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ABSTRACT

An approximation of the distribution of the present value of the benefits of a
portfolio of temporary insurance contracts is suggested for the case where the size
of the portfolio tends to infinity. The model used is the one presented in PARKER
(1922b) and involves random interest rates and future lifetimes. Some justifications
of the approximation are given. Illustrations for limiting portfolios of temporary
insurance contracts are presented for an assumed Ornstein-Uhlenbeck process for
the force of interest.
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1. INTRODUCTION

When considering random interest rates in actuarial functions, a question of
particular interest is the distribution of the present value of a portfolio of policies.
Studying such distributions could be very useful in areas such as pricing, valuation,
solvency analysis and reinsurance.

Some references which considered stochastic interest rates in actuarial functions
are BOYLE (1976), WILKIE (1976), WATERS (1978), PANJER and BELLHOUSE (1980),
DEVOLDER (1986), GIACOTTO (1986), DHAENE (1989), DUFRESNE (1988), BEEKMAN
and FUELLING (1990), PARKER (1992b).

Recently, DUFRESNE (1990) derived the distribution of a perpetuity for i.i.d.
interest rates. FREES (1990) recursively expressed by an integral equation the
distribution of a block of n-year annuities for i.i.d. interest rates.

This paper, taken for the most part from the author’s Ph.D. thesis (PARKER
(1992a)), presents an approximation of the limiting distribution, as the number of
policies tend to infinity, of the average present value of the benefits for a specific
type of portfolio of insurance contracts. Although, theoretically, the approach may
be used for any stochastic process for the interest rates, it is more convenient for
Gaussian processes. The approximation is justified by two correlation coefficients
which happen to be relatively high mainly because of the definition of the present
value function. Some illustrations of the distribution function of the present value of
portfolios using the Ornstein-Uhlenbeck process are presented. Finally, the
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moments of some approximate distributions are compared with the corresponding
exact moments.

2. A PORTFOLIO

Consider a portfolio of temporary insurance contracts, each with sum insured 1,
issued to ¢ lives insured aged x. Let Z(c) be the random present value of the
benefits of the portfolio.

PARKER (1922b) used a definition of Z(c) involving a summation over the ¢
contracts of the portfolio. That is

@.1) z(c)= Y, 2z,

i=1

where Z, is the present value of the benefit for the ith life insured of the portfolio.
This definition is convenient for calculating the moments of Z(c) because it is
possible to simplify the expressions for these moments under the assumption that
the future lifetimes of the ¢ policyholders are mutually independent.

Another definition which is equivalent appears to be more appropriate for
studying the limiting distribution of the random variable Z(c).

Instead of summing over the ¢ policies, one could consider summing the present
value of the benefits in a given year over the n policy-years of the contract.
Algebraically, we have

n-1

(2.2) z(c)= Y, ¢;-e MUt
i=0
where
i+1
2.3) y@i+1)= J 0, ds,
0
d, is the force of interest at time s and ¢;, i =0, 1,...,n—1 is the random variable

denoting the number of policies where the death benefit is actually paid at time
i+ 1. We let ¢, be the number of lives insured surviving to the end of the term, n.
Note that the sum of the ¢;’s from i equal O to n is ¢, the total number of policies in
the portfolio. Thus,

(2.4) Y ¢=c.
i=0

When studying z(c), we will assume that the future lifetimes of the lives insured
are mutually independent and independent of the forces of interest {,}, = . In this
case, the {c¢;}7. is multinominal. We will also assume that the discounting of all
the benefits for the policies in the portfolios is done with the same Gaussian forces
of interest.

In the next section, we consider limiting portfolios, i.e. portfolios where the
number of contracts tends to infinity.
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3. LIMITING DISTRIBUTION

Using (2.2), one could intuitively derive that the average cost per policy (defined as
Z(c)c) as the number of such policies tends to infinity would simply be a
weighted average of the present value functions from year 1 to year n. The weights
being the expected proportion of contracts payable in each year, i.e. ;q,. The
probabilistic version of this intuition is presented in Theorem 1.

Theorem 1: As ¢ tends to infinity, the average cost per policy for a portfolio of
n-year temporary insurance contracts tends in distribution to: (see also proposi-
tion 5 of FREES (1990))

n-1

(31) §n= 2 iqu'e~y“+l)'

i=0

Proof: This result is true if
n-1

(3.2) zZ(cYe=Ey= Y, (cile~ g0 - e+ D

i=0

tends in probability to O.

We use the well-known result that if X tends in probability to 0 and Y has finite
mean and variance, then X - Y tends in probability to O (see, for example, CHUNG
(1974, p. 92)).

Here, ¢, is binomial (c, ;q,) so, (¢;/c —;q,) tends in probability to O for each i.
And as e *“*" is log-normally distributed with finite mean and variance, it
follows that

n—1

Z (cifc—uqd - e D

i=0

tends in probability to 0. 0

Now, one could theoretically obtain the density function of {, by integrating the
joint density function of the y(i)’s over the appropriate domain. The expression
would look like the following :

(3.3) fp;,,(z)=J J J Se i yasoy)dvidyy ... dy,

Yn hed A

where Y =(y(1), ¥(2), ..., y(n)) and is multivariate normal.

But this approach is not possible from a practical point of view as it is almost
impossible to evaluate (3.3) even for n as small as 5. In the next section, however,
we derive a recursive equation from which one can approximate the distribution
of §,.

https://doi.org/10.2143/AST.24.1.2005080 Published online by Cambridge University Press


https://doi.org/10.2143/AST.24.1.2005080

50 GARY PARKER

4. APPROXIMATION

Since {, is a summation over the policy-years, it is easy to break it down into the
sum of §,_; and a term for the nth policy year. The recursive equation for , is then

given by:
n—1 n-2
_ —v(i+1) _ -v(ii+ 1) -y(n)
gn‘ 2 igx - € * - Z igx - € e +,_1gy € !
i=0 i=0
— = yin)
(41) Cn—Cn—l"-n—qu'e A

Let z; be a possible realization of z; and y; be a possible realization of y( ).
Let the function g, (z,, y,), a somewhat unusual function based on the distribu-
tion of ¢, and the density function of y(n), be defined as:

(4.2) Gn (@ y) =P (& =2)  frimy (I8 = 2,),
or equivalently,
(43) gn (Zn ’ yn) =fv(n) (yn) ) P(Cn = any (n) = vn) .

From this last definition, it follows immediately that the distribution function of
g, is given by:

(4.4) Fe (2= J. 902> Ya) - Ay,

where the function g, (z,,y,) may be calculated with a high degree of accuracy
from the following recursive equation:

(45) gn(znvyn)E J f_v(n)(yn'y(n"l)zynAI) X

X gn—](zn_n-lqu' e_'y"vyn—l)dyn—l

with the starting value:

-E 1
(4.6) GGy=| o (L[Lfl
V(DI

0 otherwise

) if 2] ZC]A—‘é’_"'I

We use the notation ¢ (-) to denote the probability density function of a zero
mean and unit variance normal random variable. Note also that given that y(n - 1)
equal y,_;, y(n) is normally distributed with mean

47 Elymly(n-1)=y, ]

cov (y(m), y(n=1)
VIy(m)

=E[y(n)] + {yo_1—Ely(n- DI}
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and variance

cov? (y(n),y(n=1))
Viy(n-1)]

(4.8) Viymly(n-1D =y, 1=V[ynl -

(see, for example, MoORRISON (1990, p. 92)).
To derive (4.5), we start by noting that from (4.1), we have that:

(49) P(Cn = an.y (n) = yn) = P(Cn— 1 = Zn—n-19x" € _y"|y (I’l) = yn)
Now using (4.2), (4.3) and (4.9), we have
(410) gn(znvyn)zp(gn-lSzn—n—l\qx'e_y") X

X fv(n)(yn|Cn— { = In—n-114x" € —,V,,).

The conditional probability density function of y(n) in (4.10) may be written as:
(MELsSA and SAGE (1973, p. 98))

(411) f\'(n)(yn‘gn—l = lpn—n-19x" e_,Vn)

B J f.‘"(n)(ynly(n_ 1)=yn—l’§n—l Szn_n—l\QX'e—yn) X

ed

-y,
xf_‘\‘(n—l)(yrz—llgn‘l Szn~n~lqu'e : )dyn—l .

Equation (4.3) implies that

_ gn—l(zn—'n—l\qx' e—yn’yn—l)
P(gn—l Szn_n—l\QX' e‘."n)

If we now make the following approximation (see the next section for some
justifications)

(4.12) fr-1yVaoilly 1 = 2= 0o1g e

(413) fv(lx)(yrzly(n_ 1)=yn—l’ Cn—l = In ™ n-19x" e‘.Vn)E
Efv(n)(ynly(n - l) =yn—l)’

then equation (4.11) becomes
(414) f.\'(n)(anCn—l = Ln ™ n-1qx" e‘yn)E J fv(n)(ynly(n— 1)=yn—l) X

% gn—l(zn_n—-l\qx' e—yn’yn—l)
P(Cn—l Szn_n—l\q,r‘e_y”)

Finally substituting this last expression (4.14) into (4.10), we obtain (4.5).
To obtain the starting value (4.6), we simply have to note that:

dy

n—1-

(4.15) Li=qoe

https://doi.org/10.2143/AST.24.1.2005080 Published online by Cambridge University Press


https://doi.org/10.2143/AST.24.1.2005080

52 GARY PARKER

and that
(4.16)
9Ly =PE=zlyM=y) fia,(y)
-E 1
=P =zgly(h)=y) ¢ [W]
Viy(OH}
Then, since
4.17) Ei=q.- e if y()=y,

we have that

= .
(4.18) P, Sz.ly(1>=y,)={l LoomEe
0 otherwise

Finally, by combining (4.18) and (4.16), we obtain (4.6). This completes the
derivation of (4.5) and (4.6).

Before doing numerical evaluations of approximation (4.5), it is important to
study in greater details and to justify the approximation (4.13) involved here. This
is done in the next section.

5. JUSTIFICATIONS

Looking at the steps leading to (4.5), we note that the result is not exact due only to
approximation (4.13) made in order to obtain a recursive equation involving only
known quantities. This approximation may be justified theoretically by looking at
two particular correlation coefficients, one of which validates the approximation for
large values of n and the other for small values of n.

5.1 Correlation between y(n) and y(n-1)

From the subject of multivariate analysis, we know that the approximation (4.13)
will be acceptable if y(n) and y(n — 1) are highly correlated (see, for example,
MaRrDI1A, KENT and BiBBY (1979, Section 6.5)). This is true since if they are highly
correlated, knowing y(n — 1) would explain much of y(n). Now if this is the case,
introducing any other variable, correlated or not with y(n), in the regression model
to further explain y(n) cannot improve the situation much.

Looking back at the definition of y (n) (see (2.3)) it is clear that y(n — 1) and y (n)
must be highly correlated. Their correlation coefficient will be given by: (Ross
(1988, p. 280))

cov (y(n), y(n=1))
(VIy@]-Viyn-np'®
Note that if the force of interest is modeled by a White Noise process, i.e.

(5.2) 8, ~N(4, 62),

GRY; o(y(),y(n-1)=
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where it is understood that its integral, y(t), is a Wiener process, it can be shown
that, the expected value of y(r) is

(5.3) Ely®)=4-1t
and its autocovariance function is
(5.4) cov (y(s), y(@) =02 - min (s, t).

If the force of interest is modeled by the following Ornstein-Uhlenbeck
process :
(5.5) dd,= —a(d,-0) dt+0o-dw,,
with initial value J,, then y(¢) has an expected value of
(5.6) Ely(t)]=5't+(5o—5)'[ii!)

o

and its autocovariance function is

2
(5.7) cov(y(s),y(t))= ET min (s, t) +
o

2

o ‘ -
+ - [_2+2e—as+2e—at_e—a\t—s\_e oz(t+s)]
2o

(see, PARKER (1922b, equations 38 and 39)).

The correlation coefficients between y(n) and y(n — 1) for different values of n,
when the force of interest is modeled by a White Noise (see (5.2)) and when it is
modeled by an Ornstein-Uhlenbeck process (see (5.5)) with parameter o =.1, .2 or
.5 are presented in Table 1.

TABLE 1

CORRELATION COEFFICIENT BETWEEN y{(n) AND y{(n — 1)
FORCE OF INTEREST AS WHITE NOISE AND ORNSTEIN-UHLENBECK PROCESSES

Omstein-Uhlenbeck

n White Noise
a=.1 a=.2 a=.5
2 7071 8773 .8707 8516
3 8165 9474 9423 9270
4 .8660 9701 9659 9535
5 .8944 9804 9769 9664
6 9129 9860 9829 9739
7 9258 9894 9867 9788
8 9354 9916 .9891 9821
9 9428 9931 .9909 9846
10 9487 9942 19922 9865
20 9747 9980 9969 9940
40 .9874 9992 9987 9972
60 9916 9995 9991 19981
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Results for the White Noise process are presented here because this process
involves i.i.d. forces of interest, therefore, leading to the lowest correlation
coefficients. Results for the Ornstein-Uhlenbeck process are presented because it is
the process used for illustration purposes in the next section.

Note that the correlation coefficient between y(n) and y{n — 1) is not influenced
by the parameter o, of the White Noise process. For the Ornstein-Uhlenbeck
process, the parameter dy,, 0 and ¢ have no incidence on the correlation
coefficients.

Table 1 clearly shows that y(n) and y(rn—1) are very highly correlated,
especially for large values of n. Therefore, approximation (4.13) made to obtain the
recursive equation (4.5) should be acceptable.

Another correlation coefficient could also justify approximation (4.13), indepen-
dently of the one discussed here. This is the subject of the next section.

5.2. Correlation between ¢ > and £,

Again from the subject of multivariate analysis, we know that the approximation
(4.13) would also be acceptable if y(n— 1) and §,_, contained about the same
useful information to explain y(n) (see, for exemple, MARDIA, KENT and BiBBY
(1979, Section 6.5)). This may be investigated by studying the correlation
coefficients between ¢ ¥~V and §,_,.

If e™¥™ and {, are highly correlated, the approximation would be reasonable.
The correlation coefficient between these two random variables is: (Ross (1988,

p. 280))

. (e, &)
(5.8) (e ™ gy= V€ on)
¢ {VieT™™1- Vg1

Using (3.1), we obtain

n-1

z iy - CoV (e 7V, e T D)
i=0

n-1 n-1 5
{Vle—y(m] : Z Z 9y jiqc - COV (6-".““)»8"””))}
i=0 j=0

(59) o™, ¢)=

where cov (e ¥, e YY)y is given b
g y

(5.10)  cov(e, e =E[e™ e V= E[e” ] Ele ™).

Note that if the force of interest is Gaussian, the expected values involved in
(5.10) are simply the expected values of lognormal variables (see PARKER (1992b,
Section 6)).

The correlation coefficients between e ¥ and ¢,, for different values of n,
when the force of interest is modeled by a White Noise or an Ornstein-Uhlenbeck
process with particular parameters are presented in the following table. The
mortality rates used are the male ultimate rates of the CA 1980-82 mortality table
(CowaRD (1988, pp. 227-231)).

-v(n
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TABLE 2

CORRELATION COEFFICIENT BETWEEN e " AND §,,
FORCE OF INTEREST AS WHITE NOISE AND ORNSTEIN-UHLENBECK PROCESSES

White Noise Ornstein-Uhlenbeck 6 = .06, 6,=.1, a=.1
n A4 =.06, g,=.01
x=30 o=.01 x=30 0=.02 x=30 o=.01 x=50
1 1.0000 1.0000 1.0000 1.0000
2 9447 9899 9899 9912
3 9199 9824 9824 9849
4 9064 9770 9770 9802
5 8980 9728 9727 9765
6 8925 9693 9692 9735
7 8890 9665 9663 9708
8 8868 9642 9638 9684
9 8856 9622 9617 9662
10 8851 9605 9599 9641
20 8969 9535 9518 .9455
40 .8999 9368 9321 .8693
60 8486 8730 8494 —
Note that o (¢ """, £,) is 1. This implies that approximation (4.13) is exact for

n = 2. The correlation coefficients of Table 2 suggest that the approximation should
be good, especially for small values of n.

Combining the two conclusions drawn from the results presented in Table 1
and Table 2, we note that the approximation should be acceptable for all values
of n.

Now that approximation (4.5) appears to be justified, we may use it to find the
distribution of £,. Equations (4.4) and (4.5) may be computed by numerical
integration or by some discretization method. Although some methods are certainly
more accurate than others, it is not our intention in this paper to discuss or compare
the possible methods. In the next section, we present some results obtained by an
arbitrarily chosen discretization of (4.5).

6. ILLUSTRATIONS

Figure 1 illustrates the cumulative distribution function of Z,, n=35, 10, 15,20
and 25, the limiting average cost per policy for temporary insurance contracts issued
at age 30 and with the force of interest modeled by a Ornstein-Uhlenbeck process
with parameters 0 =.06, dy=.1, a=.1 and 0 =.01. The mortality rates are again
the male ultimate rates of the CA 1980-82.

The range of possible values for {5 is much shorter than the one for £,5. This is
due to the fact that with a limiting portfolio, there is no fluctuation due to mortality,
and therefore, all the possible variations in the random variable {, are caused by the
force of interest. When there are only five years of fluctuating force of interest
involved, it is clear that the results will be less spread than when there are 25 years
of fluctuating force of interest. Finally, it should be obvious why .5 takes larger
values than (5.
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FiGUre 1. Cumulative distribution function of ¢,
Temporary insurance policies issued at age 30, Omstein-Uhlenbeck 6 = .06 éy=.t a=.1 o= 0l.
—— 5 years
— — 10 years
15 years
— - — 20 years
— - 25 years

There is no doubt that the distribution of §, provides very useful information in
solvency problems. One may also be interested in using such information for
pricing or valuation of a portfolio of insurance policies. In this regard, the relevant
information is contained in the right tail of the distribution of ¢,,.

Table 3 contains some numerical values of the right tail of the distributions of {5
and (s illustrated in Figure 1.

From Table 3, we know, for example, that a company charging a single premium
of .005602 to each life insured of a very large portfolio of 5-year temporary
contracts will meet its future liabilities with a probability of about .995.

TABLE 3
RIGHT TAIL OF THE APPROXIMATE DISTRIBUTION OF ,, 5 AND 25 YEARS TEMPORARY INSURANCE ISSUED AT
AGE 30, ORNSTEIN-UHLENBECK 0 =.06 dy=.1 a=.1 0 =01
5 years temporary 25 years temporary
s ng (zs5) 225 F::; (225)
005381 940609 .036135 966095
005436 972183 038092 982494
005547 992830 .040048 989498
005602 1995229 042004 994551
.005823 997927 .049827 999505
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7. VALIDATIONS

A validation of the results described above has been done by comparing the exact
first three moments of §, with its estimated first three moments from the
approximate distribution.

A discretization of the variable {, has been used to estimate the moments of the
approximate distribution. Algebraically, the mth moment of , about the origin has
been approximated by the following equation :

[Zn[il+zn[i+1]j'"

h

(7.1) Elgm= Y

i=0

(Fe zp i+ 1D = Fy, (z,[1D),

where z,[i|, i=1,2, ..., h is the ith ordered value of , at which F, was evaluated.
For the illustrations presented above, 4 was chosen to be 25. To deal with the
extremities of the distributions the following values were arbitrarily defined as:

21—z (1
(72) 2 [01=2 1] - [Mj
2
h-z [h-1
(1.3) Zlh+11=2,[h] + [L;[_Jj
(7:4) Fy (2,01 =0
(7.5) Fe (zylh+ 1) =1.

The exact moments of £, about the origin may be obtained by using the
definition of ¢, given by (3.1). Its mth moment about the origin is then given
by

n—1 m
76) E[C,’,”]=E[[2 ,-\q,fe*-v“*“] }
i=0

Now, with m equal 1, the first moment is
n-1

7D ElE,)= Y, Elig.-e "]
i=0

With m equal 2, the second moment is

n-1 n-1
(7.8) E|§3]=E[[Z M,x-'e"""*"]-[z ﬂqx,e—y(ﬁl)ﬂ

i=0 ji=0

(7.9)

n-1 n-1
E[z 2 e g .e—.\‘(i+1)—y(j+l):|
iYx " jiY x

i=0 j=0

n—-1 n-1

z 2 G, 1 ,E[e—.v<f+1>—,v(j+l)]
iMx  jiMx N

i=0 j=0

(7.10)

]
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With m equal 3, the third moment is
n—-1 n-1 n-1

TAD)  E[G1= Y 3 D e jde wdy Ele 0Dyt by

i=0 j=0 k=0

Note that the moments of , are exactly the limiting moments of the average cost
per policy studied in PARKER (1992b).

Table 4 presents, for different terms of temporary insurance contracts issued at
age 30, the exact moments of ,, E[C7], and the difference between the exact and
the estimated moments (given by (7.1)), i.e. E[£7] - E[Z!"], for m equal 1, 2 and 3.
The force of interest is modeled by an Ornstein-Uhlenbeck process with parameters
0=.06, 60p=.1, «=.1 and 0 =.01.

TABLE 4
COMPARISON OF EXACT AND APPROXIMATE MOMENTS OF £,, #-YEAR TEMPORARY INSURANCE ISSUED
AT AGE 30, ORNSTEIN-UHLENBECK 0 =.06 dy=.1 a=.1 =0l
E[L)] EILN =187

" m=1 m=2 m=3 m=1 m=2 m=3
(x 10) (x100) (x 1000) (x 10) (x 100) ( x 1000)
1 01197 00014 .00000 .00000 .00000 00000
2 .02284 .00052 .00001 .00000 .00000 .00000
3 .03291 .00108 .00004 .00000 00000 .00000
4 .04246 00180 .00008 —.00001 .00000 .00000
5 .05160 00266 00014 -.00003 00000 .00000
10 .09517 00909 .00087 —-.00017 -.00004 ~.00001
15 .14163 02023 00292 -.00031 -.00011 -.00003
20 19731 03964 00811 -.00041 -.00024 - 00009
25 .26356 .07167 02013 - .00054 -.00053 -.00030

Note that, in order to present more significant digits, the first moment has been multiplied by 10, the
second moment multiplied by 100 and the third moment multiplied by 1000.

From Table 4, we note that the exact and approximate first three moments of ¢,
agree to at least four, five and six decimal places respectively (for n =< 25). This is
excellent, especially if one considers that many approximations were involved
before obtaining the estimated moments of &,, E[&,].

Let the relative error for the mth moment of £, be:

(7.12) IEL)] E[Cnll'
E[L)]

Then, for any term, n, the relative error on the expected value of &, is about .2%
or less. For its second moment, it is about .7 % or less. And for its third moment, it
is about 1.5% or less.

The results for other parameters of the Omnstein-Uhlenbeck process and for other
ages at issue, not illustrated here, were all excellent. The maximum relative error
observed, generally for the third moment, being about 3%. Although for the
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illustrations presented here, the error is always negative, for other situations it may
be positive or even alternate over different ranges of values of the term, ». In all
cases, however, the relative error is small.

From the justifications made in Section 5 and from the validations presented
here, it appears that the approximation (4.13) suggested to obtain the resursive
equation (4.5) has to be highly acceptable.

8. CONCLUSION

The results of this paper provides a way of approximating the distribution of
limiting portfolios that is valid for any process for the force of interest as long as
the conditional density function of y(n) given y(rn — 1) is known and expression
(5.10) can be evaluated. As indicated earlier, choosing a Gaussian process simplify
things considerably.

Although equation (4.5) might not be acceptable for any random variables, the
very nature of the problem under consideration here, i.e. the present value of future
benefits, has some particular properties which imply that the approximation is good.
The worse possible case for Gaussian interest rates is when they are independent,
i.e. White Noise process. Even in this case, the correlation resulting between
consecutive present value functions is fairly high.

There is no doubt that knowing the distribution of the average cost per policy is
useful for pricing, valuation, solvency and reinsurance. The approximation sug-
gested in this paper is certainly accurate enough for most situations one may
encounter, it is more justifiable and less subjective than the testing of a limited
number of scenarios and it avoids the extremely lengthy simulations required to
obtain reasonable information about the tail of the distribution.
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