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EXTREME /J-POSITIVE LINEAR MAPS

by SZE-KAI TSUI

(Received 7th March 1991)

In this article we prove that if a completely positive linear map O of a unital C*-algebra A into another B
with only finite dimensional irreducible representations is pure, then we have /Vo = ©ker + ker,,,, where
N9={xeA\<b{x) = 0}, (1>ker = {x6/l|<D(x*x) = 0}, and ker«,= {xe.4|<I>(xx*) = 0}. We also prove that for every
unital strongly positive and n-positive linear map <D of a C*-algebra A onto another B with nS2, if
N o = fcker + kero, then <I> is extreme in Pn(A,B,lB). By this null-kernel condition, many new extreme n-positive
linear maps are identified. A general procedure for constructing extreme n-positive linear maps is suggested
and discussed.

1991 Mathematics subject classification: 46L05.

1. Introduction

In 1947, Segal [7] proved that a state <p of a C*-algebra is pure if and only if the
GNS representation induced by 4> is irreducible. This characterization later was further
generalized to completely positive linear maps O of a C*-algebra A into B{3^C), the C*-
algebra of all bounded linear operators on a Hilbert space B(jf), by Arveson [2], via
the Stinespring representation induced by <D. In 1957 Kadison, using his celebrated
transitivity theorem for irreducible representation, derived another characterization of
pure states as follows. For a state 0 on a C*-algebra A, with N^, = {XEA |<£(X) = 0 } ,

^ker = {xe,4|$(x*x) = 0}, ker^ = {xe/ l |0(xx*)=O}, 4> is a pure state if and only if
N ,̂ = ^ker + ker^. In this article we start out by studying the relation between an
n-positive linear map 0 of a C*-algebra A into another being pure or extreme and the
condition N9 = ,pker + ker^, where N(l> = {xeA |<D(x) = 0}, .^ker = {x e A | <t(x*x) = 0} and
ker<S) = {xeA |d>(xx*) = 0}, for n ^ 2 . Earlier work on the similar subjects can be found in
Stormer [9], Arveson [2], Choi [4], Paschke [6], and more recently in Anantharaman-
Delaroche [1].

1.1. Notation. In this paper, all C*-algrbra are unital, and they are denoted by
A,B,D, etc. The set of all n-positive linear maps of A into B is denoted by Pn(A,B),
n=l,2,...,o3,Pa>(A,B) = ()?=lPn(A,B). In case n = oo, PX(A,B) is the set of all
completely positive linear maps of A into B, which can also be denoted by CP(A, B). An
element <D in Pn(A,B) is called pure, if for every if/ in Pn(A,B) with iji^<S> (i.e.,
<D — \p e Pn(A, B)) *// must be of the form a<D for some positive scalar a. An element O is
said to be extreme in Pn{A,B,p) = {0ePn(A,B)\6(IA) = p = ${IA)}, if we have (D = (D1=<D2,
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whenever d) = i(O1 + <D2) for <Dl5 <J>2 in Pa(A,B,p). For 0 in Pn(A>B), «ker is a left ideal
and ker,,, is a right ideal in A.

1.2. In Section 2, we show that, for those C*-algebras B having only finite
dimensional irreducible representations, every pure element in CP(A, B) satisfies N<s> =
Jcer + ker,,, (see Theorem 2.4). We believe that the theorems remain valid for any
C*-algebra B in general. In Section 3, we show that every strongly positive and n-
positive linear map <D of A onto B satisfying N0 = oker + ker^, is extreme in
Pn(A, B, <!>(/)). This comes as a consequence of a more general theorem (see Theorem
3.5). We are also able to get a description of a set of extreme completely positive linear
maps in Pn(A, B, p), for n ^ 2 , analogous to Arveson's characterization mentioned in the
beginning of this section, for n = oo (see Theorem 2.1); however, our constructive
procedure is considerably simpler than Arveson's (for details, see Example 3.9).

Finally in Section 4 we direct our attention to a general procedure for constructing
extreme completely positive linear maps in some special cases. Further investigations in
this direction will appear elsewhere.

2. Pure completely positive linear maps

Let <D be in CP(A, B(Jir)). For x,yeAQ B(Jf), the algebraic tensor product of A and
B{3^), x = Yj=iai®r\i,y = Yj=y.bj®l;j, a semidefinite inner product <•,•> can be
defined by <x,y> = £.•,;<$(&>.•)>/•,<,•>. due to Stinespring [8]. Let I = {xeAQJ^\
<x,x> = 0}, which is a subspace of A Q Jt? invariant under the /l-action defined by a

(YJ a> ® id = S aai ® 1i> f° r a e ^> H ai ® Vie ^ O &. The Stinespring representation
space JT is defined as the completion of A Q Jff/I. The Stinespring representation n of
A on JT is defined as Jt(i4)([^a, ® »;,•]) = [^aaf ® /;,] for aeA where [x] is the coset in
JT determined by x in AQJf. Indeed, 7t(a)([x])E/ for [ x ] e / and n{a) is well-defined
for all a in A, and <&(a) = v*n(a)v where D is a bounded operator of B(J^) into JT
defined as v(ri) = [a ® »/]. (We call {71, X, v) the Stinespring representation triple induced
by <D.) In 1969, Arveson characterized the pure elements in CP{A,B(J^)) and the
extreme elements in CP(A,B(J^),p) as follows [2].

Theorem 2.1 (Arveson). (1) Let <t>eCP(A,B(Jf)). O is pure if and only if the
Stinespring representation n induced by 4> is irreducible.

(2) Let <i>eCP(A,B(J^),p). <S> is extreme if and only if the following map 1 from the
commutant n(A') ofn(A) onto Piv^]-M^)'\[vjf]- IS injective, where P\VJC]- is the orthogonal
projection of yf onto |

Two natural questions arise. (1) How is the condition N^ = .^ker + ker^ related to <J>
being pure in CP(A,B(Jf))l (2) What are the characterizations of pureness and
extremeness when the range is an arbitrary C*-algebra?

Paschke answered question 2 in case of normal completely positive maps between von
Neumann algebras. Here we answer question 1 for C*-algebra B with only finite-
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dimensional irreducible representations, and the discussion of question 2 in the context
of C*-algebra will be included in the later sections.

Proposi t ion 2.2. Let Mn denote the C*-algebra of nxn matrices. If Q> is pure in
CP(A,Mn), then A^a, = k k

Proof. By a property of <D due to Choi [3], that <D(a)<D(a)*̂ <!>(aa*) for all aeA, it
follows that if ae^ker (or aeker<p respectively) then (!>(a)*<&(a)^<t>(a*a) = 0 (or <I>(a)<D(a)*
S<D(aa*) = 0 respectively), namely aeN0. Thus, we need only to show No£^ker + ker,,.
Let {n,tf, v} be the Stinespring representation triple induced by O. By 2.1, n is
irreducible. Suppose beN0 and that {nu...,nn} is an orthonormal basis for C. Then
{[i>®>7;] | i = 1,•••>"} is orthogonal to {[1 ® n{~\ \i=l,...,n} in X. By Theorem 2.1, ?r is
irreducible. Then it follows from Kadison's transitivity for irreducible representations
that there exists a self-adjoint element a in A such that

fJ ) = O for i = l , . . . , n . H

(1) is equivalent to the following:

j\\lab®rli-b®r,i-]\\=O
l | [ f l®i f l ] | |=o i = i «. l ;

It follows from (2) that

l<4»(a2)»,,,^> = 0 i = l , 2 , . . . , ii,

and hence <S>((ab — b)*(ab — b)) = 0 and <D(a2) = 0 i.e., b — abe^ker and aeker,,,. Thus, we
have abekero and b = (b — ab) + abe0ker + ker,,,. •

Proposition 2.3. Let B = ^ i e J , © B, be f/ze C*-direct sum of C*'-algebras Bh ieJ, and
/j be the unit element of Bv //<!) is a pure element in CP{A,B), then 4>()/, = 0/or all i in
J except one.

Proof. Suppose that there exists aeA and io^jo in J such that Q(a)/ ( o#0 and
<D(a)/;o#0. Since O(a)*O(a)/,g(D(a*a)/i and a*ag||a| |2/, it follows that O(a*a)/IO#0,
O(a*a)/JO#0, and O(/)/ i o#0, <D(/)/,o#0. This ip(a), defined by i/^(a)=0)(/l)/,o, is an
element in CP(A, B) with is majorized by 4>, and not equal to a scalar multiple of O.
This is a contradiction to the assumption of <t being pure, and this completes the proof.

•
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Theorem 2.4. Suppose that B has only finite-dimensional irreducible representations.
For every pure element <t in CP(A, B), we have N0 = oker + ker<p.

Proof. Let the centre of B be isomorphic to C(X). We decompose X as the disjoint
union of the atomic part Xa and the diffused part Xd. Let Pd be the central projection of
B onto C{Xd). It is clear that CP(A,BPd) has no pure element. Since B is isomorphic
onto Xiex,, © BPj@ BPd, where P, is the central projection corresponding to ieXa. BPt

is isomorphic to Mn. for some n,. By Proposition 2.3 <I> is pure in CP(A, B) if and only if
<&( )Pd = 0, O( )P, = 0 for all ieXa except for i = i0. By Proposition 2.2, if fl> is pure, then

•
Example 2.5. The converse of Theorem 2.4 does not hold in general. This can be

explained in the following example.

Let <1> be a completely positive linear map of M2 into itself defined as

Then No, =

»([: :])•[:")
b,c,d arbitrary I, oker

yv [[oP b, d, arbitrary i

:,d arbitrary >.

Hence No=a >ker + ker(I). However, O is not pure in P0O(M2,M2). In fact, let £ 0 be the
elementary matrix unit with all entries zero, except the i/th entry equal to 1, for
i,7 = l,2. Define <J>i{X) = (jEll + ̂ E2l)X(\Eil+^El2) + Ys E2lXEl2 for all XeM2. It is
obvious that <bx is completely positive and

Since <P(X) =

< • -

is completely

EnXEn

positive

+ E21

a n d <t>

$ 1

XEl2,

VLC ^J/ L^a ^ a J
it follows that

73 2 1 A 2 £l l+573

for any scalar a.

48'

3. Extreme /i-positive linear maps

In this section, we study the relation between AT<1)=oker + kera( and the extremeness
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for a n-positive linear map <t>, for n _ 2 . Let $ be a projection map of A onto a C*-
algebra B of B of norm one. According to Tomiyama [10], O is completely positive and
satisfies <l>(x_y) = x<D(y), <t>(yx) = <b(y)x for all ye A, xeB.

Theorem 3.1. Let O be a projection map of norm one from A onto B. If No =
<j,ker + kero, then O is extreme in Pn(A,B,IB), for n^.2.

We need the following lemmas in proving Theorem 3.1. We assume O is a projection
map of norm one and No = ,j,ker + kero in the following lemmas.

Lemma 3.2. / / <D = ft*, + 0>2) for d>, € Pn(A, B, lB), i = 1,2, then N01 = N«,2 = No.

Proof. Since |<t>,^O, i = l , 2 , it follows that ^ e r s ^ k e r and ker^s ker,,., f = 1,2.
Hence AT<I>=<I>ker + ker<I)£a).ker + kera)., i = l , 2 . For O,ePn(/1,B,/B), by a theorem due to
Choi [3], we have ^(a)*^-^) ^ Of(a*a) for as A, i = l , 2 , and hence .p.ker + kero.cN,,,.
r" = 1,2. Thus, NQ^NQ. i = l,2. We need only show N^^No.= l,2. For all elements a in
A, a can be decomposed as a = O(a) + a, where d=a — O(a). It is obvious that deN9.
Suppose that a is in N<S>t, but not in N,,,. Then <J>(a)=^(O1(a) + O2(a))=5O2(a) =
iO>2(<D(a) + a)=4<l>2(<I>(a)), with $(a)#0; namely <D2(d>(a)) = 2tf>(a). That implies | | $ 2 | | ^2
which is a contradiction to the fact that O2 is in Pn(A,B,IB). Therefore NQ^NQ.

Similarly N^ = N&. D

Lemma 3.3. If <&=%(<&^QJ far (D,ePn(A,B, 1B) i=l,2, then fl>,d> = <i>, and <S>f = <S>,,

Proof. For aeA, <5j(a)=Oi(O(a) + a), where aeN^cN^ i = 1,2. Thus <D,(a) =
i= 1,2. Since <D|B = id is extreme in P(B,IB), and

<t(a) =

we have O(a) = O(O(a)) = OO,(<I)(a)) for all a in /I, i = 1,2. Hence Of=(<J>,<I>)2 =
D ( O ) D

3.4. Proof of Theorem 3.1.

(a)} (by Lemma 3.3).

Since the identity map is extreme in P{B,IB), it follows that <D(a) = <D,4>2(a) = d>,O(a) for
all a in /I. Thus <D = <D,4> = <!>,• for i = 1,2. Q
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The requirement for <P to be a projection map of norm one in Theorem 3.1 seems
somewhat restrictive. In fact, Theorem 3.1 can be extended to include other maps in the
following theorem. Even though the following theorem will supersede Theorem 3.1, I
think the difference of approaches in these two proofs warrants the appearance of both.
A positive map O of A into B is said to be strongly positive, if O ' ^ x ) contains a
positive element in A for every positive element x in B.

Theorem 3.5. Let <£> be a strongly positive and n-positive linear map of A onto B with
G>(1)=1, for nt.2, and if/ be n-positive and extreme in P(B,D,p) where p = ij/o<&(I). If
No = a.ker + ker,,,, then ij/o<l> is extreme in Pn(A, D, p).

Proof. Suppose ^o<&=£(0, + 02) for 0;eP2(/l,£>,p) i = l , 2 . We will "factor 0£

through O", i.e., find \\i{,eP(B,D,p) such that 0; = i/̂ -o <D j = l , 2 . Define i/̂ : B^D as
follows: for x in B, i/'f(x) = 01-O>) for some y in A with O(y) = x, i = l , 2 . We first show that
the i/f.'s are well-defined. For, if Q>(y) = 0 and \fi o <D(y) = 0, then by the assumption that
No = oker + ker^,, we have y=yl+y2 with Q>(y*y1) = 0 and Q>(y2y*) = 0.

Since 6^2(^0®), we have fl((3'fj'i)g2(^o<I>)(y*y1) = 0 and fl^}*!) ^2(./>o 0 ) 0 ^ 5 ) = 0,
i.e., y1ee.ker and y2ekerei i = 1,2. This implies that y = yx +y2£f l iker + ker9 .sNe. i = 1,2
and hence 6t(y) = 0. Thus i/', is well-defined.

Since O is strongly positive, it follows that ipt is positive, r = 1,2. Now, it is easy to
verify that 0, = ^o<D, 4>i(I) = p, / = 1,2, and K ^ i + ^ 2 ) ( x ) = i ( e 1 + 02)tv) = ^o«(J>) = ^(x)
for all x in B.

Since ^ is assumed to be extreme in P(A,D,p), it follows that I/'I = I/'2 = 1/' a n d hence

Corollary 3.6. Let <t> be a *-homomorphism of A onto B and let tj/ be n-positive and
extreme in P(B,D,p) where \j/{I) = p and n't2. Then t/fofl> is extreme in Pn(A,D,p).

Proof. N^ = ^ker = ker^, holds for any *-homomorphism 4>, and any *-
homomorphism is a strongly positive map. Thus, by Theorem 3.5, i/^oO is extreme in
Pn(A,D,p). •

In Theorem 3.5, when B = D and i// = identity map, we get a general version of
Theorem 3.1 as follows.

Corollary 3.7. Every unital strongly positive and n-positive linear map <J> of A onto B
with n^.2 satisfying No = ̂ ker + kero is extreme in Pn(A,B,IB).

Remarks 3.8. Furthermore, in case of nonunital O, Corollary 3.7 is still true. For, if
O(l) = p / / B , then consider il/(x) = p~il2Q>(x)p~112, where p~ 1 / 2 is the densely defined
positive operator and tp(x) is strongly positive and n-positive unital with JV̂  = N<1),
^ker = oker, ker^ = kera(. tp is extreme in Pn(A,B,IB) if and only if <t is extreme in

• Pn(A,B,p). Thus, every strongly positive and n-positive linear map <t> of A onto B
satisfying No = ̂ ker + ker^, is extreme in Pn(A, B,
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3.9. Eamples

3.9.1. Let A be a unital C*-algebra and p a projection in A. Define a completely
positive map O of A onto the reduced algebra pAp by <I>(x) = pxp for x in A. It is clear
that ,pker = /4(l— p) and kera>=(l—p)/4 and N<p={ae/l |pap = O}. For xeN^, x =

px( 1 — p) e ̂ ker + ker^,. Hence No=a )ker + ker<t. By Theorem 3.1 $ is extreme in
Pn(A,B, I), (or n^2.

3.9.2. This example can be viewed as analogous to Arveson's characterization of
extreme completely positive linear maps of A into B(3f?). Let n be a *-homomorphism
of A onto B and B act on a Hilbert space <?£? Let v be a bounded operator from Hilbert
space Jf" into J f such that the support of vv*( = q)eB and v*v = p. Then <T>(x) defined by
<D(x) = u*7i(x)i; for xeA is extreme in Pn{A,D,p), where D = u*7t(/l)t;. For O is strongly
positive and n-positive, and

From the above calculation, we have iVo = .pker + ker,,,, for n is a *-homomorphism onto
B. It is clear that <t> is strongly positive. Then, by Remark 3.8, O is extreme in
Pn(A,B,p), for n^2.

4. Constructions of extreme n-positive maps

The condition N® = ̂ ker + ker^, is not necessary for O to be extreme in Pn(A, B, <!>(/)),
even for n = co. This will be made clear in the following example.

Example 4.1. Let <D be a completely positive linear map of M2, the 2 x 2 matrix
algebra, into C(&C defined by

•([:
It is easy to see that

and <pker = ker^, = 0. Indeed, if <D(x*x) = 0 for
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x =

then |a|2 + |c|2 = 0 + |fc|2 + |d|2 = 0 and x = 0. Then fact that such a map <D is extreme in
CP(M2,C

2,IC2) can be calculated directly or seen as an easy consequence of the
following theorem.

Theorem 4.2. Let <&<,e Pn(A, B, pt), ieJ, and Bt be the hereditary C*-subalgebra
generated by p( in B, isJ. Suppose that Bjr\Bj={0}, for i^=j in J, and <!>, is extreme in
Pn(A,Bj,Pi), ieJ. Let <D be defined by £,,=., O, In point-norm topology as the limit of the
net f finite sums of <D,-'s. Then $ is extreme in Pn(A,B,p) where p = ̂ jejPi in norm
topology. The value of n can be 1,2,..., oo.

Proof. Suppose <B = £(0 + ^) for 0,ij/ePn(A,B,p). The hereditary C*-subalgebra
generated {BhieJ) is £ i 6 - , ® B, the C*-direct sum of B.'s, for B,-nBj={0}, i # ; in J.
For ieJ, <&i(A) is contained in Bh and hence <D(/4) is contained in £ieJr ® B. So, 6(A)
and \jj(A) are contained in £ i e J , © Bh for 0^2$, ^g2O. For each ieJ, define
0i{x) = pi6{x)pi, ilii{x) = pi\l/(x)pi. It is easy to see that 0(x)=£ie.,0;(x), <AW = Xi6^^iW.
both of these infinite sums converging in norm, and 0, = i(01 + i/'i) with Qi(l) = ̂ ii(l) = Pi,
ieJ. Since <t, is assumed to be extreme in Pn(A,B,pi), it follows that 0, = i/'j = <I), and
hence 6 = \j/ = <l>. •

4.3. Concluding remark. In finite dimensional cases when A = Mn and B = Mm, Mk

the kxk full matrix algebra, every completely positive linear map 0 of A onto B is of
the form Q>(X)=YJ=I v*xvt for xeA where t;,- is a n x m matrix and {vf}k

i=1 is linearly
independent. <J> is extreme in P0O(/l, B, <̂ >(/)) if and only if {o*viYUj=l is linearly
independent (see [4] for details). In this case each map <bi{x) = vfxvi, for i=\,...,k,
satisfies No. = o.ker + kera). for i=l,...,k. In [4] Choi completely determined the form of
extreme completely positive linear maps of Mn into Mm. Recently, Anantharaman-
Delraoche [1] described a similar procedure of constructing some extreme normal
completely positive linear maps of a von Neumann algebra M to another von Neumann
algebra N, given a fixed irreducible correspondence H from M to N. Now, it is
interesting to find out if his procedure is general enough to include all normal extreme
completely positive linear maps. On the other hand, Theorem 4.2 suggests a procedure
to construct extreme n-positive linear maps by considering C*-direct sums of extreme n-
positive linear maps. Combining example 4.1 and Theorem 4.2 one cannot help but ask
whether all extreme n-positive linear maps can be written as C*-direct sums of n-
positive linear maps </>,, ieJ, which satisfy the condition N ^ ^ ^ k e r + ker,,,. for itJ.
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