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Non-complemented Spaces of Operators,
Vector Measures, and ¢,

Paul Lewis and Polly Schulle

Abstract. The Banach spaces L(X,Y), K(X,Y), L, (X*,Y), and K= (X*,Y) are studied to determine
when they contain the classical Banach spaces ¢, or £o. The complementation of the Banach space
K(X,Y) in L(X,Y) is discussed as well as what impact this complementation has on the embedding of
¢oor {oo in K(X,Y) or L(X, Y). Results of Kalton, Feder, and Emmanuele concerning the complemen-
tation of K(X,Y) in L(X,Y) are generalized. Results concerning the complementation of the Banach
space K+ (X*,Y) in Ly, (X*,Y) are also explored as well as how that complementation affects the
embedding of ¢, or loo in Kyyx (X*,Y) or Ly« (X*,Y). The £, spaces for I = p < oo are studied to
determine when the space of compact operators from one ¢, space to another contains c,. The paper
contains a new result which classifies these spaces of operators. A new result using vector measures
is given to provide more efficient proofs of theorems by Kalton, Feder, Emmanuele, Emmanuele and
John, and Bator and Lewis.

1 Introduction

If each of X and Y is a real, infinite dimensional Banach space, L(X,Y) is the space
of all continuous linear transformations (operators) T: X — Y, and J is a proper
operator ideal, then is J complemented in L(X, Y)? This question has long been of
interest to functional analysts. Particular attention has been paid to the case when
Jd = K(X,Y) := the space of compact operators from X to Y. See Emmanuele and
John [6] for an historical perspective and a guide to the extensive literature on this
topic.

Since Kalton presented his results at the Gregynog Colloquium in 1972 and pub-
lished these results for the broader mathematical community [L1]], his results and
techniques have been the primary tools used by researchers in this area. The sharpest
complementation results for K(X,Y) are as follows. Kalton [11]] showed that if ¢,
is complemented in X, then K(X,Y) is not complemented in L(X,Y). Appealing
to results in [I1]], Feder [7] showed that K(X,Y) is not complemented if there is a
non-compact operator T: X — Y which has an unconditional compact expansion.
Feder [8] subsequently showed that if ¢, — Y, then K(X,Y) is not complemented in
L(X,Y). Noting that Kalton’s hypothesis, as well as both hypotheses of Feder, implied
that ¢, — K(X,Y), Emmanuele [5] and John [10] showed that if ¢, — K(X,Y), then
K(X,Y) is not complemented in L(X,Y).

In the next section we use vector valued measures to give simple arguments show-
ing that ¢, frequently embeds in K(X,Y') and to unify and extend results in [5}7}/8,[10}
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11]]. In the concluding section we investigate specifically when ¢, embeds as a com-
plemented subspace of K(¢;, £,). Our notation and terminology are standard. See
[2}3] for undefined terms.

2 Vector Measures and Spaces of Operators

For the convenience of the reader, we begin with a brief discussion demonstrating
that frequently ¢, embeds in K(X, X) and 4o, — L(X, X). Kalton [II} p. 267] ob-
served that o, < L({,,¢,), and it is not difficult to check that ¢, < K(¥,,¢,). Of
course, ¢, has an unconditional (Schauder) basis.

More generally, suppose that X is an infinite dimensional complemented sub-
space of Y and X has an unconditional compact expansion of the identity (i.e., T, €
K(X, X) such that Z:il T, (x) converges to x unconditionally for each x € X [6}[L1]).
Since X is infinite dimensional and ) T, is not norm convergent, we may assume
that | T,,|| /> 0. Let F be the finite-cofinite algebra of subsets of N, and let P: Y — X
be a projection. Define p: ¥ — K(X, X) by

(4) = 4 2onea Tno P ifAls finite,
S > nga Tno P if N\ Ais finite.

It is not difficult to see that 1 is finitely additive. Further, since > T, (x) converges un-
conditionally to x, 41 is bounded and p({n}) /4 0. (Thus, u is not strongly additive.)
An application of the Diestel-Faires theorem (3}, p. 20] shows that ¢, — K(Y,Y). An
appeal to [[11]] and explicitly [12] shows that ¢, — L(Y,Y).

More generally, it is known that if X is infinite-dimensional and ¢, — L(X,Y),
then ¢ — L(X,Y) (see [12]]). The conditions permitting ¢, to embed isomorphi-
cally into K(X,Y) are quite specific: Kalton [[11]] showed that o, — K(X,Y) if and
onlyifbog — X* 0rlog — Y.

The first theorem in this section is a vector measure generalization of results in
[11]. (It is not difficult to see that there are countably many functionals separating
the points of L(X,Y) if X is separable and Y is the dual of a separable space.) Let P
be the o-algebra consisting of all subsets of N.

Theorem 2.1 If u: P — X is a bounded, finitely additive vector measure with
w({n}) = 0 for each n € N and there are countably many points in X* which separate
the points in the range of |1, then there exists an infinite set M C N so that 1(A) = 0 for
allA C M.

Proof Since R\ Q is uncountable and Q is dense in R, we partition N into un-
countably many infinite sets (Ug)qea so that U, N Us is finite if & # . Note that
wUicpUi) = > icp u(U;) for all finite subsets F of A. We assert that there exists
«a € A so that u(B) = 0 for all B C U,. Suppose not, and for each & € A choose
B, C U, so that u(B,) # 0. Since there are countably many points in X* which
separate {{1(A) : A € P}, we may assume that there is an x* € X* so that ||x*|| = 1
and {« : x*1u(By)} # 0 is uncountable. Without loss of generality, suppose p > 0
and W = {& € A : x*u(B,) > p!} is uncountable. If F is a finite subset of W, then
card(F) - p < || U;cp Bi)l, and we easily contradict the boundedness of 4. [ |
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In the sequel, let (e,) denote the canonical unit vector basis of ¢, and (e};) denote
the canonical unit vector basis of ¢;.
The following argument immediately yields an improvement of [I1, Lemma 3].

Corollary 2.2 Suppose that (x,) is a normalized unconditional basic sequence whose
closed linear span is complemented in X and S: [x,:n > 1] — Y is an operator so that
no subsequence of (S(x,)) converges. Then K(X,Y) is not complemented in L(X,Y).

Proof Let Q: X — [x,] be a projection, let J: Y — /, be an operator such that
J is an isometry on [T(x,):n > 1], and let (P4), A C N be the family of pro-
jections associated with the unconditional basis (x,). Define u: P — L(X,Y) by
1(A) = SP4Q. If A is finite, 1(A) is compact. Suppose by way of contradiction that
P: L(X,Y) — K(X,Y) is a projection. Now p and Py are bounded and finitely addi-
tive, and p({n}) — Pu({n}) = 0 for every n € N. Let M be an infinite set such that
JuM),, . = JPu(M),, . But SPyQ and JSPy;Q are not compact. Thus, we have a
contradiction. [ |

As a specific application of Corollary2.2lnote that if £, embeds complementably in
X and Y is infinite dimensional, then K(X,Y) is not complemented in L(X,Y).

Corollary 2.3 Ifc, — Y and X is infinite dimensional, then K(X,Y) is not comple-
mented in L(X,Y).

Proof Let L: ¢, — Y be an isomorphism, and let (Py;) be the family of projec-
tions associated with the seminormalized and unconditional basic sequence (y,) =
(L(ey)). Choose a normalized w*-null sequence (x;) in X* [[2, Chapter XII], and let
J: Y — £, be an operator so that jllm is an isometry. Define

S: X = [y:i>1]CY

by S(x) = > x¥(x)L(e,). If X, is any separable subspace of X that norms (x,,)$°;, then
JPumS),, is compact if and only if M is finite. Suppose that K(X,Y) is complemented
in L(X,Y),and let P: L(X,Y) — K(X,Y) be a projection. Define p1: P — L(X,, {oo)
by (A) = JP4S — JPP,S, and apply Theorem 2.1 to find an infinite set M so that
JPyS = JPPyS on X,. Since ]PMS| X is not compact, we have a contradiction. [ |

Analogous to Corollary 2.2]and the italicized statement following it, the proof of
Corollary[2.3limmediately produces the following improvement of results in [8]].

Corollary 2.4 IfY contains a seminormalized unconditional basic sequence (y;),
(Pyp) is the family of projections associated with (y;), S: X, — [y; : 1 > 1] isan
operator, and X, is a separable subspace of X so that PyS), is not compact for any
infinite subset M, then K(X,Y) is not complemented in L(X,Y).

Remark  Essentially the only difference in the proof of Corollary 2.2 and Corol-
lary 23] (Corollary [2.4]) involves whether S o Py or Py o S is used in defining the
operator-valued measure to which Theorem 2.T]is applied.

Moreover, Theorem 2.1 has applications to other operator ideals. For example,
suppose ¢, < X and ( ¥n) is a bounded sequence in Y which has no weakly conver-
gent subsequence. Defining an operator S: X — Y and an operator-valued measure
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1 precisely as in Corollary 2.2 produces the next result. The weakly compact opera-
tors from X to Y are denoted by W(X,Y).

Corollary 2.5 ([1, Theorem 3]) If¢; < X and W(X,Y) # L(X,Y), then W(X,Y)
is not complemented in L(X,Y).

Corollary 2.6 ([5)[10]) Ifc¢, — K(X,Y), then K(X,Y) is not complemented in
L(X,Y).

Proof Suppose that K(X,Y) < LX,Y). By Corollary[2.3]or Corollary2.4l ¢, ++ Y.
Suppose that (T),) is a sequence in K(X, Y) which is equivalent to (e,). Then » _ T, (x)
is weakly absolutely summable and consequently unconditionally convergent for all
x € X. Define i: P — L(X,Y) by u(A)(x) = >_,c4 Tu(x), and let v = P o p. Since
v({n}) # 0, the Diestel-Faires theorem ensures that £, — K(X,Y). Therefore,
loo — X* (equivalently, ¢, < X) or £oy < Y. Corollaries Z2land 23l provide the
contradiction that finishes the proof. ]

An operator T: X — Y is said to have an unconditional compact expansion if
there exists a sequence (T,) in K(X,Y) so that Z:’;l T, (x) converges unconditonally
to T(x) for all x € X. As noted in the introduction, Feder [7] showed the following.

The existence of a non-compact operator T with an unconditional com-
pact expansion implies that K(X, Y) is not complemented in L(X,Y).

()

Emmanuele observed that the existence of such a non-compact T ensures that ¢, —
K(X,Y). Specifically, if F denotes the finite-cofinite algebra of subsets of N and p is
defined by

(4) = { 2onea Tu if Als finite,
T anA T, ifN\ Ais finite,

then i is finitely additive, the unconditional convergence of EZ; T, (x) ensures that
p is bounded, and the non-compactness of T ensures that Y~ T, is not Cauchy
and that (s is not strongly additive. Another application of the Diestel-Faires theorem
promises that ¢, — K(X,Y).

While Corollary2.6] certainly subsumes (&), Feder’s result has applications where
¢, is not mentioned explicitly. The next result, a complement to Kalton [11}
Lemma 3], follows directly from (@) and the proof of Corollary[2.2}

Corollary 2.7 If1 < p < oo, £, is complemented in X, and there exists a non-
compact operator T: £, — Y, then K(X,Y) is not complemented in L(X,Y).

3 L(4,,¢,) and ¢,

As noted earlier in this paper, the list of infinite-dimensional Banach spaces X for
which ¢, — K(X,X) and o, — L(X,X) is extensive. Furthermore, the preceding
section suggests that criteria assisting one in determining the presence of ¢, in spaces
of operators would be beneficial. Emmanuele provided a useful tool for identifying
copies, even complemented copies, of ¢, in spaces of operators [5]].
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Theorem 3.1 Let X andY be Banach spaces satisfying the following assumption: there
exists a Banach space G with an unconditional basis (g,) and biorthogonal coefficients
(gr) and two operators R: G — Y and S: G* — X* such that (R(g;)) and (S(g)) are
normalized basic sequences. Then c, — K(X,Y).

Moreover, if (R(g;)) and (S(g")) are basic and Y (or X*) has the Gelfand—Phillips
property, then K(X,Y') contains a complemented copy of c,.

As an application of this result, Emmanuele observed that if /; < X and £, — Y
for some p > 2, then ¢, — K(X,Y) and, of course, K(X,Y) is not complemented in
LX,Y).

We extend Emmanuele’s observation in this section. The statement of a general-
ization of Theorem [3.Jland additional definitions will be helpful in our study.

A bounded subset A of X is called a limited subset of X if every w*-null sequence
in X* tends to zero uniformly on A, and X has the Gelfand—Phillips property if every
limited subset of X is relatively compact. Separable Banach spaces have the Gelfand—
Phillips property ([14], [2, p. 116]).

The space of all w* — w continuous operators T: X* — Y (resp. all compact
and w* — w continuous operators) is denoted by L« (X*,Y) (resp. K, (X*,Y)).
Ruess [13] contains a discussion of L« (X*,Y) and K, (X*,Y), as well as applica-
tions of the following well-known isometries:

LW* (X*a Y) = LW* (Y*7X)) KW* (X*a Y) = KW* (Y*,X), (T — T*)
WX, Y) = L, (X™,Y); KX,Y) = K (XT,Y), (T = T).

See also Drewnowski [4] for an extension of results in [[11] to the space K,,« (X*,Y).
Theorem [3.lis extended in [9].

Theorem 3.2 Let X andY be Banach spaces satisfying the following assumption: there
exists a Banach space G with an unconditional basis (g,) and biorthogonal coefficients
(gr) and two operators R: G — Y and S: G* — X such that (R(g;)) and (S(g))
are seminormalized sequences and either (R(g;)) or (S(g;")) is a basic sequence. Then
¢o = K= (X*,Y) (indeed, in any subspace H of L,,«(X*,Y) that contains X @, Y).

Moreover, if (R(gi)) and (S(g*)) are basic and Y (or X) has the Gelfand—Phillips
property, then K« (X*,Y) contains a complemented copy of c,.

If 1 < p < oo, then we say p’ is conjugate to p if% + # = Lie, ({y)" =l

Theorem 3.3 Suppose 1 < p < oo, p’ is conjugate to p, and S: {, — X isa
non-compact operator. For p’ < p < qorp < p’ < g, if R: {; — Y is a non-
compact operator, then ¢, — K~ (X*,Y). Furthermore, if X or Y is Gelfand—Phillips
(separability is sufficient), then c, < K« (X*,Y). However, if p < q < p’', then there
exist spaces X and Y and appropriate operators S and R so that ¢, / K« (X*,Y).

Proof CaseI: p’ < p < q. Since S: £, — X is a non-compact operator, we can find
ad > 0and a sequence (x,) in By, such that [|S(x,) — S(x,,)|| > ¢ if n # m. Since £,
is reflexive, By, is weakly compact. Thus, without loss of generality we may assume
(an) = (x4 — Xps1) is weakly null.
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Observe that ||S(a,)|| > § for all n € N. Thus, (a,) 4 0. Hence (a,) is weakly
null and seminormalized. By the Bessaga—Pelycznski selection principle (a,) contains
a subsequence (a,, ) which is equivalent to a block basic sequence (h,) of (eh).

Note that £, is perfectly homogeneous for all 1 < p < oo, so we may assume (a,,)
is equivalent to (eh). Thus, (a,) is basic. Since p’ < p, there is a natural injection J

from £, into £, which sends (eh /) to (a,). Note that the Bessaga—Pelczynski selection
principle also applies to the sequence (S(a,)). Hence, we have (a,) equivalent to

(]((ef,f,))), and without loss of generality (S(I((eﬁ/ )))) = (S(ay)) is a seminormalized
basic sequence in X.

Similarly, one can find a weakly null, seminormalized sequence (b,) equivalent to
(e]) in £4 so that (R(b,)) is a seminormalized basic sequence in Y. Since p < g, there
is a natural injection U from ¢, into ¢, which sends (eh) to (b,). Hence, we have
(by) equivalent to (U((eh))), and without loss of generality (R(U((e)))) = (R(by))
is a weakly null, seminormalized basic sequence in Y. (The Bessaga—Pelczynski se-
lection principle applies to the sequence (R(b,)).) Therefore, by Theorem[3.2] ¢, «—
K, (X*,Y).

Case 2: p < p’ < q. Repeat the argument for Case 1.

Case 3: p < q < p'. Since p < q < p’, every operator from /; to £, is compact
and every operator from £, to £, is compact, i.e., Ky« ((£;)*,4q) = K(£pr,4;) =
L(£y1,£4). In fact, this space of compact operators is reflexive. Thus ¢, cannot embed
in Ky« ((€,)*, £4). In this case, let X = £, Y = £y, and let S: £, — £, and R: £, — /,
be identity operators. u

Corollary 3.4 If ¢, — X and there exists a p > 2 with a non-compact operator
A:l, =Y, thenc, — K(X,Y).

Proof Since ¢/, — X, L; — X* [2| Notes and Remarks, Chapter X]. The Rade-
macher functions span a copy of ¢, in L;, and thus ¢, — X*. The perfect ho-
mogeneity of the unit vector basis of £, [15] and the non-compactness of the op-
erator A produces a non-compact operator B: ¢, — Y (as in the proof of Case 1
of Theorem B3)). Theorem B3] guarantees that ¢, < K« (X**,Y). The isometry
Ky« (X**,Y) =2 K(X,Y) finishes the argument. [ |
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