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1 

This note is concerned with arithmetic properties of power series 
00 

/(*) = 2/»** 
» = 0 

with integral coefficients that are lacunary in the following sense. There 
are two infinite sequences of integers, {rn} and {sn}, satisfying 

(1) 0 = s0 <: r± < s x r2 < s2 <: r3 < s 3 52 · · ·, Urn — = co, 
rt-»OO rn 

such that 
(2) fh = 0 if rn < h < sn, but fTu # 0, / , n ^ 0 (n = 1, 2, 3, · · ·). 
It is also assumed that f(z) has a positive radius of convergence, Rt say, 
where naturally 

0 < R, ^ 1. 
A power series with these properties will be called admissible. 

Let f(z) be admissible, and let a be any algebraic number inside the 
circle of convergence, 

1*1 < Rt-
Or aim is to establish a simple test for deciding whether the value /(a) 
is an algebraic or a transcendental number. As will be found, the answer 
depends on the behaviour of the polynomials 

(3) Pn(z) = 2 fhz" (n =0,1.2,·' ·)· 
»=»» 

In terms of these polynomials, f(z) allows the development 
00 

(4) /(*) = 2 Pn(z) 

which likewise converges when \z\ < Rf. 
56 
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[2] Arithmetic properties of lacunary power series 57 

The main result of this note may be stated as follows. 
Theorem 1. Let f(z) be an admissible power series, and let a be any 

algebraic number satisfying |a| < Rt. The function value /(a) is algebraic 
if and only if there exists a positive integer N = 2V(a) such that 

P„(«) = 0 for all n^N. 
Corollary: If the coefficients fh are non-negative, then f(z) is trans­

cendental for all positive algebraic numbers a < Rf. There exist, however, 
examples of admissible functions f(z) with fh 22 0 for which Sf, as defined 
in 4, is everywhere dense in |z| < Rf. 

Proof. It is obvious that the condition is sufficient, and so we need only 
show that it is also necessary. 

We shall thus assume that the function value 
oo 

(6) ƒ ( « ) = _ / » « * . =/S ( 0 >say, 

is an algebraic number, say of degree / over the rational field. Let 

(7) /S<0», · · ·, /5"-1' 

2 

If 
a(z) = «0+0!*-! Yamzm 

is an arbitrary polynomial, put 

H(a) = max |«,|, L(a) = £ |a,|. 

Then 
(5) H{ab) ^H[a)L(b), L{ab) ^ L(a)L(b). 

The following theorem is due to R. Guting (Michigan Math. J. , 8 (1961), 
149-159). 

Lemma 1. Let a be an algebraic number which satisfies the equation 
A(a.) = 0, where A(z) = A^+A^-l YAMzM (AM # 0) 

is an irreducible polynomial with integral coefficients. If 
a(z) = ao+a^-] +amzm 

is a second polynomial with integral coefficients, then either 

a (a) = 0 
or 

|a(a)| ^ (L{a)M^L(A)my՝. 
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58 K . MAHLER [3] 

be its conjugates, and let c0 be a positive integer such that the products 

CO/5'0', C 0 / » W > . · · C O / 3 ' 1 - 1 ' 

are algebraic integers. 
We denote by cl։ c2, • · • positive constants that may depend on a, 

/J'0', · · ·, /S""1', but are independent of n. In particular, we choose ct such that 

1 
(8) |a| < — < Rf, hence cx > 1, |cxa| < 1, 

c i 
and c2 such that 

(9) \fh\ ^ c\c2 for all h^O. 

Put 

(10) fcu(z) = ֊/8<A>+ 2/»«* (A = 0, 1, · · ·, ¿֊1) 

and 

A=0 

Then 7%(z) is a polynomial in z of degree lrn with integral coefficients. 
From the second formula (5), 

L{pn) S4UL(pnK), 

and here by (8) and (9), 

L(pnk) 52 | ^ > | + I \f%\ sj c{-c3 (A = 0, 1, · · ·, l-l). 

It follows that 

(11) L(pn) ^ c^C,. 

Since a is algebraic, it is the root of an irreducible equation A (a) = 0 
where A (z) is, say of degree M. On applying Lemma 1, with a(z) = pn{z), 
we deduce from (11) that either 

= o 
or 

(12) \pn(*)\ S: {(cr»c4)M֊iL(^)!'-}֊i ^ c^. . 

However, the second alternative (12) cannot hold if n is sufficiently 
large. For by (6), (9), and (10), 
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Let E be a set of algebraic numbers, S a subset of E. For each ele­
ment a of E denote by A (a) the set of all algebraic conjugates a, a', a", · · · 
of a that belong to E. We say that the set S is complete relative to E if 

CO 

l£no(«)l = I _/»«*! _ M " c 6 , 
H=AN 

and it is also obvious that 

| ^ ( a ) | S S c 7 (A = 1, 2, · · ·, J—1). 

On combining these estimates it follows that 

^ Ml'-', · cj- 1 < si-*-
for all sufficiently large «, because by (1) and (8), 

s 
\ctx\ < 1, lim — = oo. 

n֊»co V N 

Thus there exists an integer N0 such that 

pn(x) = 0 for all n^N0. 

This means that to every integer w =2 2V0 there exists a suffix A„ which has 
one of the values 0, 1, 2, · · ·, /—1 such that 

2/,o» = /?<*->. 
ft=0 

Therefore also 
rn+l ro 

(13) P„(«) = 2 / A 2 / . « ,
 = ^ y if n ^ t f 0 . 

Now /(a) is a convergent series, and hence 

lim P . (a) = 0. 
n-*oo 

On the other hand, the / conjugate numbers (7) are all distinct. There is 
then an integer N N0 with the property that 

K+i = K if n^N. 

By (13), this implies that 

P„(«) = 0 if n^N, 
giving the assertion. 
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60 K. Mahler [5] 
a e S implies that also A (a) e S. 

Let again f(z) be an admissible power series. Then denote by Ef the 
set of all algebraic numbers a satisfying |a| < Rf and by Sf the set of all 
a e Zf for which /(a) is algebraic. 

THEOREM 2. If f(z) is admissible, the set Sf is complete relative to Ef. 

PROOF. Let a be any element of Sf, and let q(z) be the primitive irre­
ducible polynomial with integral coefficients and positive highest coef­
ficient for which q(x) = 0. By Theorem 1, 

P„(a) = 0 for n^N, 
and hence 

Pn(z) is divisible by q(z) for all suffixes » 2> TV. 

Hence, if a' is any conjugate of a, also 

P „(«.') = 0 for n S= N. 
Assume, in particular, that a' e£f, hence that /(a') converges. Then, by 
Theorem 1, ƒ (a') is algebraic, and therefore also a' is in Sf. 

5 

The following result establishes all possible sets Sf in which an 
admissible power series can assume algebraic values. 

THEOREM 3. Let R be a positive constant not greater than 1; let 2 be the 
set of all algebraic numbers a satisfying |a| < R; and let S be any subset of 
2 which contains the element 0 and is complete relative to E. Then there exists 
an admissible power series f(z) with the property that 

Rf = R and Sf = S. 

PROOF. AS a set of algebraic numbers, S is countable. It is therefore 
possible to define an infinite sequence of polynomials 

{?«(*)} = {?o(*). ?i(z)> 92(Z)> •••} 

with the following properties. 
If S consists of the single element 0, put qn(z) = 1 for all suffixes n. 

If S is a finite set, take for the first finitely many elements of {q„{z)} all 
distinct primitive irreducible polynomials with integral coefficients and 
positive highest coefficients that vanish in at least one point a of S, and 
put all remaining sequence elements equal to qn(z) = 1. If, finally, S is 
an infinite set, let {q„{z)} consist of all distinct primitive irreducible poly-
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nomials with integral coefficients and positive highest coefficients that 
vanish in at least one point a of 5. 

Further let 
ç„M = ?o(*)?i(«) · · · ?.(*) ( n = o. L 2 > · · ·); 

denote by d„ the degree of (?„(z); and put 

Hn = H(Qn) (n = 0, 1, 2, · · ·)· 

Next choose a sequence of integers {sn} where 

0 = s 0 < s x < s 2 < · · · 
such that 

(14) lim ֊ = oo, lim ^±1 = oo, lim = 1 
n-+oo an n->oo $n N-tca 

and 
> sn+d„ (» = 0, 1, 2, · · ·)· 

Hence, on putting 

= s»+<*« ( w = 0, 1, 2, · · ·), 

the two sequences {>„} and {s„} have the property 
s_ 

(1) 0 = s 0 <; ^ < S! ^ r 2 < s 2 ^ r3 < s3 ^ · · ·, lim - = oo. 
n-*co ? n 

Finally denote by {K„} a sequence of positive integers satisfying 

(15) limK1j'* = ֊ . 

On putting 

P»{*) = K.Qn(z)*, = 'ffhz" say (» = 0, 1, 2, · · ·). 
»=«« 

and 
oo oo 

(4) /(*)= 2 *„(*)-_ƒ.*». 
/(2) is a lacunary power series of the kind defined in § 1. 

Distinct polynomials Pn(z) evidently involve different powers of z, 
so that the contributions to f(z) from these polynomials do not overlap. 

To prove that f(z) is admissible we have to prove that the radius Rt 

of convergence of f(z) is positive. In fact 

4֊ = hm sup\fh\V\ 

and this, by the formulae (1) and (14), is equal to 
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1 

6 

The two Theorems 1 and 3 together solve the problem of establishing 
all possible sets Sf in which an admissible function may be algebraic. In 
order to obtain further results, it becomes necessary to specialise f(z). 

Let us, in particular, consider those admissible power series 

oo 

ft=0 

which are of the bounded type, i.e. to which there exists a positive constant 
c such that 
(16) | / J ^ c for all һ ^ 0. 

For such series the set Sf is restricted as follows. 

T h e o r e m 4. If f(z) is an admissible -power series of the bounded type, 
then Sf may, or may not, be an infinite set. If 

Sf = { a i > a 2 > <*з> ' ' ' } 
is an infinite set, then 

LIM JOTJBL = RF = 1. 
k~*oo 

P R O O F , (i) It is obvious from Theorem 1 that there exist admissible 
power series of the bounded type for which Sf is a finite set, e.g. consists 

—- = lim sup L/J1'*-. 

n-»oo 
Further 

I/*! ^ for s n 52 A 52 y B + 1 , 

with equality for at least one suffix h in this interval. Hence, by (14) and (15), 

֊ = lim sup (HNKN)11'" = ֊ , 

so that 
RF = R > 0. 

The second assertion 
S , = S 

is now an immediate consequence of Theorem 1 and the construction of the 
polynomials Pn(z). For if a is any element of S, then evidently P„{z), for 
sufficiently large n, will be divisible by the polynomial qv(z) which has a 
as a root, and so xeSt. On the other hand, if a is not an element of S, 
no polynomial q„(z) and hence also no polynomial Pn(z) vanishes for z = x. 
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o f t h e s i n g l e p o i n t 0 . T h e f o l l o w i n g c o n s t r u c t i o n , o n t h e o t h e r h a n d , l e a d s 

t o s u c h a s e r i e s f o r w h i c h S, i s a n i n f i n i t e s e t . 

W e p r e c e d e s i m i l a r l y a s i n t h e p r o o f o f T h e o r e m 3 , b u t t a k e R = 1 a n d 

qn{z) = \-z*՝-z՝'*, Kn = 1 (n = 0 , 1 , 2 , · · · ) · 

T h e n , i n t h e f o r m e r n o t a t i o n , 

Hn = 1 ( » = 0 , 1 , 2 , · · · ) , 

b e c a u s e t h e T a y l o r c o e f f i c i e n t s o f Q„{z) = q0(z)q1(z) · · · qn(z) a l l c a n o n l y 

b e e q u a l t o 0 , - f-1, o r — 1. T h e c o n s t r u c t i o n l e a d s t h e r e f o r e t o a n a d m i s s i b l e 

p o w e r s e r i e s f(z) t h e T a y l o r c o e f f i c i e n t s o f w h i c h l i k e w i s e c a n o n l y b e 

e q u a l t o 0 , - f 1, o r — 1 . F u r t h e r m o r e , t h e c o r r e s p o n d i n g s e t Sf c o n s i s t s o f 

t h e i n f i n i t e l y m a n y n u m b e r s 

(n = 0 , 1 , 2 , · · · ) · 

( i i ) . N e x t l e t f(z) b e a n a d m i s s i b l e p o w e r s e r i e s o f t h e b o u n d e d t y p e , 

t h u s w i t h t h e r a d i u s of c o n v e r g e n c e Rf=l, a n d l e t r a n d R b e a n y t w o 

c o n s t a n t s s a t i s f y i n g 

0 <r < R < 1. 

L e t Sf(r) b e t h e s u b s e t o f t h o s e e l e m e n t s a o f Sf f o r w h i c h 

| « | rg r. 

W e a p p l y a g a i n t h e f o r m u l a e ( 3 ) a n d ( 4 ) a n d p u t 

P*(z) = z֊°«Pn(z) = 2 /„**֊«· (n = 1, 2 , 3 , · · · ) ; 
*=»„ 

h e r e , b y ( 2 ) , 

^ * ( 0 ) = / . „ ^ 0 ( « = 1 , 2 , 3 , · · · ) · 

T h e r e f o r e , b y J e n s e n ' s f o r m u l a , 

2 l o g ֊^ = l o g — + ֊ f l o g \P*n(Re»<)№ 
№ \f,J 2 ^ J o 

w h e r e 2, e x t e n d s o v e r a l l z e r o s a o f P^(z) f o r w h i c h | a | ^ R. H e r e , o n 

t h e right-hand s i d e , 

l o g ֊ ^ 0 , \Pt(ReSi)\ ^ C(l + R+R*+ · · · ) = — ֊ - f o r r e a l 0 , 

I/.J I - -

w h e r e c i s t h e c o n s t a n t i n ( 1 6 ) . 
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Assnme, in particular, that |a| 52 r and hence log 2?/|a| log R[r. The 
inequality (17) shows then that P*(z) cannot have more than 

zeros for which |<x| 52 r. This estimate is independent on n. On allowing 
both R and r to tend to 1, the assertion follows immediately from 
Theorem 1. 
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