

Can accuracy-firsters vindicate, by appealing to MEA, the rationality of credence
updating in accordance with conditionalization? If V is strictly proper, then any
credence updating, except for trivial cases, cannot be rationialized by MEA, and
therefore, conditionalization cannot be vindicated either.4 Thus, accuracy-firsters need
to find ways to modify MEA to make it a rule governing our rational credence updating.

In this regard, Gallow’s proposal can essentially be understood as abandoning the
idea that we should always evaluate credence functions using strictly proper accuracy
functions. Gallow thinks, especially, that when we learn something, a learning-encoded
accuracy function, even if it is not strictly proper, should be used to evaluate credence
functions. According to him, accuracy-firsters, who aim to vindicate any diachronic rule
in terms of the single-minded pursuit of accuracy, should prioritize changes in value
rather than changes in credence – in other words, accuracy-firsters should take it that
learning experience rationalizes changes of accuracy functions and such changes, in
turn, rationalize changes in credence functions.

Then, what function should play the role of a learning-encoded function after E is
learned? Suppose that an agent who evaluates credence functions using a strictly proper
accuracy function V learns that E is true and nothing more. Gallow proposes that, in this
situation, the accuracy function used to evaluate credence functions should be changed
to VE, defined as follows:

VE c;w� � :� V c;w� � if w 2 E
k if w 2 :E

�

Here, k is a constant. According to this proposal, when E is learned, some epistemic
values remain the same while others do not. In particular, the epistemic values at the
worlds where E is false change so that they attain the same value as each other.

What intuition does this kind of change in epistemic value capture? To see this,
consider the following story about practical value changes due to a learning experience.
You have a date with your partner this weekend. You were told that they would book one
of the following for this date: a jazz concert, a rock concert, a baseball game, or a
basketball game. So, you began to care about these possibilities and assigned a practical
value to each. Sometime later, you learn that your partner has not booked any music
concert for this weekend. Thus, the possibility of having a date at a music concert is
eliminated, so you no longer take its value into account for your weekend date. In this

4Here, ‘trival cases’ denote situations where the relevant agent learns something that they already know or
learns a tautology, thereby leaving their credence function unchanged.
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way, the learning experience can change the extent to which the values of some
possibilities are taken into account, and this change, in turn, affects your practical value
of the possibilities. In particular, if such possibilities have a practical value, then their
values should be the same. This is because when the practical values of the possibilities
are not taken into account, any differences in their practical value are canceled out.
Basically, Gallow’s proposal captures the same intuition as the one reflected in the story
above. When E is learned, the possible worlds where E is false are eliminated. As a result,
the epistemic values of a credence function at those worlds are not taken into account,
which leads to a change in the epistemic values so that they become the same.

This learning-encoded accuracy function VE leads accuracy-firsters to a new version
of MEA, which can be applied to cases where we obtain some evidence.

MEA1. Suppose that a learning-encoded accuracy function VE is legitimate. Suppose
also that an agent learns that E is true, and nothing more, thereby updating their
credence function from a probabilistically coherent credence funtion p to another
function pE . Then, the agent’s credence updating from p to pE is rational if it holds that:

pE � arg maxc Ep c;VE� �� �
: (2)

It is not hard to prove that when VE is generated by a strictly proper function V, equation
(2) holds if and only if pE results from conditionalizing p on E – that is,
pE �� � � p��jE�.5 Thus, conditionalization can be said, in the spirit of accuracy-first
epistemology, to be a rationality requirement governing our credence updating.

Before we proceed further, one remark about Gallow’s proposal is in order. As
mentioned, the learning-encoded accuracy function VE is not strictly proper. Indeed, it is
the case that:

Ep p;VE

� �
< Ep�p��jE�;VE�;

according to which an agent whose credence function is p expects their own credence
function to be valued less than p��jE� when epistemic values are given by VE. Does
Gallow’s proposal rationalize the aforementioned ill-motivated credence updating?
Gallow (2019, 19–20) does not think so, and I agree.

One way to see this may be to note that: for any credence function c ≠ pE
� �

;6

EpE pE;VE

� �
> EpE c;VE� �;

where V is an accuracy function generated by a strictly proper accuracy function V, and pE
results from conditionalizing p on E. This indicates that VE leads an agent to expect their
own posterior function pE to be valued more highly than any other credence functions.
Hence, VE can be said to be strictly proper in a restricted sense – that is, VE is strictly proper
with respect to credence functions that result from conditionalization on E. So, if our
attention is restricted to such credence functions, it seems natural to say that VE , which is
generated by a strictly proper accuracy function V, does not lead to ill-motivated credence
updating, and thus is at least as legitimate as strictly proper V. A caveat needs to be stated
here. I think this type of response to the issue at hand is not epistemologically promising for
reasons that will become clear later. I will revisit this issue in Section 3.7

5A relevant proof can be found in Gallow (2019), 18–19.
6It is assumed that V is strictly proper and pE is probabilistically coherent. Note also that pE w� � � 0

when w =2 E. Then, we have that for any credence function c ≠ pE
� �

,
P

w2W pE w� �VE pE;w
� � �P

w2W pE w� �V pE;w
� �

>
P

w2W pE w� �V c;w� � � P
w2W pE w� �VE c;w� �:

7In particular, this type of response will, in Section 4, turn out not to be sufficiently general to account for
cases where we undergo a partial learning experience. In that section, I will argue that the partial learning-
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2. Jeffrey partial learning and value changes

Heretofore, we have considered doxastic situations in which experience leads us to learn
a single proposition, and our credences are updated accordingly. However, it may not be
the case that experience always leads us to learn a single proposition. Due to our
conceptual and/or cognitive limitations, experience may often fall short of leading to
such learning. Be that as it may, such experience, which I will henceforth refer to as
‘partial learning’, cannot be said to have no impact on our doxastic states. Partial
learning may change some aspect of our doxastic state, and its impact, in turn, may
propagate throughout our overall state.

In this regard, it is noteworthy that some orthodox Bayesians have considered a
particular type of partial learning, which may be called ‘Jeffrey partial learning’. This
expression is intended to denote a course of partial learning experience that changes our
doxastic state over a partition, which is a set of mutually exclusive and collectively
exhaustive propositions, rather than a single proposition. For orthodox Bayesians, such
experience directly shifts our credence assignment over a partition, and its impact leads
to an update of our overall credences in accordance with Jeffrey conditionalization.

Let E � E1; � � � ; Emf g be a partition. In what follows, I will say that an agent
undergoes Jeffrey partial learning on E with the input parameters βi;1, exactly when the
Jeffrey partial learning shifts their credence in Ei from ei to e�i for any Ei in E. Here,
βi;1 � e�i =ei

� �
= e�1 =e1
� �

, called the ‘Bayes factor of Ei against E1’ (where E1 is an arbitrary
anchored proposition).8 The term ‘input parameters’ is intended to denote parameters
representing the impact of experience on credences with prior credences factored out.
Many orthodox Bayesians consider Bayes factors to be among the most plausible input
parameters.9 With these input parameters in hand, Jeffrey conditionalization can be
formulated as follows:

Jeffrey Conditionalization. Suppose that an agent undergoes Jeffrey partial learning on
E with the input parameters βi;1, and nothing more, thereby updating their credence
function from a probabilistically coherent credence funtion p to another function pE.
Then, pE results from Jeffrey conditionalizing p on E with βi;1 if and only if

pE �
P

i βi;1p �&Ei� �P
i βi;1p Ei� � : (3)

As is widely known, equation (3) holds only if the credence updating from p to pE is rigid
with respect to E in the following sense:

Rigidity.

pE��jEi� � p��jEi�; for any Ei 2 E:

That is to say, credence updating in accordance with Jeffrey conditionalization ensures
that the conditional credences given each proposition in E remain unchanged. Rigidity is
regarded as an essential part of Jeffrey conditionalization.

Can accuracy-firsters then vindicate that an agent should update their credence
function in accordance with Jeffrey conditionalization when they undergo Jeffrey partial

encoded accuracy function is not strictly proper even in this restricted sense, and propose an epistemological
way to address the issue related to Strict Propriety and ill-motivated updating. See footnote 14.

8It is assumed here that ei and e�i are all positive real numbers in 0; 1� �.
9For the discussion about Bayes factors and the input parameters, see Field (1978), Jeffrey (2004), and

Wagner (2002); Wagner (2003). In those works, the input parameters are often called ‘observational
parameters’, ‘probabilistic observational reports’, ‘indices of probability change’, and so on.

Episteme 5

https://doi.org/10.1017/epi.2025.10047 Published online by Cambridge University Press

https://doi.org/10.1017/epi.2025.10047


learning E? Specifically, can they provide a Gallow-style vindication of Jeffrey
conditionalization in terms of the single-minded pursuit of accuracy? Accuracy-firsters,
tasked with providing such a vindication, should maintain that when an agent undergoes
Jeffrey partial learning on E, they should evaluate credence functions using an accuracy
function that encodes the partial learning, rather than the accuracy function that the
agent used before. In what follows, I will refer to such an accuracy function as ‘Jeffrey-
accuracy function on E.’

Then, what should the Jeffrey-accuracy function on E look like? A simple but Gallow-
style suggestion might be that when an agent, who evaluates credence functions using a
strictly proper accuracy function V, undergoes Jeffrey partial learning on E and nothing
more, the Jeffrey-accuracy function VE, defined as follows, should be used to evaluate
credence functions: for any Ei 2 E,

VE c;w� � :� λiV c;w� � � ki if w 2 Ei:

Here, each λi is a positive real number and each ki is a real number.
The Jeffrey-accuracy function VE captures a similar intuition to Gallow’s learning-

encoded accuracy function VE. Consider a story that is identical with the date story in
the previous section, except that you learn your partner has not booked any music
concert for this weekend. Instead, you undergo an experience that leads you to think that
your partner may strongly prefer attending a sports game over a music concert this
weekend. Unlike the original story, this experience does not eliminate any possibilities.
However, the experience can also have an impact on the way the possibilities are
practically valued. After undergoing the experience, you may pay more attention to
things related to attending a sports game than to those related to attending a music
concert – for example, you may come to take more time to choose an outfit suitable for a
sports game than for a music concert. This shows that you take the value of attending a
sports game into account much more than that of attending a music concert, and that, as
a result, the practical value of each changes.

In this way, partial learning changes the way possibilities are practically valued.
Similar changes occurs in epistemic value. A Jeffrey partial learning can eliminate no
possible world. However, such learning changes the extent to which the epistemic value
of a credence function at each world is taken into account, and thus the epistemic value
of the function at each world. Each λi in the definition of VE c;w� � can be taken as a
weight representing the extent to which an agent takes the epistemic value of c at the
world w where Ei is true into account. Before undergoing a Jeffrey partial learning, the
agent assigns the same weight to the epistemic value of c at each world. However, these
weights are adjusted when the agent undergoes partial learning. In what follows, each
weight λi will be called ‘the accuracy factor of Ei.’ On the other hand, each ki in the
definition can be taken as a constant epistemic value, which is assigned to c at the world
w where Ei is true, even when Ei turns out to be false and λi becomes zero.

Similar to the learning-encoded accuracy function VE, the Jeffrey-accuracy function
on E, i.e., VE, leads accuracy-firsters to another version of MEA, which can be applied to
cases where we undergo Jeffrey partial learning on a partition E:10

10In orthodox decision problems, utilities are not affected by experience. Experience has an impact on the
expected utilities only through credences reflecting the experience. In MEA2, however, experience directly
affects the way credences are epistemically valued—that is, experience directly alters the accuracy function.
Thus, in MEA2, experience has an impact on the expected value in two different ways: first, through the
prior credence function p, reflecting the old experience, and second, through the new accuracy function VE,
reflecting the new experience. Similar considerations apply to MEA1. In this sense, MEA2 andMEA1 can be
thought of as unorthodox decision rules.
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MEA2. Suppose that a Jeffrey-accuracy function VE is legitimate. Suppose also that an
agent undergoes Jeffrey partial learning on E, and nothing more, thereby updating their
credence function from a probabilistically coherent credence funtion p to another
function pE. Then, the credence updating from p to pE is rational if it holds that:

pE � arg maxc Ep c;VE� �� �
: (4)

Interestingly, we can prove that equation (4) holds if and only if11

pE �
P

i λip �&Ei� �P
i λip Ei� � ; (5)

where VE is generated by a strictly proper function V.
What conclusion can accuracy-firsters, who aim to vindicate Jeffrey conditionaliza-

tion in terms of the single-minded pursuit of accuracy, draw from this result? Pay
attention to the striking similarity between the two equations, (3) and (5) – in particular,
note that by setting the Bayes factor βi;1 in equation (3) to the ratio of the two accuracy
factors, λi and λ1, i.e., λi=λ1, we arrive at equation (5). Thus, such accuracy-firsters might
think as follows: Jeffrey partial learning on E rationalizes the change from V to VE, and
such changes, in turn, rationalize our credence updating in accordance with Jeffrey
conditionalization on E, using the ratios of the accuracy factors λi=λ1 as input
parameters.

Admittedly, this kind of vindication might be unsatisfactory to orthodox Bayesians.
Such Bayesians might argue that experience directly changes our credences themselves,
rather than the way credences are epistemically valued. Thus, they may require accuracy-
firsters to explain how it is rationalized that the ratio of the accuracy factors in question
serves as input parameters that represent the impact of experience on credences with
prior credences factored out.

Is there any accuracy-first way to respond to this requirement? In particular, how can
accuracy-firsters, who aim to vindicate Jeffrey conditionalization in terms of the single-
minded pursuit of accuracy, respond to this requirement? I think they have only a few
things in this regard. Similar to what is stated in Gallow (2019, 17), it could be argued
that there is no compelling reason to favor the explanation provided by orthodox
Bayesians about the impact of experience over that of the single-minded accuracy-
firsters. However, I think it must be acknowledged that this seems to fall short of being a
full-fledged response capable of persuading orthodox Bayesians.

Nonetheless, this problem does not render the aforementioned accuracy-first
argument for Jeffrey conditionalization entirely useless. Note that the credence updating
from p to pE satisfies equation (5) only if the credence updating from p to pE is rigid with
respect to E. Thus, it can be said that the accuracy-first approach to Jeffrey partial
learning successfully vindicates that our credence updating should be rigid when we
undergo Jeffrey partial learning and nothing more. As stated, Rigidity is an essential part
of Jeffrey conditionalization. Therefore, the aforementioned accuracy-first vindication
can be seen as providing a good epistemic reason why it is rational for us to update our
credences in accordance with Jeffrey conditionalization.

11Proofs and mathematical remarks related to the following discussion are given in Appendix.
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3. Jeffrey-accuracy and ill-motivated updating

So, we can say that accuracy-firsters, at the very least, vindicate that our credence
updating should be rigid when we undergo Jeffrey partial learning. That said, this
vindication remains incomplete. Can Jeffrey-accuracy function VE be regarded as a
legitimate epistemic value function? Is VE strictly proper? As mentioned in Section 1, it
can be argued that the learning-encoded value function VE, which is generated by a
strictly proper function V, is strictly proper in a restricted sense. Does a similar argument
apply to VE? To put it another way, can we say that VE is strictly proper with respect to
credence functions that result from Jeffrey conditionalization on E? Unfortunately, it
does not.

Suppose that an accuracy function V is strictly proper and that VE is generated by V
with the accuracy factors λi and the constants ki. Let p be a probabilistically coherent
function and let p n� � be a function defined as follows:

p n� � :�
P

i �λi�np �&Ei� �P
i �λi�np Ei� � :

Notably, it can be proved that:12 for any n 2 0; 1; � � �f g,

p n�1� � � arg maxc Ep n� � c;VE� �
h i

:

Let pE be a credence function resulting from Jeffrey conditionalizing p on E with the
input parameters λi=λ1. So, it holds that pE � p 1� �. Then, it follows from the above
equation that:

EpE pE;VE

� �
< EpE p 2� �;VE

� �
: (6)

Hence, we should say that VE is not strictly proper. Moreover, unlike VE , the Jeffrey-
accuracy function VE is not strictly proper, even in a restricted sense – that is, VE is not
strictly proper even with respect to credence functions, such as pE, which result from
Jeffrey conditionalizing p on E.

Unfortunately, this is not the whole story regarding the Jeffrey-accuracy function VE.
The above result indicates that VE leads an agent to expect their own credence function
pE to be valued less than another credence function, namely p 2� �. Thus, an agent who
follows MEA2 should update their credence function to p 2� �, even if there is no extra
experience prompting this update. In other words, MEA2 rationalizes ill-motivated
credence updates, provided that VE is legitimate. Note further that: for any
n 2 0; 1; � � �f g,

Ep n� � p n� �;VE

� �
< Ep n� � p n�1� �;VE

� �
:

Hence, the ill-motivated credence updating cannot help but be iterated infinitely, and so
VE renders our doxastic state very unstable. Based on the above considerations, we also reach
a somewhat perplexing conclusion. Let E� be the disjunction of all propositions whose
accuracy factor has themaximum value. Then, we have that p n� � will converge to p��jE�� as
n increases.13 Put differently, as the ill-motivated credence updating in question is iterated,

12Proofs and mathematical remarks related to the following discussion are given in Appendix.
13Formally, E� is defined as follows: E� � _i Ei : λi ≥ λj; for any j

� �
. Let λ� be the maximum value of

accuracy factors. And let I� � i : λi ≥ λj; for any j
� �

. Then, we have that:

lim
n!∞

p n� � � lim
n!∞

P
i �λi�np �&Ei� �P

i �λi�np Ei� � � lim
n!∞

P
i �λi=λ��np �&Ei� �P

i �λi=λ��np Ei� �
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the agent’s credence function will approach p��jE��. When Jeffrey partial learning on E
legitimately changes epistemic value functions as suggested, the credence updating guided by
MEA2 collapses into conditionalization on E�!

What conclusion should we draw from the above considerations? Should we abandon
the accuracy-first vindication of Jeffrey conditionalization? Or, should we conclude that
MEA2 is theoretically redundant and seek a way to live our epistemic lives without it? It
seems to me that these options are not on the right track. I think, in particular, that the
above problems are merely apparent and not genuine.

Suppose that you are at the beginning of your epistemic life, so you have not yet
undergone any (partial) learning experience. Let a probability function p be your initial
credence function reflecting this doxastic situation. How should you epistemically evaluate
credence functions in this situation? In particular, is it reasonable for you to evaluate the
epistemic betterness between credence functions using a Jeffrey-accuracy function VE in this
situation? It is very natural that your evaluation of credence functions should reflect your
doxastic situation exactly as it stands. If you evaluate credence functions using VE encoding
experience that you do not undergo, you might reach a wrong verdict about epistemic
betterness, thereby updating your credence function even in the absence of relevant
experience. So, at the beginning of the epistemic life, you should evaluate credence functions
using an accuracy function V that does not encode any experience.

Similar things go with a doxastic situation where you undergo Jeffrey partial learning
on E, and nothing more. When you undergo such an experience, the accuracy function
you should use for epistemic evaluation is the Jeffrey-accuracy function VE, which
encodes your experience exactly as it stands. Neither V, which encodes no experience,
nor VE , which encodes a learning experience you did not undergo, should be used for
your epistemic evaluation. In this doxastic situation, the epistemic evaluation of a
credence function c is thus made by considering the expected Jeffrey-accuracy of c,
which is the weighted average of the Jeffrey-accuracy of c at each world w, with the
weight being your credence that w is actual. Note that the evaluation is conducted from
the perspective of you, who have not yet updated the credence function despite
undergoing the experience in question. Thus, the weight assigned to the Jeffrey-accuracy
of c at each world w must be given by your initial function p, which does not reflect the
impact of Jeffrey partial learning on your credences. To wrap up, your evaluation in this
situation depends on two things: the Jeffrey-accuracy function VE and your initial
credence function p. The impact of the experience on your doxastic state is reflected only
in the former, not in the latter.

Suppose now that you have completed your credence updating after undergoing the
Jeffrey partial learning in question, and thus have pE as your current credence function.
With pE as your current credence function, you evaluate credence functions by
considering their expected accuracies by the light of pE. In this evaluation, the weight
assigned to the accuracy of a credence function at a world w is your current credence that
w is actual, i.e., pE w� �. Thus, it should be said that when you currently evaluate credence
functions by the light of pE, the weights reflect the impact of Jeffrey partial learning,
which prompted your previous credence update to pE, on your doxastic state.

Then, what accuracy function should be used for this current epistemic evaluation?
Should you make use of the Jeffrey-accuracy function VE, which encodes your previous
Jeffrey partial learning experience? I do not think so. As explained, the weights that are

�
P

i2I� p �&Ei� �P
i2I� p Ei� � � p �&E�� �

p E�� � � p��jE��:

Episteme 9

https://doi.org/10.1017/epi.2025.10047 Published online by Cambridge University Press

https://doi.org/10.1017/epi.2025.10047


needed to determine the expected accuracy of credence functions – i.e., your current
credence given by pE—already reflect the impact of the experience. Thus, if you currently
evaluate a credence function c by considering its expected Jeffrey-accuracy in light of pE,
i.e., EpE c;VE� �, your verdict based on this evaluation should be said to be overdetermined.
This is because the evaluation considers the impact of the experience on your doxastic
state twice: once through pE and once through VE: Our evaluation of credence functions
should reflect our doxastic situation exactly as it stands. Any evaluation that leads us to
such an overdetermined verdict reflects our doxastic situation incorrectly and should
therefore be regarded as unreasonable. To avoid this kind of unreasonableness, you
should, in this doxastic situation, use an accuracy function V that encodes no impact of
experience, rather than the Jeffrey-accuracy function VE. To sum up, when pE is your
current credence function, your current epistemic evaluation of a credence function c
should be made by considering EpE c;V� �, not EpE c;VE� �.

Let me revisit the problems mentioned above: the Jeffrey-accuracy function VE is not
strictly proper and rationalizes ill-motivated credence updating. I concede the former;
however, I do not concede the latter. As shown in (6), it is an indisputable mathematical fact
that VE is not strictly proper. Nonetheless, this fact does not directly lead us to the conclusion
that VE rationalizes ill-motivated credence updating. This is because, as explained above, VE
is not a legitimate accuracy function for an agent to use when they have a credence function
pE that already reflects the impact of Jeffrey partial learning. The Jeffrey-accuracy function
VE is legitimate only when we have not yet updated our credence function. Hence, the
epistemic evaluation using EpE c;VE� � cannot be reasonable, and therefore, such an
evaluation does not rationalize ill-motivated credence updating. We do not need to worry
about whether the Jeffrey-accuracy function makes the credence updating guided by MEA2
collapse into conditionalization.14

4. Conclusion

Gallow (2019) has proposed that our learning experience rationalizes changes in the way
credences are epistemically valued, and such changes, in turn, rationalize our credence
updating in accordance with conditionalization. This paper may be considered an extension
of his idea to cases where our experience falls short of leading to such learning. In particular,
I have attempted to vindicate, in the spirit of accuracy-first epistemology, that when we
undergo Jeffrey partial learning, our credences should be updated in accordance with Jeffrey
conditionalization, or at the very least, the update should be rigid.

In doing so, I have formulated Jeffrey-accuracy functions, which are generated by
strictly proper accuracy functions. The strictly proper function that an agent has before
undergoing Jeffrey partial learning assigns the same weight to the epistemic value of a
credence function at each world. These weights are adjusted when the agent undergoes

14Can this line of response also apply to the issue related to a learning-encoded accuracy function VE and
Strict Propriety, as discussed toward the end of Section 2? Of course, it can. I do concede that VE is not strictly
proper—this is a mathematical fact. Nonetheless, I do not concede that VE rationalizes ill-motivated credence
updating. Suppose pE is your current credence function, obtained by conditionalizing p on E, and VE is generated
by a strictly proper accuracy function V. In this doxastic situation, your current epistemic evaluation of a credence
function c should be based on EpE c;V� �, not EpE c;VE� �. Thus, no ill-motivated credence updating is rationalized
by VE . Since your current credence function pE already encodes the impact of the learning experience, VE is not
legitimate for use in the epistemic evaluation of credence functions in such a doxastic situation. Here, it is
noteworthy that EpE c;V� � � EpE c;VE� �. Using this mathematical fact, we could assert toward the end of Section 2
that VE is strictly proper in a restricted sense. However, as stated in footnote 7, I think this line of response is not
promising. Instead, it is more epistemologically plausible to focus on which accuracy function should be used
given a particular doxastic situation, as explained in this section.
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Jeffrey partial learning. I have called such weights ‘accuracy factors’. These factors
represent the extent to which the agent takes the accuracy of a credence function at each
world into account. As discussed, Jeffrey-accuracy functions are not strictly proper and,
at first glance, seem to rationalize ill-motivated credence updating. Fortunately, this
turns out not to be the case. Therefore, this paper can be regarded as providing an
accuracy-first vindication of Jeffrey conditionalization and/or rigidity.

I would like to finish this paper by mentioning the striking similarity between the
Bayes factors and the accuracy factors. According to orthodox Bayesians, the Bayes
factors are regarded as representing the impact of experience with prior credences
factored out. Notably, the discussion of accuracy factors in this paper seems to provide a
new way of interpreting the Bayes factors—namely, an accuracy-first interpretation of
Bayes factors. As discussed, the Bayes factor of Ei against E1 in Jeffrey conditionalization
is the same as the ratio of the accuracy factor of Ei to that of E1 in MEA2. Thus, the Bayes
factors can be interpreted as representing the relative extent to which the accuracy of a
credence function at each world is taken into account. This interpretation of Bayes
factors may be good news for accuracy-firsters who aim to vindicate various epistemic
norms in terms of the single-minded pursuit of accuracy.
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Appendix

In this appendix, I will prove several mathematical results that the discussion in this paper depends on. Let p
be a probabilistically coherent credence function, and let E � E1; � � � ;Emf g be a partition. In what follows,
I will assume that p Ei� � > 0 for any Ei 2 E. Now, let each λi be a positive real number. A credence function
p n� � is defined as follows:
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p n� � :�
P �λi�np �&Ei� �P

i �λi�np Ei� � ;

where n 2 0; 1; � � �f g. Then, we can show the following lemma.

LEMMA. For any n 2 0; 1; � � �f g, p n� � is probabilistically coherent.

Proof. Note that p 0� � � p. So, p 0� � is probabilistically coherent. For our purpose, it is sufficient to show
that if p n� � is probabilistically coherent, then so is p n�1� �. Note that it follows from the definition of p n� � that:

p n�1� � �
P

j �λj�n�1p �&Ej
� �

P
j �λj�n�1p Ej

� � �
P

j λj�λj�np �&Ej
� �

P
j λj�λj�np Ej

� �

�
P

j λj
�λj�np �&Ej� �P

i
�λi�np Ei� �P

j λj
�λj�np Ej� �P
i
�λi�np Ei� �

�
P

j λj

P
i
�λi�np �&Ej&Ei� �P

i
�λi�np Ei� �P

j λj

P
i
�λi�np Ej&Ei� �P
i
�λi�np Ei� �

�
P

j λjp
n� � �&Ej
� �

P
j λjp

n� � Ej
� � : (A1)

Suppose now that p n� � is probabilistically coherent. It is trivial that p n�1� � T� � � 1 and p n�1� � X� � ≥ 0,
where T is a tautology and X is an arbitrary proposition. Consider two arbitrary propositions, X and Y , that
are mutually exclusive. It follows from (A1) that:

p n�1� � X _ Y� � �
P

i �λi�n�1p X _ Y� �&Ei� �P
i �λi�n�1p Ei� �

�
P

i λip
n� � X _ Y� �&Ei� �P
i λip

n� � Ei� �

�
P

i λp
n� � X&Ei� �P

i λip
n� � Ei� � �

P
i λip

n� � Y&Ei� �P
i λip

n� � Ei� �
� p n�1� � X� � � p n�1� � Y� �:

Hence, we have that p n�1� � is probabilistically coherent. As a result, it can be concluded that for any
n 2 0; 1; � � �f g, p n� � is probabilistically coherent, as required.

With this lemma in hand, we can prove the following theorem, which contains what is mentioned in
Section 3. The lemma and the following theorem are sufficient to demonstrate our claims given in the
main text.

THEOREM. Suppose that V is a strictly proper accuracy function, and that VE is generated by V with λi and ki,
as follows: for any Ei 2 E,

VE c;w� � � λiV c;w� � � ki; foranyw 2 Ei:

Then, it holds that:

argmaxc Ep n� � c;VE� �
h i

� p n�1� �;

where Ep n� � c;VE� � � P
w2W p n� � w� �VE c;w� �.

Proof. Suppose that V is a strictly proper accuracy function, and that VE is generated by V with λi and ki.
Then, we obtain from (A1) that:

Ep n� � c;VE� �

�
X

w2W p n� � w� �VE c;w� � �
X

Ei2E
X

w2Ei p
n� � w� � λiV c;w� � � ki� �

�
X

Ei2E
X

w2Ei λip
n� � w� �V c;w� � �

X
Ei2E

X
w2Ei kip

n� � w� �

�
X

Ei2E
X

w2W λip
n� � w&Ei� �V c;w� � �

X
Ei2E kip

n� � Ei� �
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�
X

w2W
X

Ei2E λip
n� � w&Ei� �V c;w� � �

X
Ei2E kip

n� � Ei� �

�
X

Ei2E λip
n� � Ei� �

	 
X
w2W

P
Ei2E λip

n� � w&Ei� �P
Ei2E λip

n� � Ei� � V c;w� � �
X

Ei2E kip
n� � Ei� �

�
X

Ei2E λip
n� � Ei� �

	 
X
w2W p n�1� � w� �V c;w� � �

X
Ei2E kip

n� � Ei� �

�
X

Ei2E λip
n� � Ei� �

	 

Ep n�1� � c;V� � �

X
Ei2E kip

n� � Ei� �:
Note that V is assumed to be strictly proper, and that according to Lemma, p n�1� � is probabilistically
coherent. Thus, we have that:

argmaxc Ep n� � c;VE� �
h i

� argmaxc Ep n�1� � c;V� �
h i

� p n�1� �;

as required.

Remark 1. Suppose that an agent whose credence function is p undergoes a Jeffrey partial experience on E, and
thus evaluates credence functions using VE, which is generated by a strictly proper functionV. Then, the theorem
and MEA2 imply that pE should be equal to p 1� �, as explained in the main text. Note, in particular, that the
theorem guarantees that the two equations (4) and (5) in the main text are equivalent to each other.

Remark 2. According to Lemma, p n� � and p n�1� � are both probabilistically coherent. Note that it is assumed
that p Ei� � > 0 for any Ei 2 E. It is not hard to obtain from Lemma and this assumption that for any
n 2 0; 1; � � �f g, p n� ���jEi�s are all well-defined. On the other hand, (A1) implies that: for any Ei 2 E,

p n�1� � Ei� � �
P

j λjp
n� � Ei&Ej
� �

P
j λjp

n� � Ej
� � � λip n� � Ei� �P

j λjp
n� � Ej
� � ;

p n�1� � �&Ei� � �
P

j λjp
n� � �&Ei&Ej
� �

P
j λjp

n� � Ej
� � � λip n� � �&Ei� �P

j λjp
n� � Ej
� � :

From this, thus, it follows that for any n 2 0; 1; � � �f g, p n� ���jEi� � p n�1� ���jEi� holds for any Ei 2 E—in
other words, for any n 2 0; 1; � � �f g, the credence updating from p n� � to p n�1� � is rigid with respect to E. This
result, together with Theorem, jointly implies that the credence updating from p to pE, which is guided by
MEA2, is rigid with respect to E, as noted Section 2.

Remark 3. V is assumed to be strictly proper, and it holds, according to the above proof,
that arg maxc	Ep n� � c;VE� �
 � argmaxc	Ep n�1� � c;V� �
 � p n�1� �. Thus, p n�1� � is the unique function that
Ep n�1� � c;V� �, and so Ep n� � c;VE� � render to have the maximum value. Therefore, it holds that
Ep n� � p n� �;VE

� �
< Ep n� � p n�1� �;VE

� �
, as explained Section 3.
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