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A thermomechanical model of ice-shelf flow
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ABSTRACT. An ice-shelf model which features efficient numerical techniques is
developed to determine the back-force exerted by sides and pinning points, such as
islands of an embayed ice shelf. The model is applied to three ideal geometries and
shows that the restraint exerted by a small island, even far downstream from the
grounding line, can represent about one-hall of the total restraint due to the
embayment. Our results are further interpreted to suggest several criteria useful for

testing any ice-shell model.

INTRODUCTION

Large floating ice shelves surround much of Antarctica.
Their fast flow, often in excess of 1000 myear ', is of
tremendous interest in the study of ice dynamics and
Antarctic climatology. On the one hand, ice-shelf
dynamics are controlled by both the ocean and the
atmosphere. On the other hand, because of high ice
velocities, ice shelves involve time-scales which are ten
times smaller than those involved in the grounded inland
ice sheet (typically a few hundred years for an ice shelf
versus several thousand years for a grounded ice sheet).
T'hese considerations suggest that ice shelves should be
the first elements of the ice-sheet system to respond to
climate changes. Furthermore, their involvement in
climate instabilities such as Heinrich events is also
conceivable.

Early analytical studies of ice-shell low (Weertman,
1957)
boundaries was not clearly taken into account. Despite

were one-dimensional and the role of lateral

the simplicity of this early work, it generated an
awareness of the interactions between an ice shelf and
a grounded ice sheet, and led to the discovery of an
instability mechanism, since known as the marine ice-
sheet instability, which could occur in the grounding
zone. Thomas (1973a, b) developed an approximate
solution for an ice shelf in a rectangular channel, in
which the friction at the sides was parameterization
using observations on the flow of the Brunt, Ross and
Amery Ice Shelves. The first two-dimensional computa-
tional study is due to MacAyeal and Thomas (1982),
who solved the stress equations using the finite-element
method. Some other numerical models using the finite-
difference method (Determann, 1991; Huybrechts, 1992;
Jonas and others, 1994) have since followed. The work
we present here is in keeping with the spirit of these
previous studies: the zeroth and the first order of the
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Stokes’ equations, heat transfer and mass conservation
are treated simultancously.

ICE-SHELF DYNAMICS

a. Diagnostic equations

First, we shall derive the stress-equilibrium equations
using simplifications made possible by some of the features
of an ice shell. These parual differential equations, as well
as their boundary conditions, have not vyet been
universally accepted. The derivation we present here is
basically the same as that proposed by MacAyeal and
others (1986), also known as the “reduced”™ model of
Morland (1987). but we give a diflerent description based
on the force balance over an elementary column.

By considering the typical geometry of an ice shelf, we
can recognize an obviously small parameter, known as
the aspect ratio, which is the ratio of the ice thickness (H)
over the horizontal scale (L). For the Ross Ice Shelf, L is
about a 100km and H is less than |km. Appropriate
recognition of the smallness of this aspect ratio will allow
us to make assumptions similar to the quasi-geostrophic
approximation in meteorology (in which the smallness of
the Rossby number is used). Since acceleration, inertia
terms and Coriolis force are neglected, the Stokes’ system
can be written as

Divlo] + pg = 0 (1)

where g is the gravity acceleration, p is the ice density and
[o] is the stress tensor. For our specific problem, we shall
use a vertically integrated formulation of this system.
Therefore, we consider an elementary column through
the ice shelf (see Fig. 1) of dimension éx, éy and H; the
upper boundary is in contact with the atmosphere,

L3
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Fig. 1. Schematic view of an ice shelf showing the force budget on an ice column and the different natations (axis,

surfaces ... ).

whereas the lower one is in contact with the ocean. We
assume 6z and dy small and of the order of H. The force
budget on this column is

6 6

R=-) [#}Si=m7 @

i=1 i=1

where F is the force, [a] is the stress tensor averaged over
the elementary surface which is considered and m is the ice
mass of this elementary column. The index is related to the
surface, where the force or tensor is applied (see Fig. 1).
The surface vectors, Sj. are pointing outward and the
upper and lower boundary conditions are the following:

[‘ﬂagﬁ

[6-][5 Se= ngzl)?ﬁ (3)

—

where [ is the sea-water density and z;, the ice-shell hase
elevation. The upper surface is stress-free (the friction of
winds and atmospheric pressure are neglected) and the
bottom is just subject to water pressure. The projection of
Equation (2) on the z-horizontal axis, using Equation (3)
(note that here 2 and y have the same role, and we shall
only write the = projection for the sake ol brevity) leads to

Fea(@ + b2)H(x + b2)by — 0, (x) H(x) by
+ &4 (y + 6y) H(y + Sy)oa — 7., (y) H(y)bx
+ Pwgzn % (‘)I‘(‘Jy =0. (4)

We can now use a Taylor’s expansion of the first order,
which yields

B&IIII dﬁ'_,-UH 821) - )
“or Ta, tPwemg =0 (5)
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Note that from now on the stresses are averaged over
depth. A vertical integration of the Stokes’ system, taking
into account the upper and lower boundary conditions
and using differential calculus and the Leibnitz™ rule
would have led to exactly the same result (MacAyeal,
1994). We emphasize that the derivation described above
has nothing specific to do with the finite-diflerence
method described in the following part. Note also that
no assumption resulting from the smallness of the aspect
ratio has been made yet.

Actually, in Nature, strain rates and velocities are
much easier to measure than stresses, and the next step in
the calculation will be to write Equation (3) in terms of
strain rates. Here, we make the assumption that ice is an
isotropic material and write the strain-rate tensor as

2n[é] = [o] + P[I] (6)
where 7 is the ice viscosity (which depends on tempera-
ture and on the second invariant of the strain-rate tensor,
cf. sub-section ¢ below), [¢] the strain-rate tensor, P the
pressure and [I] the identity tensor. The pressure can be
computed using the vertical projection of the Stokes’
system (Equation (1)) and the previous equation:

A(2né.. — P)

O2né,.  O02n€y,
3 =prg
Z

o oy
= O,

= P(z) - P(2) :f ) d£+] = ap
. OB . Oy

4 /2;78 dt —g / o T L)

One of the major features of ice-shelf dynamics, and what
makes them completely different from grounded ice
sheets, is the independence of strain rates with depth.
An elegant demonstration is not derived here but it
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follows from the small-aspect ratio which we discussed at
the beginning of this section. A rigorous approach
(MacAyeal, 1989) leads to the following result: e, /0z,
0z,,/0z and 0e,,/dz are of order al/L? (a being the
aspect ratio, U the horizontal velocity scale and L the
horizontal scale). By a similar reasoning. the first two
terms in Equation (7) (horizontal gradients of vertical
shear stress) can be safely disregarded. The ice density is
assumed to be constant in the whole ice shelf and thus ice
thickness should be interpreted as an “ice-equivalent’™
thickness. T'he upper boundary condition (Equation (3))
is accounted for, and Equation (7) then simply becomes

P(2) = pg(zs — 2) — 2n(éwe + Egy) (8)

where we have used the ice incompressibility. We are now
able to rewrite Equation (5) using Equations (6) and (8)
and the assumption that the ice shell floats in local
hydrostatic equilibrium,

ORAH(2:,, +¢,)  0@7HE,) o\ 8H
r * ay =) 1_,O_“QHE (9)

The vertically averaged viscosity which appears in this
equation comes [rom the vertically averaged stress
components in Equation (6). An x and y permutation
in Equation (9) would lead to the y projection of the
vectorial expression in Equation (2). One can notice that
these diagnostic equations are different from those
deseribed by Jonas and others (1994), Determann
(1991) and Huybrechts (1992). This difference arises
from the doubtful assumption at the outset of their
reasoning, that do,./dz, which is actually of the same
order (order 1) as almost every other term of the Stokes’
system, is supposed to be negligible. Weertman (1957),
Thomas (1973a) or Sanderson (1979) had this term in
their early studies but the mistake probably arose from a
misunderstanding of the paper of Sanderson and Doake
(1979): *Is vertical shear in an ice shelf negligible?”.
We now have a system of equations which computes
the velocity field from the ice thickness. This set of partial
differential equations can be solved numerically using a
finite-difference scheme, as described below.

b. Boundary conditions

Strictly speaking, the major assumption of the previous
reasoning (the independence of strain rates with respect 1o
depth) is not valid near the boundaries. For instance, the
grounding line can be a transition zone where the flow
changes from a vertical shear-stress regime into a long-
itudinal-stress regime. This problem, probably one of the
most interesting in ice-sheet modelling, has been treated
analytically by Barcilon and MacAyeal (1993) for a
Newtonian rheology and numerically by Lestringant
(1994, in both cases [or two dimensions. Here, we chose
to take only the “far field™ into account, meaning that the
boundary condition is applied far enough from the
grounding line. or from the ice front where the same
kind of problem occurs (Morland, 1987).

Boundary conditions in mechanical problems often
split into two types: kinematic (which means that the
velocity is specified on the boundary) or dynamic (the
force is specified ). This distinction is in fact artificial and
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depends upon the domain. Since sliding on the sides is not
well understood, we chose to describe it with kinematic
boundary conditions (zero velocity), This is consistent
with observations on large ice shelves, [or instance, on the
Ross Ice Shell along the Transantarctic Mountains, but a
[urther parameterization of sliding is necessary for smaller
scales. In some cases such an approach tends to over-
estimate the restraint (MacAyeal and others, 1986). The
ice inlets (glaciers and ice streams) are also naturally
described with kinematic boundary conditions: their
velocities are parameters of the model. On the other
hand, the ice front is typically a dynamic boundary
condition: the horizontal longitudinal stress in the ice has
to be balanced by the water pressure. Following the
vertically integrated approach above. for an ice front
parallel to the y axis the force balance on the front can bhe
written formally as

/[G]HTEH de= — /-“p“.g;”%“ di.

i 2

(10)

Equation (10) is a vectoral expression that we shall
project on the = and y axes; using the pressure {rom
Equation (8):

2NH (2810 + Eyy)

11)
2HE,, =0 (

Note that the similarity between the diagnostic Equation
(9) and the boundary condition (Equations (11))
provides a rather good argument for the sell-consistency
of this method. No assumption about the “confinement”
of the flow at the ice front is made unlike the works of
Determann (1991) or Huybrechts (1992).

c. Ice rheology

The previous analysis is valid for Stokes™ flow of any
floating isotropic material. In this work, ice is assumed to
follow Glen’s flow law (Paterson, 1994):

-1

2= (Apr" )" = Ap e (12)
where At is a coefficient dependent on the temperature
(Arrhenius’s law), 7 is the second invariant of the
deviatoric stress tensor and £ is the second strain-rate
tensor invariant. The exponent of Glen’s flow law (n) is
assumed to be equal o 3. We need the depth-averaged

-1/ . . .
/3 since the strain rates are indepen-

viscosity and At
dent of depth. The temperature is numerically computed
by solving the time-dependent heat equation: the
temperature evolution at a fixed point in space (Eulerian
description) is determined by vertical heat dilTusion,
horizontal heat advection and vertical heat advection so
that

ar 10K¢  or ar  or (13)
= y— —— —w— :
at  ep 0z O Ay dz

where 1" is the temperature, t is the time, u, v, and w are
the components of the velocity, ¢ is the specific heat
capacity and K is the thermal conductivity.
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d. Time evolution: the prognostic equation

All the time-dependent terms in the Stokes’ system have
been neglected (see Equation (1)). The time evolution is
thus determined by mass conservation in a column
0H
—+divgHu = d (14)
ot
where u is the horizontal velocity field. a is the sum of the

surface and bottom accumulation and divy is the
horizontal divergence.

THE NUMERICAL SCHEME

Solving the model equations using a computer requires
discretization on to a numerical grid. The equations
described above (diagnostic equations, boundary condi-
tions, heat and mass conservation) are discretized on to
the regular staggered grid shown in Figure 2. In other
finite-difference studies, viscosity gradients in the diag-
nostic equations are neglected, mostly because they often
induce wiggles in the results. On the other hand, in
MacAyeal’s finite-element works, because of the method
itself, the ice viscosity is a piecewise constant function over
each triangular element: grid refinements are needed near
boundaries and where gradients are important. The
resolution scheme we present here takes viscosity gradi-
ents into account, is numerically stable, and avoids the
formation of wiggles. The discretized form of Equation
(9) is:

1 [ Uidj — %idy | Vi~ Vi
— |om Hig{ 222 2l 9% 2
Ax [ T ( Ax Ay

il i—37  Yi—1H ~ Vi1
7 R | = = > =
Thi-1 ’I'J( NG ¥ Ay )]

g Ti—1,jHic15+ T i Hi g+ im1 o1 Hic g H g Higa
Ay 4

Uil j+1 — Uil i VigH — Yim15+
Ay A

M i + TigHig + Bitgeifii01 F =i

4

Wiyg — Ui-pj-1 | Vig—§ — YVi-15-4
- 2 2 + 2 p |
Ay Az
B
=~

= 2 2
=00 g, (Ha—Hly).

(15)

The second equation (y projection) is obtained by z and
y,u and v,i andj permutations. By ordering u;; and vjj
in a single-column vector U and by using a similar
discretization for the boundary conditions, we build a set
of 2N (N being the number of grid points) non-linear
equations with 2N unknowns, where

A (7)U = B, . (16)

This system can be linearized using a Newton—Raphson
method, though a simple successive-approximation itera-
tion (or Picard iteration) over the viscosity leads to
satisfactory convergence. This means that Equation (16)
is solved as a linear system by Gaussian elimination, until
convergence of the velocity field. This computation is
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Fig. 2. Numerical grid used in the model.

performed using a sparse-matrix algorithm (Dufl’ and
Reid, 1979).

The solution of the heat equation is derived from the
method used in a grounded ice-sheet model (Fabre and
others, 1995). We use an implicit scheme in time and an
upwind scheme for the horizontal advection. There are
some specific treatments for the ice shelf: (1) The basal
boundary condition is fixed at the freezing temperature of
sea water. (2) As far as the vertical advection is
concerned, it follows from the independence of strain
rates with depth that the vertical velocity varies linearly
with depth. Its value at the ice-shell bottom depends
significantly on the melting (or refreezing) rate, thus
affecting the temperature profile. In future, basal melting
should be taken into account but in this article we only
consider simplified examples, thus we assume no melting
or refreezing. Our model cannot be used to compute the
temperature profile at the grounding line, as it depends
strongly upon the temperature field in the grounded ice
sheet. Here, since the temperature does not alter
qualitatively the results, we chose to neglect horizontal
heat advection at the grounding line where the tempera-
ture profile is then computed analytically (Robin, 1955).

It is important to notice that the mass-conservation
equation cannot be written as a diffusion equation in ice
shelves, This feature is probably the most difficult
technical aspect one encounters when trying to adapt a
grounded ice-sheet model to an ice-shelf application. A
classical semi-implicit discretization is used here and a
linear set of N equations with N unknowns is to be
solved:

AH=B,. (17)

B, is a column vector of dimension N, H is a column
vector containing the thicknesses at each grid point and
A is a N by N matrix which has five diagonals
(tridiagonal with two fringes). Adjustments on the time
step are performed to maintain numerical stability and to
build a matrix (Ay) with a dominant diagonal. This
system can therefore be solved by point relaxation (Press
and others, 1986). This scheme is numerically stable and
does not require smoothing.
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Table 1. Input parameters for the ice-shelf model

p=920kem *
Py = 1028 kgm 4
g=ms"

Physical constants

Numerical domain 31 x 51 x 19 grid points for the
channel
532 %39 x 19 for the divergent bay

dz = 10km

Air temperature: T, = -30°C

Sea temperature: Tj, = -1.5°C

Surface accumulation: 0.3 ma '

Thermal conductivity: & = 3.10 x 10"
exp(-0.0037T + Ty) Jm 'K 'a !

Specific heat capacity:
¢=211534+779T Jm 'K '

Ar = AyexplQ/R(1/Tf —1/T)]

Ay =8.3x10"bar "a’'

Q= 78.2k] mol !

R=28.32]mal !

H = 1000 m

Temperature and
accumulation

Rlll“()l‘_)g_\‘

Ice thickness at the
grounding line

Ice velocity at the Parabolic profile: U, = 400ma '
) I

grounding line

RESULTS ON VARIOUS SIMPLIFIED GEOMETRIES
The numerical model has been applied on the following
simplified geometries (see Fig. 3):

1. A rectangular channel.

2. A slightly divergent bay.

(S5}

The same divergent bay with a small pinning point
. 2 . .
(island of 200 km=) in the middle.

A freely expanding ice tongue has been added beyond the
confined ice shell in order to test the model (see the
following part: testing ice-shelf models). A similar exercise
has been performed by Sanderson (1979) in a one-

A
|
Kinematic boundary condition
5 a 5
= =
Tz o
13 c
8 T I 8
e = * Diagnostic equations | -
u 5] * Mass conservation § J
2 B ® Heat conservation E =
= 3 « Rheological properties 3
a 2 = = ! a |
8 i)
’Ef E
2 5
\ | (island)
Kinematic boundary condition \ \
A

400 Km

Fig. 3. The three oversimplified geometries which are
considered in this work: a channel {a), a diwergent bay
(b), and a divergent bay with a small island in the middle
of the flow (¢).
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dimensional study. One of his most interesting results was
that an ice shell could not survive in a strongly divergent
bay (indeed cavitation, i.e, hole in the ice shelf, must
occur if' the angle is not acute enough). Following
Sanderson’s criterion, the divergence of the bay in our
second example is not strong enough to produce
cavitation and we therefore assume that the ice shell
remains in contact with the sides of the bay.

The model is run from a 1 m thickness (except at the
grounding line) to a steady state after 5000 years and we
use the results to estimate the force budget in the ice shelf.

Table 1 summarizes the different input parameters
used for the model. The aim of this paper is to show, in a
simple manner, the applicability of our ice-shelf dynamics
formulation and the role of pinning points. This is why
many input parameters are assumed to be constant,
whereas in Nature they can vary significantly.

A pictorial representation of the major features of the
results (for the slightly divergent bay) is shown in Figures
4 and 5. As observed in Nature, the ice shelfis thinner and
faster flowing near the ice front. A small oscillation in the
thickness field occurs at the junction between the fireely
expanding ice tongue and the embaved ice shelf, due to
the strong singularity of the corner. This wiggle, which is
not a grid-point to grid-point oscillation, probably comes
from the mability of the numerical model to treat the
singularity. The temperature gradient is stronger near the
base than near the surface: this is a typical shape when
one does not consider basal melting or accretion. This
implies that, in our particular examples, because of the
vertically integrated form of the equations, the dynamics
are controlled by the upper layers ol ice, which are colder
and thus more viscous.

An ice shelf is naturally “pulled™ seaward under the
action of the diflerence of density between ice and sea
water in which it floats, and a restraint is exerted by the

sides of the bay, islands and ice rises. This restraint

(known as the back force) can be computed by comparing

the simulated stress tensors to the theoretical stress

850
860
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400
350
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250
200
150
100
50
&

2
TEHH o
D
Segkace-f e

Ty o Y
wdam £z 5

Fig. 4. Thickness (upper panel) and velocity field for the
slightly divergent bay, as a result of the model: the velocity-
Sield contours are given every 100ma " and the maximum
velocity is 1400 ma .
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elevation {m)
§

<4000 4

a0 0 a0 zo w0 Ai 500
X axis (km)

Fig. 5. Compuled temperature profiles on the centre line

(symmetry axis) for the slightly divergent bay.

distribution for a freely expanding ice tongue as defined
by Weertman (1957). The back force for the three
different kinds of bay are plotted in Figure 6. One notices
the huge restraint (almost half of the total restraint)
exerted by the small island. The role of the angle of
divergence on the back force is also significant (of about
5000 GN).

Figure 7 shows that the effect of an island (and of the
divergence of the bay) on the thickness field must be
taken into account. This will be of special interest in
future models that will couple ice sheets and ice shelves
and evaluate the position of the grounding line.

TESTING ICE-SHELF MODELS

The first concern of the modeller should not be to fit the
data but rather to build a self~consistent tool. This means
that a “bad” model should not be rejected due to

4000 4 -, channel L
E i oo div&island |
ED 3000 - L e divergent |
3 - _
[¢h]
£ 2000 - ~
RS
X 1 L
3
m 1000 - -
0 | S SR e an e e e
0 100 200 300 400 500

X axis (km)

Fig. 6. Back force computed for each geometry: channel
(full line), divergent bay (dashed line) and divergent bay
ineluding an island ( dotted line). The rough aspect of the
curves assoclated with the divergent bay is an artifact due to
the discretization, spectfic to the finite-difference method.
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Fig. 7. Thickness along the centre line for each geometry
(the thickness is sel equal to zero at the island).

disagreement with reality but rather hecause of its
inability to conserve physical quantities. Only then, it
can be compared with observed data. Here, we propose
three exercises that can be easily coded to test an ice-shell
model.

1. Mass conservation
When in steady state, mass flux out should equal mass
flux in.

2. Divergence theorem

The divergence theorem described below reflects a simple
concept: the action—reaction principle. The integration of
a horizontal projection of the Stokes™ equations over a
defined volume (v) is zero:

/ (Divlo] + pg) T dv=0. (18)
< (v)

Mathematical manipulations on the divergence operator
of Equation (18), combined with the divergence theorem,

lead to
j{[o’]? dX =0.

In the “added™ ice tongue, because of the lack of
horizontal shear stress at the lateral boundaries, this
theorem can be used to verily the numerical computation.
In the embaved ice shell, the same theorem can be
applied to determine the back force: indeed, if we define
the closed surface (¥) by z = xy. the upper and the
bottom surfaces of the ice shelf, the ice front, the sides of
bay and the island boundary, the [o]z d% quantity can be

(19)

evaluated easily everywhere except around the island and
along the lateral sides. The restraint due to the lateral
sides and the island (back force) is thus obtained by a
simple subtraction, since we know that the sum ol these
quantities has to vanish as in Equation (19).

3. Energy conservation

For the sake of simplicity in the equations, the following
test is only valid for an idealized ice shell without any
accumulation at the surface and at the bottom. The test is
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Table 2. Summary of test resulls

Rommelaere and Rilz: A thermomechanical model of ice-shelf flow

Test Numerical error Observations
Iee flux (km® a ')
Inpul Output
70.27 71.01 1.04% Channel
71.60 72.20 0.83% Divergent bay
71.43 72.14 0.98% Island
Divergence theorem (10" N) This test is only performed in the
freely expanding ice tongue
¥ Yo+ X5
“Weertman terms”
D179 218.1 0.44% Channel
201.8 202.5 0.35% Divergent bay
236.6 87D 0.36% [sland
Energy conservation (GW)
| fff EE,'",‘.(T,‘J' d’l’| | [j [O’]U d2|
23.92 25.66 6.79% Channel (no accumulation)
a little more complex if we have ice fluxes through the CONCLUSION

upper or lower boundaries.

The sum of the work done by cach exterior force is
equal to the kinetic energy increase added to the sum of
the work needed to deform cach element of the system.
For a steady state (no time derivatives), we have

R 1 — =
f ZO’,‘_J'E','_J' dv = / pFU d'r’+f [e]U dE (20)
) G Jw) ()

where U is the ice velocity vector. One can recognize the
heat production due to ice deformation on the lefthand
term of the previous equation.

By dividing the boundary surface into three parts: the
kinematic boundary with a zero velocity field (X3), the
kinematic boundary at the grounding line (¥) and the
dynamic boundaries— ice front, the upper and lower
:E-_)_ )—, ithe
simplified, because

boundaries previous expression can  be

/ [0]T d% =0
J(E:

j [(}'ﬁj dE = — / pFU dv 21
(2y) J(e)
and therelore
/ ZO’, iy do= f [a’]l_) dx (22)
J(v) g ' (Z1)

Table 2 summarizes the results of the different tests: the
numerical model seems to conserve mass and to verify the
divergence theorem in a satisfactory way (about 1% of
error for each geometry). The energy test is much worse (a
7% error) but a great part of this error may be due to the
treatment ol the results of the model itself. Indeed, the
integral over the entire volume in the first member of
Equation (22) is difficult to compute and truncation errors
are hence much more important than in the other tests.
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The first EISMINT experiment (Bremerhaven, June
1994) on ice-sheet and ice-shelf modelling proposed by R.
Hindmarsh has shown that a special effort was needed for
ice shelves. In particular, every model had difficulties in
conserving mass. Some of these difficulties were probably
inherent to the problem itwelf, and others occurred
because an agreement on how to formulate the equations
had still to be achieved. We have presented here a finite-
difference version ol MacAyeal’s model. including a heat-
transfer computation and a few tests to show the self-
consistency of the model. Furthermore, such a model can
be used to evaluate the evolution of the back force
associated with climate changes and it thus appears as a
useful tool to study the West Antarctic ice-sheet
dynamics. The same model is applied to the Ross ice-
shell geometry in a companion paper (this symposium).
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