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WEIGHTED INTERPOLATION INEQUALITIES 
AND EMBEDDINGS IN Rn 

R. C. BROWN AND D. B. HINTON 

1. Introduction. This paper is a continuation of [3] which initiated a sys­
tematic study of sufficient conditions for the weighted interpolation inequality 
of sum form, 

(1.1) f N\I>u\p £KU-+([ W\u\A + ee ( j P\DmuA 

to hold. Here </>, 9 are non-negative functions of raj,/?,g, r ,Q is a bounded 
or unbounded domain in Rn,e belongs to an interval T — (0, eo), u is in a 
certain Banach space £(Q), and TV, W, P are measurable real functions satisfying 
TV ^ 0, W1P > 0, as well as additional conditions stated below. Finally the 
constant K does not depend on u although it may depend on the other parameters. 

Important examples of the weights TV, W, P which will be investigated in some 
detail in the examples of section 3 include 

(1.2) N(t) = \t\P, W(t) = \t\\ P(t) = \t\a, 

(1.3) N(t) - d{ff, W(t) = d(t)\ P{t) = d{tf 

where d(t) := dist (f, Rn \ Q), 

or 

(1.4) N(t) = h(tf, W(t) = h(t)\ P(t) = h(tf 

where h is positive measurable function approaching zero or infinity as t ap­
proaches some subset A of 3Q. 

We note that inequalities similar to (1.1) are of continuing importance to the 
spectral and perturbation theory of ordinary and partial differential operators. For 
example if/? = g = r = 2,y = 0, e = 1, and the embedding operator determined 
by (1.1) is compact, then the spectrum of the corresponding operator is discrete. 
Applications for n = 1 to the determination of the lower bound of the spectrum 
are given in [5]. Additional applications of a similar kind may be found in the 
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recent book of W. D. Evans and D. E. Edmunds [4]. For nonlinear problems 
also these kinds of embedding can be combined with degree theory or other 
devices to prove the existence of solutions. 

The structure and methodology of the present paper is quite similar to [3]. 
However there are important differences and improvements in the details. In 
the earlier paper for example the restriction m — j > njr was imposed for 
n > 1. It is clear that such conditions rule out some desirable cases, e.g., 
m = I, j = 0,p = q = r = 2, and n ^ 2, which arise in the study of the 
Laplace operator with Dirichlet boundary conditions. This annoying condition 
is now essentially eliminated in Lemmas 2.2-2.3 below; indeed for p ^ r our 
theory requires only that m > j . The examples of [3] emphasized weights of 
type (1.2). We now can consider weights of type (1.2)—(1.4) on bounded and 
unbounded domains in a completely unified way. Also some of the conditions 
which in [3] were known to be sufficient for (1.1) are now seen to be "almost" 
necessary. 

Some of the results of this paper generalize parts of excellent recent work of 
B. Opic [17] and P. Gurka and B. Opic [7], [8], [9]. These authors have obtained 
necessary and sufficient conditions for (1.1) as well as for compactness for the 
underlying embedding when m = 1, j = 0, and p ^ q — r. We consider 
here arbitrary mj, a wider class of weights and Lp norms with arbitrary /?, q, r; 
however we wish to acknowledge the influence of their work in our development 
of parts (i) and (ii) of Lemma 2.2, Definition 3.1, Theorem 3.2 (a necessary 
condition) and in Theorems A.\~\.2. 

We turn now to a brief outline of the paper. The necessary and somewhat 
complicated notation peculiar to this subject is presented at the end of the present 
section. Section 2 contains a fundamental inequality on a cube first with unity 
weights (Lemma 2.2). Then N, W,P are introduced by means of Holder and 
reverse Holder arguments (Lemma 2.3). This section also contains the definitions 
of the fundamental integral averages S\(t) and Sz(t). The boundedness of these 
averages amount to generalized Ap conditions and will imply (1.1). In section 
3 our major result (Theorem 3.1) uses the Besicovitch covering lemma together 
with Lemma 2.3 to prove (1.1) for (i) p ^ max (q, r), (ii) p < min (g, r), (iii) 
q ^ p < r, and (iv) r 2 p < q. This result with the modifications appropriate 
to the new setting follows the same pattern as the corresponding Theorem 3.1 
of [3]. A large numbers of examples is then given to illustrate the theorem. 
Theorem 3.2 gives a necessary condition for (1.1). When applied to certain 
concrete examples it shows that the relations between the weights which were 
found to be sufficient for (1.1) are actually also necessary. Section 4 consists of 
a study of necessary and sufficient conditions that the mapping J determined by 
(1.1) is compact. 
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When r = (0, oo), it is straightforward to show by a calculus argument that 
(1.1) is equivalent to the multiplicative inequality 

O r \{/P ( r \ <*/q ( r \(l-a)/r 

where a = #/(</> + 6). If N = W = P = u, it has been recently shown [10] that 
(1.5) holds if u) is of class Ap, m = 2,j = l,a= 1/2, and/7 = q — r. In section 
5 we show how the theory of section 3 leads to product inequalities when the 
weights are of class Az for certain z. 

We employ standard notation for spaces of smooth functions such as 
Cm(Q), C0°°(Q), Wm'p(Q.\ e.g., see [1], [4], or [13]. For a weight Z and a set 
5 C l l , LP(Z\S) denotes the space of equivalence classes of measurable func­
tions with norm \\u\\zlP = (JsZ\u\p){/p with Z deleted when Z = 1; ||M||OO,S is 
the essential supremum norm of u over S. If the context is clear norms even for 
different subspaces will be denoted by "|| • ||". The subscript "loc" and subscript 
"0" mean respectively a local property or interior. The symbol <̂-> is used to 
denote an embedding. For 1 ^ 77 ^ 00,7/ is the extended real number such that 

1/77+l/V = 1-
We define 

\Dmu(x)\ = ^2 |£>V*)I 
\a\—m 

where a — ( a i , . . . , an) is a multi-index. Throughout we assume without further 
reference that 

(1.6) 1 ^ /? , q, r < 00. 

(1.7) f(t) is a positive, measurable function on Q. 

The purpose off is to define certain cubes. Q denotes a closed cube in Rn with 
sides of length L parallel to the coordinate axes. Frequently, Q — Qtie where 
2?,e is the cube with center t and L = ef(t). Application of Theorem 3.1 requires 
proper choice off. We also define 

Se = {QUe : t e Q} 

and 

a = u a , £ over Qt,e e Se. 

B(t, r) is the open ball of radius r and center t and Cx for x G g denotes a 
spherical cone with vertex x, radius L/2, and central angle independent of x and 
such that Cx C Q. 
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Besides the basic assumptions of sign and measurability on the weights 
N, W,P, we also assume 

(1.8) N, W-*!*, P~r'lr e UociSk). 

These will not in general be the only restrictions on N, W, P. However, instead of 
giving a list of all possibilities which would be cumbersome to state, we remark 
that the weights will be supposed to satisfy the minimal regularity conditions 
in order that the statements involving them make sense, e.g., in JQ N'71 assume 
that N-71 G £ioc(A). 

The underlying space E(£l) for which (1.1) will be valid is constructed in the 
following way. Define 

£ = j u G W&r(iï) : f W\u\q < oo, f P\Dmu\r < oo J 

with a norm given by 

H | E = { L w l u ] " ) , + ( X p | ° m " | r ) r ' 
Additionally, let 

EQ(Q) = {u e Cm(^2) D £ : u has support in Q if 12e \ Q, is nonempty}. 

Note that even if Qe \ £1 is nonempty, the support of u need not be compact 
unless £1 is bounded. Under the assumptions given above, it can be shown that 
the topological closure of EQ(Q) in *£ with respect to the norm || • ||<£ is a Banach 
space which we denote by E(Q). 

Throughout K denotes a constant where meaning may change for different 
theorems. If it is necessary to distinguish the various K, subscripts are used. 

2. Basic Embedding Lemmas. Fundamental to the theory of [3] was the 
following lemma. 

LEMMA 2.1. There exists a constant K depending only on m, n, and j such 
that ifue Cm(g), 0 ^ j'• û m - 1, and x G Q, then 

(2.1) \Diu(x)\ ^KILT"-* f \u\ +Lm~n-j f \Dmu\ 

+ f \Dmu(y)\\x-y\m-n-jdy 
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pfo 

p/r 

A difficulty with this lemma which distinguishes the case n > 1 from the 

single variable setting is the term involving the cone Cx. This term necessitated 

the restriction m—j> n/r in [3] and will still complicate to some extent the 

improvements given below. Our first result shows how the condition m—j > n/r 

can be relaxed for unity weights. 

LEMMA 2.2. Let v = min {q, r} and j < m. There exists a constant K, 

depending only on m, n, and j , such that if u G Cm(Q) and any one of the 

following conditions hold: 

(i) m —j > n/v, 

(ii) m —j ^ n/v and m —j — n/v + n/p ^ 0, 

(Hi) p ^ r, 

then the inequality, 

(2.2) f \I>u\p £KlLrpV+n/«-n/p)( j |M|< 

+ LP(m-J-n/r+n/pJ f ^m^ 

holds. 

Proof First note that it is sufficient that L, the edge length of g , equal 

one for the change of variables s = (l/L)(t — 1), where 1 is the center of 

the cube Q, transforms Q into a unit cube. Computation of the Jacobian and 

partial derivatives leads to the exponents on L in (2.2). For (i)-(ii) a further 

simplification is obtained by noting that is sufficient to prove (2.2) only for the 

case q = r — v = min {q, r}. To see this in case r < q suppose (2.2) holds 

on unit cubes with q replaced by r. Then by Holder's inequality (jQ \u\rflr ^ 

(So \u\qy^q- The remainder of the proof for (i)-(ii) is basically an appeal to the 

Sobolev embedding theorem [1, p. 97]. First note that the Sobolev norm for 

Wm'v(Q) is equivalent to the norm 

cf. [1, p. 79]. For m—j > n/v, the Sobolev embedding theorem gives Wm'v(Q) °-> 

Cj
B(Q). Since for some constant k, independent of w, 

|w | | • = sup \Dau(x)\ ^kl \D>u 
B{Q) xeQ,\a\^j \JQ 

UP 
\iyu\p ) 

Q 

then (2.2) follows. For m—j^ n/v, the embedding theorem gives WmiV(Q) <—> 

Wj,p(Q) if v ^ p ^ nv/[n — (m — j)v] (for m — j < n/v) or v ^ p < oo 

https://doi.org/10.4153/CJM-1990-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-051-8


964 R. C. BROWN AND D. B. HINTON 

(for m— j = n/v). These conditions are implied by (ii) when p ^ v. Since Q 
has finite volume, Wjv(Q) ^ WjJ)(Q) for 1 ^ /? < v, so the proof of (ii) is 
complete. 

For (iii) we start with Lemma 2.1 on a unit cube Q. Integration and application 
of Holder's inequality to (2.1) gives for some constant K\, 

(23, fa##SK,{(faW)'\(faW)" 
+ I ( / lD""00||*-yr-"-^Y<&}. 

If 0 < 6 < 1 and 1 < r, two (for p < r) or one (for p — r) more applications 
of Holder's inequality (the second time with index rjp) followed by Fubini's 
theorem yields that 

(2.4) j ( f |D m wCy) | | j c -v | m - n ^ j dx 

x (J \Dmuiy)\r 

?k K2f (j \Dmu(y)\r\x 

K2( f f \Dm
U(y)\r\x-y\(m-j-S)r-"dydx] 

K2K3 (J \Dmu(y)\rdy\ 

,Plr> 

\P/r 

x-y\{m-j-8)r~ndy\ dx 

\p/r 

y\(m-jS)r-ndy j dy. 
Q \J<2 

p/r 
< 

Q JQ 
P/r 

< 

where 

K2 = ̂ i x-y\~"+rody<oo 

K3 = sup f \x - y\(m-J-S)r-ndx < oo. 

Forp = r = 1, only Fubini's theorem is needed to establish (2.4). The proof is 
completed by substitution of (2.4) into (2.3). 

In order to incorporate nontrivial weights into Lemma 2.2 and use it as a 
replacement for Lemma 2.4 of [3], it is necessary to change the definition of 
G,5i,52of [3]. 
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(t̂ — 1 )/v>77' 

Definition 2.1. Let V > l ,?"1 ^ 0i ^ 1, r"1 g 02 ^ 1, let g and A be 
positive measurable functions on Q — Qte (so that L — ef(t)) and 1 < 77, £ ^ 00. 
Set 

Gfe, 1?)=(y *-*) , G(A, 0 = ( y *-?) , 

/ /- \p{\-0y)l0xq 

x (L-* / w-vo-'.)) if e, <i, 

x (L-w / P ^ A ^ M i f f l 2 < l . 

If 0i = 1 or 62 = 1 we replace the integrals involving W or P by L°° norms, 
e.g. (L'n jQ w-VO-fl-yo-fl.)/^ becomes WW'^W^Q. 

LEMMA 2.3. Assume Definition 2. 1 am/ sef /? = ipp^q = 6\q,r = 02r, and 
v = min {r, §}. Assume /?, q, f, and v satisfy any one of the conditions: (i) 
m —j > n/v, (ii) m —j ^ n/v and m —j — n/v + n/p ^ 0, (Hi) per. Then the 
inequality 

(2.5) f N\Diu\p Û KL-pV+n/«-n'prtG(g, ry)Si(r) ( f W\u\A 

+ e^-J^^/^Gih.OSiiot f P\DmuA \ 

holds for all cubes Q = Qte and for all u G E(Q). 

Proof It is sufficient that u G Cm(Q). By Lemma 2.2, 

(2.6) f \I>U\P ^K{u-~p{j+nl~q-nlp( j \uA 

+ Lp(m-j-n/r+n/p) ( f ^m^jA j 

where L = ef(t). The reverse Holder inequality yields that 

(2.7) /" \Diu\P ^ ( f N^W-A (f N\D>uA . 
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On the other hand Holder's inequality gives 

~Pl~q / r \P(l-0])/9lq , r x~p/q 

O r \plq f r \pv-v\)/viq / r \ 

O
r \P/r / r \p(\-92)/92r / n \p/r 

Next we substitute (2.7), (2.8) into (2.6) and take the 1/V t̂h root to obtain, using 

ph / r \plr 

f N\iyu\p èK1^ \A( f W\u\A +B( f P\DmuA 

where 

(V-D/v> / r xp{\-e])/e]q 

NMW-i)\ I / w-0i/(i-9i)\ 

a \(V>-D/V> / r \p(\-92)/92r 

N4>/W-D \ I / p-92/d-92) \ 
Again by Holder's inequality 

a x (V'-O/V'T/ / r x ( 

lQ J \JQ 
(\()—\)/\l)fj / n X {^-\)/\i)f]' 

< 

so that from the definitions of G and S\, 

^ <g lt-p(J+n/q-n/p)Q/ \g ^^^yij+n/q-n/prj') ^(1-9^/9^ jjii'ip-l)/^' 

which after simplification gives 

A ^ €-PV+»/«-»W)G(g, ii)S{(t). 

This yields the first coefficient on the right hand side of (2.5); the proof for the 

second coefficient is similar. 

Remark 2.1. Lemma 2.3 seems most useful in special cases. 

(i) If N, W-\P-1 are locally bounded on Qeig = h = 1, and £' = 7/ = 1, 
then 

5,(0 ^/(0-"0+"/"-'!/p)||iV||oo,el|H'-''/<?||oo,G 

52(0^/(ff<m-;-"/r+"/p)||^v||oo.el|/5~''/''||oo,e. 
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(ii) For 6\ = 02 = 1, then conditions (i), (ii), (iii) of Lemma 2.3 become, 

respectively, m — j > n/v, m — j — n/v + n/pij) ^ 0,/? ^ r/ij). Note 

that even if m — j > n/v(v = min {g, r}) or if m —j < n/v and 

m—j + n/v + n//? > 0 or if p < r, if is always possible to choose 9\,02, 

and 1/7 so that (i) or (ii) of (iii) of Lemma 2.3 holds. 

(iii) If 0i = l/q and 02 = 1/r, then the integrals involving W in Definition 2.1 

become, respectively (L~n JQ W-q'lqflq' and (L~n JQ p-p'lrflp' while 

the conditions (i)—(iii) of Lemma 2.3 become respectively (i) m —j > n, 

(ii) m —j S n and m —j — n + n/pip ^ 0, (iii) p ^ 1/-0 although the last 

condition is vacuous. 

(iv) Other special cases are 0i = r/q, 62 = 1 when g ^ r or 0j = 1, 02 = ^ / r 

when q < r. 

These cases may be further refined or combined in various ways. 

3. Sum Inequalities. We are now in a position to use Lemma 2.3 to obtain 

sum inequalities which relax the m — j > n/r requirement of [3] although the 

derivation follows the same pattern as [3]. 

Lemma 2.3 gives the sum inequality on a generic cube Q = Qtit. Since 

^e = {Qt,e : t G £1} covers £1 and every point t is the center of a cube in St, 

the Besicovitch covering theorem (cf. [I l , p. 2]) may be used to extract finitely 

many families T\,... , Ts of mutually disjoint cubes in Se to cover an arbitrary 

bounded subset A of Q. Once this is done the remainder of the argument is 

routine. More specifically we consider the following conditions. 

(HI) sup S\(t) := s\ < 00. 
tender 

(H2) sup S2(t) := S2 < 00. 
?GQ,eer 

(H3) / g-* < 00. 
Jn 

(H4) / g -É < 00. 

THEOREM 3.1. Suppose the hypothesis of Lemma 2. 3 holds. Let rj — q/(q—p) 

if a > P and £ = r/(r — p) if r > p. Set 77 = 00 and g — 1 if p ^ q and 

set £ = 00 and h — 1 if p ^ r. Then the sum inequality (1.1) holds for all 

u G E{Q) in the following cases. 

(i) p ^ max {g, r } , (H1)-(H2) hold, 0 = p(m — j — n/r + n/p), and </> = 

p(j + n/q - n/p). 
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(ii) p < min {g, r} , (H1)-(H4) hold, 9 = p(m — j), and (f> = pj. 
(iii) q ^ p < r, (H1)-(H3) hold, 6 = p(m — j — n/r + n/p), and (j) — pj. 
(iv) r ^ p < q, (HI), (H2), (H4) hold, 0 = p(m-j), and (j) = p(j + n/q-n/p). 

Proof. In all cases application of Lemma 2.3 and addition over one of the 
families Fk discussed above yields that 

(3.1) j N\I>u\pÛKx J2 i^G(8i V)(f w\»\q) 

+ e9G(h, o(f P\Dmu\r\ J 

where K\ — K(s\ +s2),K as in Lemma 2.3, and 7* = {UQ : Q E r*} . In (i), 
r/ = £' = G(g,rj) = G(/i, £) = 1. We can then use the elementary inequality 
E Af = C£lAi)R,R = ! to bound the two terms on the right of (3.1). For (ii) 
we use 77 = (q/p)f, £ = (/"//?)' and Holder's inequality on each sum on the right 
of (3.1) to obtain 

/,^"i"H(ii*-,r(/.wM*r 
•••(/,'TU""""')'"} 

where AT2 = ^ I [ ( J Q g'V1^+ (JQ / H ) 1 ^ ] . Cases (iii) and (iv) are similar. Case 
(iii) requires that the first term on the right of (3.1) to be treated as in case (ii) 
and the second term to be treated as in case (i). In case (iv) we apply case (i) to 
the first term on the right of (3.1) and case (ii) to the second term. In all cases 
we end up with inequality (3.2). Thus 

f N\&u\p ^J2 [ N\°JU\P 

£ sK2le 

Since A is an arbitrary bounded subset of £2, the proof is complete. 

Remark 3.1. (i) Below (Theorem 3.2) we will show that Theorem 3.1 is 
nearly necessary in that if inf[5i(0_1 + S2(0_1] = 0 over t G £2, then (1.1) 
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cannot hold. (Note that the contrapositive of Theorem 3.1 gives a necessary 
condition for a "nonequality", i.e., if (1.1) is false then not both s\ and S2 can 
be finite). 

(ii) For £1 ^ Rn the definition of E(Q) requires that u — 0 on dQ, in a 
generalized sense if £le \Ç1 is nonempty. In many of the examples below £le = Q, 
so that this requirement on u may be dropped. Even if this is not the case standard 
results about extension operators can be applied to eliminate this restriction if 
dQ is bounded, e.g. see Theorem 3.2 of [3]. 

We now give several examples of Theorem 3.1. The cases where the weights 
are of power type extend Examples 3.1 and 3.2 of [3] to cases where m—j ^ njr. 
The examples involving "distance to the boundary" are new and generalize some 
of Opic's results (principally in [171). Unless stated otherwise, the weights are 
locally bounded above and below. Hence S\(t)1 S2(0 can be computed according 
to Remark 2.1. 

Example 3.1. Let Q. = Rn,0 < e Û 1, P(t) = (1 + \t\)a,W(t) = 
(1 + \t\)\f(t) = (1 + \t\)A,N(t) = (1 + \t\fy(i) where a,/?,7,A are real num­
bers with A Û 1 and y(t) is a nonnegative measurable function on Rn with 
JRn y^ < oo for some /i > 1. We work out only case (i) of Theorem 3.1, 
i.e., p è max {q, r}, although the other cases are similar. In Definition 2.1 set 
9\ = 02 = I and i/j — /x/(/i — 1). Then since g = h = rf = £ = l,a computation 
gives 

5,(0 =/(f)-^'W*-»/j>) fL~n f NA H W-'/*||OO,G 

S2(t) =f(tfm-J-n/r+n/P)(L-n f NA \\p-p/> i F i - p / r l l 

oo,0-

Since e, A ^ 1, the ratio (1 + |r|)/(l + |s|) is bounded above and below by positive 
numbers for all t G /?w, s G Qt,t. Thus for some constant k, independent of t and 

(3.3) S,(r)S*[l + |f|]ae-"/"fjf y1) , 

a — —Ap(j + n/q — njp) — nA/fi + 0 — pl/q, 

S2(t)^k[l + \t\]be~"/»UyA ", 

b = pA(m —j — njr + njp) — nA/fi + /? — pa jr. 
First apply Theorem 3.1 with e fixed. By (3.3), S\,SÏ are finite if a,b are non-
positive. This holds if we make a = b and we require that 
(3.4) A := (a/r - l/q)/(m + n/q - n/r) ^ 1, 

P ^ pi/q + nA//i + Ap(j + n/q - njp). 

https://doi.org/10.4153/CJM-1990-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-051-8


970 R. C. BROWN AND D. B. HINTON 

Under (3.4), Theorem 3.1 yields an inequality (1.1) of the form 

(3.5) f (1 + \t\fy{t)\D>u\pdt ^KL-*-^! f (1 + |f|)>|**) 

(\ + \t\r\DmuA ), 

(j)=p(j + n/q - n/p\ 

0=p(m-j -n/r + n/p), 

for all u G E(Rn). Note that K is independent of e for e G (0, 1]. The requirements 
of Lemma 2.3 for (3.5) to hold are that one of the following be true: (i) m —j > 
n/v, v = min {q, r}, (ii) m —j ^ n/v and m —j — n/v + n/pi[) ^ 0, (iii) pi[) ^ r. 

The above example may also be worked out with a different hypothesis on 
y(t). Assume instead that sup[(vol Q)~] L y^] < oo for some p > 1 where the 
sup is taken over all cubes Q whose edge length does not exceed (1 + |/|)A where 
t is the center of Q. This bound for y is then used in the above expressions for 
S\,S2. The conditions replacing (3.4) and (3.5) are those obtained by setting 
p — oo in (3.5) and leaving (3.4) unchanged; these are the same conditions as 
given in part (i) of Example 3.1 of [3]. Thus the conclusions of that example 
apply to many situations with m—j ^ n/r. For fixed e (in which case (3.5) may 
regarded as an embedding), it is not necessary to require that the above sup be 
over as large a set of cubes. For example, with a = 7 = /3 = 0 and e = 1, we 
require only that sup JQ y^ < oo over all cubes of edge length one. In other 
words, if for some p > 1, sup L y*1 < oo over all cubes of edge length one, 
then 

£„!**«{(£ i*)'* •(jO-r)"'} 
for all u G W^r(Rn) for which the above right hand side is finite provided one of 
the following hold: (i) m—j > n/v, (ii) m—j ^ n/v and m—j — n/v + n/p^ ^ 0, 
(iii) pi/j ^ r where ip = p/(p — 1), v = min {q, r}. 

Example 3.2. Suppose £1 is bounded with respect to d(t), i.e., d is bounded 
on Q. Set N(t) = d{tf,P(i) = d{t)a, W(t) = d(t)\ f{t) = d(t)A*,g(t) = d(t)A\ 
and h(t) = d(t)A* where all exponents are real and Ai ^ 1. Further set T = (0, eo) 
where e0 = Sl~A] jyfn and 6 = sup {d(t) : teÙ). 

First we show that if x G Qtit, ^ G £2, then 

(3.6) 1 ^ ^ . 

+ e 
0-n//j 

a 
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Note that (3.6) implies that on each cube Qte, W, P, N are bounded above and 
below by positive constants. To establish (3.6), the triangle inequality gives for 
v e Rn\Q. that d(t) ^ \t — v\ Û \t — x\ + \x — v|; it follows from this inequality 
that d(t) ^ \t - x\ + d(x). Further, \x - t\ ^ (^/2)f(t)e so that a division by 
d(t) gives 

by the definition of eo- This establishes the left of (3.6); the other half follows 
by a similar argument. Note also that by choice of eo, |* — f | = d(t)/2 so that 
Qti€ C £1. This implies that Qe = £1 so that there is no requirement that u vanish 
on d£l. 

First consider case (i) of Theorem 3.1 with p ^ max {g, r}. By the above 
remarks there are constants k\, k2, independent of t and e such that 

Si(0 ^ kif(trp(j+n/q~n/p) N(t)W(tTplq, 

S2(t) Û k2f(tY(m-J-n/r+n/p) N{t)P{tTplr. 

Hence (H1)-(H2) are equivalent to respectively, 

(3.7) (3 ^ pl/q + Aipij + n/q - n/p) 

f3 ^ pa/r + A\p(m — j — n/r + n/p). 

If we set the two right hand sides of (3.7) equal this defines A\ and leads to the 
requirement 

Ai := (a/r — l/q)/(m + n/q — n/r) ^ 1 

and the requirement for (3 is 

(J3/p)(m - n/r + n/q) ^ (l/q)(m - j - n/r + n/p) 

+ (a/r)(j + n/q - n/p). 

This result agrees with the sufficiency condition given by B. Opic for embedding 
in [17] when m — l,j = 0,q = r,p^q, and 1 = a — p. Note here in the 
Definition 2.1 we take 9\ = 62 = 1 and we are free to choose ip > 1 arbitrarily. 
Thus the three conditions of Lemma 2.3 are: (i) m —j > n/v, v = min (g, r), 
(ii) m —j è n/v and m —j — n/v + n/p > 0, (ii) p < r. These same choices 
apply to the other cases listed below. 

Turning now to case (ii) of Theorem 3.1, we have p < min {g, r},r/ = 
q/(q-p), i = r/(r-p). The condition (H3) is that JQ d(t)-^^-X)^dt < 00. 
This condition imposes additional restrictions on £1. Since d(t) —> 0 as t —> 3Q, it 
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imposes at the very least that A2ry(^ — 1)/^ < 1; further restraints are imposed 
by the finiteness of the integral away from the boundary. We simply content 
ourselves here to determine what are the further restrictions on the parameters 
given that (H3) and (H4) hold. We see that for some constants k\,k2 independent 
of t and e, 

S,(0 £ kxd{t)%a = -pjAx + A2(V> - D/V + P -lp/q, 

S2(t) S k2d{t)\ b = pirn -j)Al + A30A ~ 1)/^ + P ~ otp/r. 

These will be finite provided we have 

(3.8) A, :=(a/r-l/q)/m^ 1, 

and 

(3.9) (3 >pjA\ +lp/q = ap/r-p(m-j)A{ + (m - j)pljmq + paj/'rm, 

and require that ip is sufficiently near one so that a,b^0. 
Similar calculations may be made in the cases r ̂  p < q and q ^ p < r. We 

omit the details. 

Example 3.3. The previous example can be generalized in several ways. The 
following seems to be a useful compromise between breadth and adaptability. 
Again let Q be bounded with respect to h{t) and set N(t) — h(f)P, W(t) = 
h(ty,P(t) = h(t)a where h is a positive measurable function on Rn which 
is bounded on compact subsets of Q. In many cases h will be of the form 
h(t) = g(d(t))\ however a different example would be h(t) = Yl"=l \tj\Xi. 

We consider two cases: (i) h(t) —-+ 0, and (ii) h(t) —» 00 as t approaches some 
subset A of dQ in some predefined way. In case (i) assume that h is Lipschitz 
on Q. with uniform constant K. Take f(t) = h(t)A for some A ̂  1 and let eo = 
61-A/Kyfn where 8 = sup h(t), t G £1. The by an argument similar to that given 
in Example 3.2, we have that for t G £2 and x G Qt^ e ^ eo, \ ^ h(x)/h(t) ^ | . 
These inequalities imply that N,P,W are locally bounded above and below by 
positive constants. The remaining steps of the analysis parallels Example 3.2 
and yields the same relationships between /?, a, and 7 as (3.8)-(3.9). 

In case (ii) we assume that h is locally Lipschitz and suppose there is a A ̂  1 
such that for each t G £2 the Lipschitz constant Kt for h on B{t, d(t)/2) satisfies 

(3.10) sup Kth(tf~l := #0 < 00. 
ted 

Setting/(0 = /*(0A,eo = l/Koy/n, we again have by an argument like that of 
Example 3.2 that for t G Q and x G g,,€,e ^ e0? 5 ^ h(x)/h(t) ^ | . It will 
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be found that Theorem 3.1 applies if (3.8)-(3.9) hold with the inequality signs 

reversed. 

An example of case (i) would be h{t) — exp (—\ jd{t)\ and for case (ii) h(f) — 

exp (l/d(t)). For the first choice of h(t) Kt is uniformly bounded on Q, while 

for the second we have on the ball B(t, d(t)/2) that Kt ^ 4d(t)~2 exp (2/d(t)) 

and (3.10) will be satisfied if A < - 1 . 

Another example of case (i) can be obtained by taking h(t) = Yl1=l |f/| 

where A contains points having some coordinates zero. If we also assume £1 is 

bounded, then a straightforward argument shows that h is Lipschitz on Ç1. 

Example 3.4. Let the weights be as in Example 3.2. Assume p ^ max {q, r} 

and Q is unbounded with respect to d(t). Since d(t) takes on both large and 

small values, we take fit) = d(t). With eo = - ^ , it follows as in Example 

3.2 that Oe = O and 1/2 ^ d(x)/d(t) ^ 3/2 for x G &,e,e ^ e0. Further 

s\ and 2̂ will be finite when equality holds in (3.8)-(3.9). In particular for 

Q = Rn/\{0},d(t)= \t\. 

Example 3.5. If Q is bounded and 0 G dQ the choices N(t) = \tf, W(t) = 

| r | 7 ,P (0 = |^|a give the same results as Example 3.2 provided f(t) — |f|Al. 

However, Q is a proper subset of Qe generally. If £1 is unbounded and 0 ̂  3Q, 

then we get the same type of results as in Example 3.1 w i t h / ( 0 = |f|Al, Ai ^ 1. 

This is because the ratio \t\/(\ + \t\) is bounded above and below on Q by 

positive constants. 

To state the next theorem concerning necessary conditions it is convenient to 

give a formal definition of a property we have been using implicitly in many 

previous examples. 

Definition 3.1. A weight Z is said to be bounded above and below with 

respect to the family of cubes Se if for each Qte G S there exist positive constants 

Cz and Dz (depending on t and e) such that for all xeQt,ej Cz = Z(x)/Z(t) ^ Dz-

If the ratio Dz/Cz is bounded independent of t, e, we say Z is strongly bounded 

with respect to Se-

Remark 3.2. This property is similar to B. Opic's condition C [17]; in Ex­

amples 3.1-3.5 it has allowed us to compute S\(t) and 52(0 by moving weights 

outside of integrals. 

THEOREM 3.2. Assume the hypothesis of Lemma 2.3 holds, p ^ max {q, r } , 

and g = h = rj' = £' = 1 in Definition 2. 1. Suppose N,W,P are strongly 

bounded with respect to 5e. Then if for some e G T, 

(3.11) inf [S^ty1 +S2(ty
l] = 0, 

teQ. 

the sum inequality (1.1) does not hold. 
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Proof. Let p be a C^° function with support in the interior of the unit cube go 
centered at the origin. By (3.11) there is a sequence of cubes Qk — Qtk,t

 m Se such 
that Si to)"1 +S2(tk)-

1 -> 0 as *: -+ oo. Define p* by ^(f) = p([t - tk]/2ef(tk)). 
Then p* is a C^ function with support in Qk. Moreover for each multi-index 
a1D

apk = (D»(2e / fe ) ) H - Set Kt,s = JQQ \Dl p\s. Since (1.1) holds we have 
that 

(3.12) CNN(tk)[2ef(tk)]-^n KhP ^ [ N\D>ptf 
JQk 

+ e«(/e/iz»r)'"( 

S K{e^D^W(tkr
/ql2ef(tk)r^K^ 

+ eeDfP(tkr
/r[2ef(tk)]-'"n+^rKPj;}. 

From Definition 2.1, 

S2(/*) ^f{tk-f
m-i-nlr*nl")DNN(tk)Cp"lrP{tk)-

plr-

Substitution of these inequalities into (3.12) leads to 

(2er*»nKjfP £ ^ { e - ^ D v , / C V v ^ ( D ^ / C ^ ) 5 , t o ) - , ( 2 e r / ^ 0 ^ 

+ e\DP/CPflr{DNICN)S2{tk)-\2e)-^^lrK^r}. 

This inequality yields a contradiction since S\{tk)~
x + S2(tk)~

l tends to zero as 
k becomes unbounded. 

In the examples above where 5*1(0 = Slit), m e condition sup S\{t) < oo, 
/ G f t becomes a necessary and sufficient condition for (1.1) to hold for fixed 
e and under the other assumptions of Theorem 3.2. Thus for example, on Rn, 
with N(t) = (1 + |f|y, W(t) = (1 + \t\)\P(t) = (1 + |f|)a,/(f) = (1 + M)A with 

A := (a / r — 7/q)/{m + rc/g — n/r) ^ 1, 

/? ^ max {g, r}, and assuming one of the following hold: (i) m—j> n/v, v — 
min {g, r} , (ii) m — j ^ n/v and m —j — n/v + n/p > 0, then we have that a 
necessary and sufficient condition for (1.1) is 

/3 ^ /?7/<7 + A/?(/ 4- n/q - n/p). 
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4. Compact Mappings and Embeddings. For a fixed e inequality (1.1) 
determines a continuous map 7 from the Banach space £(f t ) into LP(N\ ft) 
defined by J{u) — Dau where a is a fixed multi-index with \a\ — j . When j = 0 
this map is called an embedding. In the present section we develop conditions 
which guarantee that 7 is compact. These conditions will generally be necessary 
or "almost" necessary as well as sufficient. In addition to the work of Opic 
and Gurka and Opic, extensive results on embedding in weighted Sobolev space 
may be found in the texts by A. Kufner [12] and H. Triebel [18]. We use the 
following notation throughout this section. 

Definition 4.1. Let {£2,} be a chain of subdomains of ft such that ftj C 
ft2 C • • • C ft/ C ft, and ft = U(/)ft/. Define JhJ

i : £(f t) - • £P(N; ft) for a 
fixed multi-index a, \a\ =j, by 

JJU(X) = j 
_ / Dau(x) if JC G Q / , 

otherwise 

>A(X) if X G a \ Q / , Jiu(x) = I v 

10 otherwise. 

Remark 4.1. (i) The chain {ft/} will be defined with reference to a subset 
A of 3ft where the weights have singular behavior. Thus if ft is unbounded and 
the weights have singular behavior only at infinity, then we set ft/ = Q(i) Pi ft 
where Q(i) is a cube centered at the origin with edges of length 2/. On the other 
hand if N, W, P are powers of d(t), set ft/ = {t : d(t) > 1//}. 
(ii) We have the trivial facts: 

J1 = 7 - 7 / , 

UP 
sup ( / N\Dau\p 

( / ne£(Q),|M|e=i 

| | J ' -+ , | | ^ | |7 ' | | . 

To replace (HI) we introduce the condition: 

(Hl#) For each e G(0,e0), 

lim s\i — 0 where s\i := sup {S\(t) : t G ft \ ft/}. 
/ — > C X D 

LEMMA 4.1. If each 7/ is compact, then J is compact if and only if \\Jl\\ —• 0 
as i —y oo. 

Proof Since J1 = 7 — 7 / , the "if" part is a consequence of the fact that the 
uniform limit of compact linear operators is compact. Suppose we do not have 
117*11 —* 0 as / —• oo. Then there is a S > 0 and a sequence {«/} such that 

(4.1) WfMW^d, |k|| = l. 
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By definition of J', (4.1) implies that 

(4.2) \\j{Ui)f = ||y,.(",')ir + ll/'Wll" 

^ ||y,(",)ir+^. 

Since J is compact, {J(ui)} contains a convergent subsequence which we take 
to be {J(u()} itself, say J(uï) —• w as / —* oo. Since 

l l y ^ O - w H ^ | | w | | ^ + | |7fe)-w| |^ , 

We also have /;(w;) —• W as / —• OO. Hence in (4.2) we conclude that 

\\w\\p^ \\w\\p+6p 

which is a contradiction. 

THEOREM 4.1. Suppose the hypothesis of Theorem 3. 1 /zo/ds «Aid /fotf each 
map Ji in Definition 4.1 is compact. Then the mapping J is compact in each of 
the following cases. 

(i) (HI)*, (H2) hold and p ^ max {q, r}. 
(ii) (Hlf, (H2)-(H4) hold and p < min {<?, r}. 
(Hi) (Hlf, (H2), (H3) hold and q è p < r. 
(iv) (Hlf, (H2), (H4) hold and r ^ p < q. 

Proof For e G (0, eo) and S > 0, it is possible by (Hl)# to choose / = 7(<5, e) 
such that s\j < 6 for / ^ 7. For / > 7 and r G Q/ \ Q/, we have by Lemma 2.3 
that with Q = Qtit, 

f N\Dau\p £ K{e'p{j+nlq-nlpï],)èG(g, rj)( f W\u 

:(//|D-„r) p/r 

+ e
p{m-J-nlr+nlp^G(h, i)s2 ( 

By the Besicovitch covering argument of Theorem 3.1 we conclude that in each 
of the above cases there is a constant K\ such that for / > 7, 

(4.3) f N\Dau\p ^ Kx [8e-P<J+nli-nM"> + CP(™-W''WK')] | |M | | />. 

Since / is arbitrary in (4.3), Q\£2/ may be substituted for Q/ \ Q / in (4.3). Now 
the exponent m —j — n/r + n/p£ > 0 in all four cases above; hence we have 
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that (4.3) implies | |/ ' | | —> 0 as / —• oo. The conclusion now follows by Lemma 
4.1. 

Remark 4.2. The Rellich-Kondrasôv theorem gives conditions under which 
the mappings Jt are compact. For example if each Çlt is bounded with min­
imally smooth boundary, and N, W, P are locally bounded above and below, 
then Jt is compact, cf. [4, p. 263], [1, p. 144], if (i) m—j — njr > 0 or if (ii) 
m —j < njr, m —j — njr + n/p > 0 or if (iii) m — j — njr. Recall we require 
1 ^ /?, q, r < oo throughout. 

Under certain conditions we can show the condition (Hl)# is almost necessary 
for / to be compact. 

THEOREM 4.2. Assume the hypothesis of Lemma 2.3 holds, p ^ max {g, r}, 
and g — h = vj = £' = 1 in Definition 2.1. Suppose N,W,P are strongly 
bounded with respect to Se- Then the map J is not compact if for some e > 0, 

(4.4) lim { inf S i ( f ) | > 0 and lim I inf S2(t) \ > 0. 
k^oo [teQ\Qk J k~>oo (ten\Qk J 

Proof Condition (4.4) implies that there is a 6 > 0 and a sequence {tk} such 
that tkeQ \ Q and S\ (tk) > <5, S2(tk) > S. Let pk(t) be as in the proof of Theorem 
3.2. Suppose J is compact; hence by Lemma 4.1, \\Jk\\ —+ 0 as k —• oo. Thus 
||./*(p*)||/||p*||e —y 0 as k —> oo. From the estimates in the proof of Theorem 
3.2 we have that 

(4.5) CNN(tk)[2ef(tk)]-'"+nKhp ^ [ N\D>pk\P = \\Jk(Pk)\\», 
JQk 

^ D^w(tk)"n2tf(tk)ri"K^ 

+ D]
pl

rP(tk)
[lr\2ef(tk)T

m+nlrKl!;r. 

The same estimates for S\(t) and S2O) hold as in the proof of Theorem 3.2 and 
this leads to the estimate, 

(4.6) N(tkr
l^\\Pk\\e ^ T[sl(tkr

l/pf(tkr
J+n,p+s2(tkr

l^f(tkyj+nh 

^ 2T6-l/pf(tk)-
J+n/p, 

where T is a constant depending on e, N, W, and P, but not on k. The estimates 
(4.5) and (4.6) contradict the fact that ||./*(p*)||/||p*|| —> 0 as k —> oo. Hence J 
is not compact. 
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Remark 4.3. The practical consequence of Theorem 4.1 is that the mapping 
J in the examples of Section 3 is compact if the inequalities associated with 
(HI) are made strict, e.g., in (3.4) require a strict inequality for /?. When the 
parameters are such that S\(t) = Si(t) the condition may become a necessary 
and sufficient condition for compactness, e.g., as in (3.4). 

5. A Product Inequality. As pointed out in the introduction, (1.1) is equiv­
alent to the multiplicative inequality (1.5) if T = (0, oo). Hence if T = (0, oo) a 
multiplicative inequality as well as a sum inequality will be true. Various spe­
cial cases and illustrations of this simple observation were given in [3] assuming 
m —j > n/r,P~x locally bounded, etc. We state one result here which is an 
immediate corollary of case (i) of Theorem 3.1. 

THEOREM 5.1. Suppose there are numbers -0 > 1,^_1 = 9\ ^ 1, and r"1 ^ 
02 = 1 such that the following hold with f{t) — 1 in (1. 7) and Q = Rn. 

(i) sup [e-n L N*/W-l)]W-l)'*[e-n L W-*/<i-*.>]/>0-*.>/M : = S] < oo. 

(ii) sup [e"n L NW-l)]W-xV*[e-n L p-^/(2~B,)]P(i-e2)/e2q .= < ^ 
teRn,e>0 J(Jtt JUtt 

(Hi) p ^ max {g, r}. 
(iv) One of the conditions (i), (ii), or (Hi) of Lemma 2.3 holds. 

Then for all u e E(Rn), 

r f r \pa/q / ç \p(\-a)/r 

(5.1) / N\Diu\p£Kl W\u\q\ ( / P\Dmu\r\ 

where a = (m —j — n/r + n/p)/(m — n/r + n/q) and K is independent of u. 

Our motivation for stating this case comes from an interesting result which 
has recently been proved by C. Gutierrz and R. Wheeden [10]. A corollary of 
their Theorem 5 is 

f LJ\DU\P ÛK( f u\uA ( f UJ\D2UA 

for all u G C^2\Rn) with compact support if UJ satisfies the condition 

I r \ / 1 r \P-{ 

where g is a cube in Rn and \Q\ is the measure of Q. We will show that the 
conditions (i) and (ii) of Theorem 5.1 are sometimes implied by Ap conditions 
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although in the special case p — q — r, ra = 2, and j = 1 the result falls short 
of that of Gutierrz and Wheeden. 

Take W = Nqlp and P = Nrlp and suppose N £ Az for some z (to be specified 
later). Then for some S > 0, depending only on z and Cz, 

See [6, p. 397]. Choose t/; so that V/(V> - 1) = 1 + 6. Now wVO-*i) = 
N-qexip{\-ex) = N-\/(Z]-\) w h e r e Zl = j + / 7 ( 1 _ ^ j ) / ^ , . Hence (i) of Theorem 

5.1 holds if N G Azx. Similarly (ii) of Theorem 5.1 holds if N G AZ2 with 
Z2 = 1 +p(l — 02)/r62. Since Ap C A5 for p < s, [6, p. 394], the best result is 
obtained by choosing #i,#2 as small as possible to be consistent with the other 
conditions of Theorem 5.1. 

The easiest case to discuss is when q = r, and m — j > njq. In this case 
choose ip so that i/j/ty— 1) = 1 +<S where 6 is as in (5.2). We choose 0\ as small 
as possible while preserving q~x ^ 6\ ^ 1. For m—j>n, take #i = #_1 (now 
(i) of Lemma 2.3 holds) so that z\ = 1 +/?(<?~ !)/#• F° r n/q <m—j ^ rc, take 
#1 = n/q(m—j) (now (ii) of Lemma 2.3 holds) so that z\ = \+p[q(m—j)—n\/qn. 
In both cases take 62 = 6\. Thus we have for /? ^ g = r, W = P = Nqlp, that 
(5.1) holds if 

(5.3) m-j>n, N G A„ z = 1+/>($-1)/^, 

or if 

(5.4) n/q <m—j ^ n, N G Az, z = I+p[q(m—j) — n]/qn. 

Note that for /? = g (5.3) gives N £ Ap while (5.4) gives Af G A2,z = 
g(ra — j)/n è q — p, so that the conclusion is weaker that the Gutierrz and 
Wheeden result. On the other hand, the indices p,q,r are not required to be 
equal and the function u need not have compact support in Theorem 5.1. Clearly 
one may work out Ap conditions in Theorem 5.1 in other cases, e.g., q ^ r, as 
well as in the other three cases of Theorem 3.1. However the calculations are 
more involved in these situations. 

Remark 5.1. (i) For n = 1 many product inequalities are known for weights 
N, W,P, e.g., see [2], [14], [15]. The case n = 1, N = W = P = 1 is due to 
Landau. Good bounds for the constant K in many cases have been derived by M. 
Kwong and A. Zettl. (ii) That u satisfy an Ap condition is far from a necessary 
condition for a product inequality. It was proven in [3, Theorem 5.1] that another 
sufficient condition for a product inequality on Rn is that/? = q — r,m—j> n/r, 
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and N = W — P be a nondecreasing function in each coordinate, (iii) Necessary 
and sufficient conditions for compact support functions and power type weights 
have been given by Lin [16]. 
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