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Introduction. In the present note, 2 r denotes the class of all right pure semisimple
rings (= right pure global dimension zero). It is known that if R E 2r, then R is right
artinian and every indecomposable right /?-module is finitely generated. The class 2r is
not closed under ultraproducts [4]. While 2 r is closed under elementary descent (i.e. if
5 E 2 r and R is an elementary subring of S then R e 2r) [4], it is an open question
whether right pure-semisimplicity is preserved under the passage to ultrapowers [4, Prob.
11.16]. In this note, this question is answered in the affirmative.

Main result. Let L be the first order language of rings. Two rings r and 5 are called
elementarily equivalent (notation: R = S) if R and 5 satisfy the same first order sentences
in L. A class T of rings is called elementarily closed if R = S, S e T implies R E I\

PROPOSITION 1. Let R be any ring. Then R E 2 r if and only if for each ultrafilter pair
(I, F) the ultrapower ring R'/F = R* e 2r.

Proof, (i) The " i f part: suppose that the ultrapower R* is right pure semisimple
ring, so the ring R is right artinian [3; 1.2]. We have to show that for each sequence of
nonisomorphisms

between finitely generated indecomposable right /?-modules there exists an integer n with

(This is a well-known characterization of right pure semisimple rings, see [2 or 6]). Since
the ultrapower modules M)IF, t = 1,2,3, . . . , are finitely generated and indecomposable
over the ultrapower ring R* [3; 1.4], the assertion follows from the fact that the following
sequence of /?*-modules

M'JF -?U M'2IF -£+ M'3/F -£+...

where f?=f',lF, t = 1,2,3, . . . , admits this property [3; l.l(ii)].
(ii) The "only i f part; Let R E Hr. Suppose that there exists an ultrafilter pair (/, F)

such that R* &1r. Thus there is a sequence of nonisomorphisms

between finitely generated indecomposable right /?*-modules such that for any p>0,
fp---fi /2^0. Observe that R* is right artinian and each Mf is isomorphic to an
ultraproduct of a family (A/,,),e/ of indecomposable right /?-modules of the same length
[3; 1.4]. Since R admits only finitely many isomorphism types of indecomposable right
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modules of length n for each positive integer n (see [5] or [7]), thus one can deduce that
each Mf is isomorphic to an ultrapower of a member of the family (M,,),e/, say N,. So, by
[3; l.l(ii)], we can obtain an infinite chain

Nl->N2-»N3-*...

of indecomposable right y4-modules, where each composition is nonzero, contradicting the
fact that R is right pure semisimple. Therefore R* e 2r. This completes the proof of the
proposition.

PROPOSITION 2. The class 2r is elementary closed.

Proof. The assertion follows from the Keisler-Shelah ultrapower theorem [1], and
the preceding proposition.

REMARK 3. Similarly, one can show that the class 2, of left pure semisimple rings is
elementarily closed. Therefore the class 2 = 2r U ^ of right or left pure semisimple rings
is closed under elementary equivalence.

COROLLARY 4. Let (RA: A < a) be an elementary chain of elements of the class 2 (i.e.
R^ is an elementary subring of RA whenever yu < A < a). Then its union belongs to 2. In
particular, 2 is closed under the formation of ultralimits.
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