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Abstract
Distinguishing substantively meaningful spillover effects from correlated residuals is of great importance in

cross-sectional studies. Both forms of spatial dependence not only hold different implications for the choice

of an unbiased estimator but also for the validity of inferences. To guidemodel specification, different empir-

ical strategies involve the estimation of an unrestricted spatial Durbinmodel and subsequently use theWald

test to scrutinize thenonlinear restrictionof common factors impliedbypureerrordependence.However, the

Wald test’s sensitivity to algebraically equivalent formulations of the null hypothesis receives scant attention

in the context of cross-sectional analyses. This article shows analytically that the noninvariance of the Wald

test to such reparameterizations stems from the application of a Taylor series expansion to approximate the

restriction’s samplingdistribution.Whileasymptotically valid,MonteCarlo simulations reveal thatalternative

formulations of the common factor restriction frequently produce conflicting conclusions in finite samples.

An empirical example illustrates the substantive implications of this problem. Consequently, researchers

should either base inferences on bootstrap critical values for theWald statistic or use the likelihood ratio test

which is invariant to such reparameterizations when deciding on the model specification that adequately

reflects the spatial process generating the data.

Keywords: spillover effects, common factors, Wald test, spatial econometrics

1 Motivation
The correct specification of the inherently unknown spatial process generating observable pat-

terns of interrelatedness among theunits of analysis constitutes a considerable challenge in cross-

sectional studies. In particular, distinguishing substantively meaningful indirect spillover effects

from spatially correlated random shocks is imperative as there is a serious risk ofmaking incorrect

inferences when estimating a misspecified model (e.g., LeSage and Pace 2009; Darmofal 2015).

Unfortunately, while unfocused tests for spatial autocorrelation commonly applied in empirical

research, like Moran’s I (e.g., Cliff and Keith Ord 1981), help to detect spatial clustering in model

residuals, they do not provide guidance on the exact process generating these dependencies.

Since spatial regressionmodels differ with respect to the implied pathways of dependence, these

simple diagnostic tools do not allow researchers to identify the adequate model specification.

To address this specification problem, many empirical model selection strategies proposed in

the literature feature the estimation of the spatial Durbin model (SDM) as an unrestricted nesting

model and utilize theWald test to scrutinize nonlinear common factor restrictions implied by pure

error dependence (e.g., Burridge 1981).1 Since theWald test is asymptotically equivalent to the like-

lihood ratio (LR) and the Lagrange multiplier (LM) tests, which are the two alternative likelihood-

based specification tests, the choice of a test statistic is o�entimes motivated by convenience or

familiarity (e.g., LeSage and Pace 2009, 55). However, while previous studies in the field of spatial

1 There is an ongoing debate in the spatial econometrics literature whether the specific-to-general or the general-to-specific
approach should be used in order to identify the true data-generating model (e.g., Florax et al.2003; Florax et al.2006;
Hendry 2006; Elhorst 2014a). However, both approaches have their disadvantages and there is no conclusive evidence
for the superiority of any of these search strategies (Mur and Angulo 2009; Rüttenauer 2019). Consequently, many search
procedures rely on a combination of both approaches (e.g., Mur and Angulo 2006; Elhorst 2010; Elhorst 2014a).
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econometrics report notable differences with respect to their finite sample properties (e.g., Mur

and Angulo 2006; Mur and Angulo 2009), the Wald test’s sensitivity to algebraically equivalent

alternative formulations of the null hypothesis is somewhat overlooked. Given that this result

is well-established in a time-series context (e.g., Gregory and Veall 1985; Lafontaine and White

1986; Breusch and Schmidt 1988; Dagenais and Dufour 1991; de Paula and Cribari-Neto 1993; Goh

and King 1996) and regarding the importance of distinguishing spillover effects from residual

correlation for substantive inferences, this negligence is startling.

By remedying this omission, the present study evaluates the Wald test’s appropriateness for

differentiating between alternative mechanisms that cause spatial clustering in cross-sectional

data structures. It discusses the substantive and econometric implications of alternative spatial

processes and shows analytically that the Wald test’s lack of invariance to reparameterizations of

nonlinear common factor restrictions stems from the necessity to approximate the restrictions’

sampling distributions. While asymptotically valid, Monte Carlo experiments demonstrate that

this approximation frequently leads tomisleading inferences concerning the presence of spillover

effects across a wide range of parameter settings in finite samples. An empirical example further

illustrates the severityof this problem for applied researchaiming toassess the support fordistinct

theoreticalmechanismsagainstpossible alternativeexplanations.Given that amisspecificationof

the process generating cross-sectional dependencies can bias substantive inferences, the results

suggest that, irrespective of the specification search strategy employed, researchers should not

base inferences on the Wald statistic’s asymptotic χ2 distribution. Instead, simulation techniques

such as bootstrap methods allow researchers to use estimated critical values as an alternative

to their asymptotic counterparts. The LR test also offers a valuable alternative procedure that is

invariant to reparameterizations of the null hypothesis.

2 Substantive and Residual Dependence in Cross-Sectional Models
In regression analyses utilizing cross-sectional data, three different types of interaction effects can

be distinguished that generate spatial autocorrelation in the dependent variable. First, endoge-

nous interaction effects occur whenever the units’ outcomes are intertwined. In these situations,

the actions, decisions, or behaviors of the units are simultaneously determined and responsive

to the other units’ outcomes. Second, exogenous interaction effects cause spatial clustering by

linking the response of each unit to the covariates of other units. Finally, cross-sectional depen-

dencies can be a product of spatially correlatedmodel residuals (e.g., Elhorst 2014b; Halleck Vega

andElhorst 2015).While endogenous andexogenous interaction effects are part of the regression’s

systematic component, correlation among the error terms is confined to themodel residuals and

does not affect the expectation of the outcome conditional on the regressors.

Despite their close correspondence (see e.g., Gibbons and Overman 2012), the distinction

between the different mechanisms causing spatial dependencies in the data has far-reaching

implications for the estimation and interpretation of the regression coefficients (LeSage and Pace

2009; Rüttenauer 2019). Importantly, substantively meaningful indirect spillover effects, loosely

defined as the impact of changes in one unit’s covariates on the other units’ outcomes, only exist

if cross-unit interactionsarepartof the regression’s systematic component (Elhorst 2010;Darmofal

2015; Halleck Vega and Elhorst 2015). In these instances, the cross-partial derivative of unit i’s

outcome yi with respect to unit j’s covariate xj is nonzero, signifying a systematic relationship

between the units (e.g., LeSage and Pace 2009, 38). Otherwise, the regression model imposes

the restriction of no spillovers by assumption.2 To detect the existence of these spillover effects,

different model specification search strategies suggest to utilize the unrestricted SDMmodel as a

2 By virtue of the Gauss–Markov assumptions, nonspatial regression models typically estimated by ordinary least squares
(OLS) do not incorporate any spatial effects. In a regression model with a sigle regressor x , the direct effect of a change in
xi for unit i on the unit’s outcome yi is ∂E (yi |xi )/∂xi = β̂OLS = (x ′x )−1x ′y while this change is ∂E (yj |xi )/∂xi = 0 for all
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generalmodel featuring substantive aswell as residual dependence and subsequently test several

parameter restrictions (e.g., Mur and Angulo 2006; LeSage and Pace 2009; Elhorst 2010).

2.1 An Illustrative Example of the Different Spatial Processes
Before outlining the alternative spatial model specifications, it is useful to contrast the different

spatial processes with respect to their substantive implications for empirical political science

research.

Spillover effects occurwhenever thebehavior (endogenous interactions) or certain characteris-

tics (exogenous interactions) of one unit—may this be a country, a (coalition) government, a polit-

ical party, or any other entity of interest—affect adjacent units (Darmofal 2015, 5).3 For example,

the municipalities’ income tax revenues are directly related to their local economic performance.

At the same time, the economic prosperity of its neighbors also exerts a positive impact on a

municipality’s income tax revenues as its residents might commute to work. These dependencies

in incometax revenuesproducespilloversbetween themunicipalities: theeffectof a change inone

unit’s characteristics propagates to its neighbors (e.g., LeSage and Pace 2009). Hence, adequately

understanding the phenomenon of interest—cross-sectional variation in income tax revenues—

necessitates the consideration of these exogenous interaction effects among the municipalities

that generate substantively meaningful and theoretically relevant indirect spillover effects.

In contrast, cross-sectional dependencies in the disturbances constitute another spatial pro-

cess that has different substantive implications and requires an alternative model specification.

Several circumstances can cause correlation between the units’ residuals, for example spatial

clustering in measurement errors. Alternatively, omitting a spatially dependent explanatory vari-

able that is part of the true data-generating process (DGP) from the regression equation leads

to correlated errors (Elhorst 2014b; Darmofal 2015). With regards to the example given above, it

is reasonable to expect that several unobservable but spatially dependent characteristics, like

a region’s general appeal as a place of residence, affect a municipality’s revenue from income

taxation as well. In contrast to the theorized exogenous interaction effects, these omitted charac-

teristics merely affect themodel residuals and there are no relevant indirect effects present in the

process that generates the data. Since exactly modeling the true dependence structure is almost

impossible (e.g., Juhl 2020b), omitting relevant variables that are spatially correlated can create

linkages among the units’ disturbances.

2.2 Common Factors in the Spatial Durbin Model
While theprevious example illustrates the crucial differences in the substantive implications of the

underlying process that links the observations to one another, model misspecificationmay cause

severe econometric problems as well. In fact, neglecting cross-sectional interdependencies can

induce correlation between the regressors and the residuals, resulting in the canonical endogene-

ity problem (e.g., Gibbons and Overman 2012; Betz, Cook, and Hollenbach 2019).

In order to illustrate the problemof omitted spillover effects, consider the stylizedDGP inwhich

a dependent variable y is entirely determined by two uncorrelated regressors, denoted x and z ,

such that y = xβ +z .4 Assume that z is unobservable and follows a spatial autoregressive process

such that z = ρWz +u1, where ρ is a scalar parameter,W is an exogenously defined connectivity

matrix, andu1 is a vectorof independentand identicallydistributednormaldisturbanceswith zero

units j where j , i . By the same token, the spatial error model (SEM) specification does not feature spillover effects since
residual dependence does not affect E (yi |xi ).

3 Different theoretical mechanisms can produce substantively meaningful spillover effects. Shipan and Volden (2008), for
example, distinguish between four different mechanisms of policy diffusion: learning, economic competition, imitation,
and coercion. Acknowledging this, I leave aside a thorough discussion of alternative mechanisms and restrict the focus to
the empirical modeling of cross-sectional dependencies.

4 For the sake of simplicity, I set the coefficient associated with z to 1 and omit it from the equation.
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mean and a fixed variance.5 This scenario leads to the spatial error model (SEM) specification:

y = xβ + (I n −ρW )−1u1︸             ︷︷             ︸
z

. (1)

Due to the uncorrelatedness of x and z , omitting the spatially autocorrelated variable does

not lead to endogeneity concerns. Furthermore, the relationship depicted in Equation (1) implies

no indirect spillover effects since the cross-unit interactions are confined to the residuals. Con-

sequently, even a nonspatial OLS model specification would provide unbiased but inefficient

parameter estimates (Lacombe and LeSage 2015).

Now consider a slightly modified scenario in which the included and the omitted regressors

are no longer independent from one another but correlated. To induce correlation between the

variables, suppose that the randomvariableu1 inEquation (1) is replacedbyu2which is anadditive

linear function of x and a stochastic disturbance term v such that u2 = xγ +v . In addition to the

spatial autocorrelation, the unobserved covariate z is now also correlated with x and the scalar

γ ∈ (0,1] aswell as the dispersion ofv (σ2
v ) jointly determine the strength of the correlation. In this

slightly modified scenario, the true DGP becomes

y = xβ + (I n −ρW )−1(xγ +v )
︸                     ︷︷                     ︸

z

. (2)

In contrast to the DGP shown in Equation (1), the correlation between the included regres-

sor x and the spatially clustered variable z causes an endogeneity problem if z is omitted

from the regression’s systematic part. Importantly, the effect of a change in regressor x on the

outcome y in Equation (2) is more complex and both a nonspatial OLS model as well as a

SEM model do not yield unbiased estimates since they ignore indirect effects produced by the

spatial patterning of the correlated omitted variable. Consequently, the effect of a change in xi

is not confined to unit i’s outcome yi but rather pertains to all nonisolated units in the entire

system through indirect spillover and instantaneous feedback effects (e.g., LeSage and Pace 2009;

Betz et al. 2019).

In order to address the endogeneity problem and to identify meaningful spillover effects, the

unrestricted SDM model plays an important role. In fact, it serves as a general nesting model in

many specification search strategies since it comprises several simpler spatial regression models

frequently employed in empirical studies (e.g.,Mur andAngulo2009; Elhorst 2010; AnguloandMur

2011).6 By allowing researchers to test different parameter restrictions, the SDM model facilitates

the specification of an econometric model that reflects the spatial process generating the data

most appropriately. For the hypothetical scenario with one regressor x and the (possibly corre-

lated) unobserved variable z discussed here, the SDMmodel to be estimated takes the following

form:

y = ρW y +xβ +Wxθ+v . (3)

While it is easy to verify that the SDMmodel reduces to the popular spatial autoregressive (SAR)

model, also knownas spatial lagmodel (e.g., Elhorst 2014b, 5), that features global spillover effects

5 Also assume that ρ is contained in the compact open interval (ω−1
min

; ω−1
max ), where ωmin and ωmax are the smallest and

largest eigenvalues ofW . This stability constraint ensures that the matrix (I n − ρW ) is positive definite and its inverse
exists (e.g., LeSage and Pace 2009; Elhorst 2014b).

6 While the general nesting spatial (GNS)model incorporates all possible types of cross-sectional interaction effects, it tends
to be overparameterized. Hence, it provides no additional information and is rarely used in applied studies (e.g., Elhorst
2014b; Rüttenauer 2019).
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ifθ = 0and to the spatial lagof X (SLX)model featuring local spilloverswhenρ = 0, it also subsumes

the SEM model that rules out any substantive indirect effects by assumption.7 To illuminate the

relationship between these models, it is useful to restate the SEM DGP displayed in Equation (1)

bymultiplying both sides of the equation by (I n −ρW ) and rearranging termswhich results in the

following structural form (Burridge 1981; Anselin 2003):

(I n −ρW )y = (I n −ρW )xβ +u1

y −ρW y = (βI n −ρβW )x +u1

y = ρW y +xβ +Wx (−ρβ )+u1. (4)

Equation (4) elucidates that the SEM process imposes a nonlinear common factor restriction

on the parameter associated with Wx which can be assessed by using estimates from the

unrestricted SDMmodel depicted in Equation (3).8 More precisely, if the estimates from the unre-

stricted SDM model satisfy the common factor restriction θ = −ρβ , the model can be simplified
to a SEM model specification because there are no discernible substantive spillover effects in

the data. Given that E (β̂ ) − β = 0 in Equation (4), the common factor restriction holds for SEM

processes.

However, if x and z are correlated in the true DGP, an endogeneity problem occurs since the

variable z is unobserved and the common factor restriction no longer holds. Restating the DGP in

Equation (2) that features this correlation in a similar fashion yields:

(I n −ρW )y = (I n −ρW )xβ +xγ +v

y = ρW y +x (β +γ)+Wx (−ρβ )+v . (5)

Given the discussion above, Equation (5) illustrates that, in the presence of an omitted variable

that is (i) spatially clustered and (ii) correlatedwith an included regressor, the true DGP resembles

the SDM specification. Although the SDM model shown in Equation (3) provides consistent esti-

mates for E (ρ̂) = ρ and E (θ̂) = −ρβ , the estimate of β is asymptotically biased since E (β̂ ) = β +γ.

Based on these model estimates, the common factor restriction does not hold because of the

endogeneity bias present in E (β̂ ). Hence, a violation of the common factor restriction is indicative

of the existence of indirect spillover effects that need to be included in the systematic part of the

regression model.

As this discussion suggests, the spatially lagged exogenous variables in the SDM model spec-

ification can also be understood as instruments for omitted variables that are correlated with

included regressors (e.g., Elhorst 2014b, 18). At the same time, as Gibbons and Overman (2012)

emphasize, this strategy provides only weak identification of the model parameters and crucially

depends on the exogeneity and the assumed perfect knowledge ofW . Consequently, the SDM

model does not provide a general solution to the omitted variables problem that would allow

researchers to identify causal effects. Just like in any other observational study, doing so requires

the application of appropriate research designs (see also Betz et al. 2019; Rüttenauer 2019). More-

over, while the SDM specification features global spillover effects, local spillovers would require

a different model specification like the spatial Durbin error model (e.g., Halleck Vega and Elhorst

2015).

7 Since this study is primarily concerned with the Wald test’s ability to assess the common factor hypothesis, the reader
may be referred to Halleck Vega and Elhorst (2015), Elhorst (2014b), Elhorst 2010, or LeSage and Pace (2009) who provide
excellent treatments of alternative spatial regression models.

8 The number of these common factor restrictions equals the number of regressors included in the model. To ease the
exposition, I assume a single regressor throughout this study.
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3 TheWald Test of Nonlinear Restrictions
Given the estimates from an unrestricted model, the Wald test is flexible enough to scrutinize

several different and possibly nonlinear parameter constraints within the samemodel. Intuitively,

theWald test assesses the distance between the observed estimates and the restrictions imposed.

As the distance grows, the restrictions become less likely. In contrast to the LM and the LR tests

which constitute prominent and asymptotically equivalent alternative specification tests, the

Wald test does not require the estimation of restricted alternative models (e.g., Burridge 1981).

Despite its advantages, a major drawback of the Wald test of nonlinear restrictions is its lack

of invariance to algebraically equivalent expressions of the null hypothesis. Since the asymptotic

distribution of a nonlinear restriction needs to be approximated by a Taylor series expansion,

seemingly identical functional representations may produce different test statistics. Although

this undesirable property is a well-known feature of the Wald test (e.g., Gregory and Veall 1985;

Lafontaine and White 1986; Breusch and Schmidt 1988; Dagenais and Dufour 1991; de Paula

and Cribari-Neto 1993; Goh and King 1996), its consequences for empirical spatial model search

strategies have been neglected so far.

3.1 Analytical Derivation and Asymptotic Distribution of the Wald Statistic
Consider a situation inwhich a test needs to be constructed in order to evaluate a single nonlinear

restriction H0 : g (λ) = 0, where λ is a parameter vector and g (·) is some function that is continu-
ously differentiable in a neighborhood of λ. For this general case, the Wald statistic is defined by

w = g (λ̂)
[
V (g (λ̂))̂

]−1
g (λ̂), (6)

where V (g (λ̂))̂ is the estimated variance of g (λ̂). Under the null hypothesis, w asymptotically

followsaχ2 distributionwith thenumberofdegreesof freedomequal to thenumberof restrictions

imposed.

The only complication involved here is that obtaining w necessitates knowledge about the

sampling distribution of a nonlinear function. While it is straightforward to compute the value of

g (λ̂) at the parameter estimates, deriving the Wald statistic in Equation (6) additionally requires

information about its variability which depends on the estimator λ̂ and the restriction g (·).
However, given the restriction’s nonlinearity, exact distributional results become inapplicable

(Greene 2012). Instead, the delta method provides an approximation of the restriction’s asymp-

totic distribution.9 It is based on a first-order Taylor series expansion of g (λ̂) around the true

parameter vector λ. Assuming that λ̂ is a consistent estimator with a limiting distribution defined

by
√
n(λ̂−λ)

d→N (0,Σ ) and that the standard regularity conditions hold (see e.g., Newey and
McFadden 1994), the delta method implies that

√
n(g (λ̂)−g (λ))

d→N
(
0,G(λ)ΣG(λ)′

)
, (7)

where G(λ) = ∂g (λ)/∂λ ′ is a row vector of partial derivatives. It follows that the asymptotic

distribution of the restriction underH0 is g (λ̂)
a∼N

(
g (λ),G(λ)n−1ΣG(λ)′

)
. By using the consistent

estimates obtained froman unrestrictedmodel, the restriction’s sampling variability derived from

the delta method is given by

V (g (λ̂))̂ =G(λ̂)Σ̂G(λ̂)′, (8)

9 Supplementary Material A contains further details on the delta method.
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Table 1. Algebraically identical formulations of the common factor hypothesis.

G(λ̂)

g (λ̂) = 0 ∂g (λ̂)/∂ρ̂ ∂g (λ̂)/∂β̂ ∂g (λ̂)/∂θ̂

H0(I ) ρ̂β̂ + θ̂ β̂ ρ̂ 1

H0(I I ) β̂ + θ̂/ρ̂ −θ̂/ρ̂2 1 ρ̂−1

H0(I I I ) ρ̂ + θ̂/β̂ 1 −θ̂/β̂ 2 β̂−1

H0(IV ) ρ̂β̂/θ̂+1 β̂/θ̂ ρ̂/θ̂ −ρ̂β̂/θ̂2

with G(λ̂) evaluated at λ̂ and Σ̂ = n−1Σ being a consistent estimator of the symmetric, positive

definite asymptotic variance–covariance matrix. By substituting Equation (8) into Equation (6),

the Wald test statistic can be calculated. Asymptotically, since plimn→∞λ̂ = λ, the function g (λ̂)

converges in distribution to g (λ) with a mean given by plimn→∞g (λ̂) = g (λ). At the same time,

the necessity to estimate the nonlinear restriction’s sampling variability can cause a mismatch

between the Wald statistic’s asymptotic χ2 distribution and its finite sample distribution which

has considerable consequences for hypothesis testing (e.g., Lafontaine and White 1986; Phillips

and Park 1988).

3.2 The Wald Test of Common Factors in Spatial Models
The analytical results derived above are directly applicable to the empirical assessment of the

common factor restriction in spatial regression models because the null hypothesis can be

expressed as a nonlinear function of the estimates obtained from an unrestricted SDM model. In

order to calculate the test statistic, it is necessary todetermine the functional representationof the

null hypothesis of common factors. Yet, there are numerous algebraically equivalent alternative

parameterizations that satisfy g (λ̂) = 0, where λ̂ = [ρ̂, β̂ , θ̂] are the estimates obtained from the

SDMmodel in Equation (3).

Table 1, for example, lists the four alternative expressions of the null hypothesis considered by

Gregory and Veall (1986) in a time-series context. While all of the alternative statements declare

the same restriction, they produce distinct test statistics and p values in finite samples because

the approximation of the restriction’s sampling variability is based on the partial derivatives of

the parameter estimates. Depending on the exact representation of the null hypothesis, the right

part of Table 1 shows that the vector of partial derivatives obtained from these nonlinear functions

differ.

As a result, alternative expressions of the common factor hypothesis use different estimators

for the nonlinear restriction’s sampling variability which yields distinct test statistics and causes

them to converge to the asymptotic χ2 distribution at individual rates. In large samples, this

circumstance is unproblematic as the accuracy of the Taylor series approximation increases in

sample size while the contribution of the restriction’s estimated variability to the test statistic

becomes negligible. In finite samples, however, the differences between the alternatives can be

substantial (e.g., Gregory and Veall 1985). At worst, alternative and algebraically identical func-

tional representations of the parameter restriction can indicate opposing conclusions regarding

its validity despite the fact that the samemodel estimates are used to calculate the test statistic.

Importantly, whilemany statistical so�ware packages used to estimate spatial regressionmod-

els, like Stata or Rpackages, report results fromaWald test bydefault, theydonot test for common

factors. Instead, the null hypothesis these packages evaluate is cross-sectional independence,

that is, ρ̂ = 0. Since this is a linear restriction, the Wald statistic’s noninvariance problem does

not arise and the tests these packages perform are only indicative of the presence of nonrandom

spatial clustering. They do not permit any inferences regarding the spatial process atwork. Hence,
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scrutinizing the common factor restriction requires researchers to amend the Wald test’s null

hypothesis.

3.3 Modifications of the Wald Test
Since the application of the Taylor series expansion results in distinct Wald statistics for

algebraically equivalent formulations of the null hypothesis, the asymptoticχ2 distributionmight

constitute an inappropriate approximation of the statistic’s finite sample distribution for some

parameterizations. Therefore, modifications proposed in the literature that attempt to address

the Wald test’s noninvariance problem primarily focus on adjusting the statistic’s reference

distribution.

Phillips and Park (1988), for example, show that an Edgeworth expansion of the Wald statistic

provides additional information on the statistic’s distribution which can be used to obtain cor-

rected critical values and modified test statistics for each functional representation of the null

hypothesis (e.g., de Paula and Cribari-Neto 1993; King and Goh 2002). Besides these corrections,

simulation techniques allow researchers to generate the empirical distribution under the null

hypothesis for each specification of the common factor restriction and base inferences on these

reference distributions (e.g., Lafontaine and White 1986; Goh and King 1996). In particular, boot-

strap methods provide a way to estimate critical values and use them as an alternative to the

(corrected) asymptotic critical values which can be unreliable in finite samples (Godfrey and Veall

1998). Using the following procedure, it is straightforward to derive bootstrap critical values to test

for common factors in spatial regression models:

1. Use the estimates fromanunrestricted SDMmodel and calculate the observedWald statistic

w according to Equation (6) for a given restriction.

2. Estimate the restricted SEMmodel.With these estimates and the DGP shown in Equation (1),

generate 100 bootstrap samples by resamplingwith replacement from the residual vector to

obtain bootstrap disturbances.

3. Repeat step 1 for each bootstrap sample and store the Wald statistic in vector w̃ .

4. Sort w̃ in ascending order. The value with rank (1−α )× 100+1 is the estimated bootstrap

critical value, χ2
boot

, corresponding to a predefined α -level (e.g., α = 0.05).

By comparing w calculated in step 1 to the corresponding bootstrap critical value χ2
boot

from

step 4, its statistical significance can be assessed. This procedure can be repeated for any func-

tional representation of the common factor restriction in order to obtain individual bootstrap

critical values for each restriction and a given region of the parameter space. Thereby, researchers

can base inferences on the empirical distribution under the null hypothesis instead of relying on

the asymptotic χ2 distribution. This is especially important since the performance of the Wald

test not only depends on the specific expression of the common factor hypothesis but also on the

particular region in the parameter space. In fact, previous research shows that there is no single

formulationof the restriction that consistently outperformsall alternatives (e.g., Gregory andVeall

1986; Lafontaine and White 1986; Phillips and Park 1988).

While Goh and King (1996) demonstrate that both asymptotic modifications—the corrected

critical values and the improved test statistics—might even deteriorate the Wald test’s power and

size properties, they conclude that the bootstrap approach constitutes a useful improvement for

applied research (see also Lafontaine andWhite 1986; Godfrey and Veall 1998; King andGoh 2002).

Of course, neither the Edgeworth corrections nor simulation techniques completely resolve the

noninvariance problem inherent to the Wald test. Doing so requires the application of alternative

tests such as the asymptotically equivalent LR test that is invariant to such reparameterizations

(e.g., Mur and Angulo 2006). Yet, by providing corrections for the Wald test’s empirical size, these
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modifications reduce the possibility of intentionally manipulating the result by amending the

functional expression of the null hypothesis (King and Goh 2002, 260).

4 Monte Carlo Analysis

4.1 Experimental Setup
In order to investigate the finite sample performance of the Wald test, I conduct Monte Carlo

experiments inwhich I vary the sample size, the strength of the interdependence, and the severity

of the omitted variables bias through the degree of correlation between the included and the

omitted regressor. Using the spatial process depicted in Equation (2), I generate 1,000 samples

of the outcome vector y for each of the parameter configurations. In the simulations, β = 2 and

σ2
v = 1 are held constant and x is drawn froma standard normal distribution. The parameter space

ofγ ranges from0 to1 in stepsof0.2while ρ takesonvaluesbetween0and0.8 in stepsof0.2.10 This

setup includes a nonspatial DGPwithout omitted variables bias (ρ = 0 and γ = 0), nonspatial DGPs

with omitted variables bias (ρ = 0 and γ > 0), SEM DGPs (ρ > 0 and γ = 0), and SDM DGPs (ρ > 0

and γ > 0).W is a row-stochastic contiguity matrix based on the queen criterion of adjacency. In

contrast to the rook connectivity scheme which links spatial units ordered on a lattice to their

direct horizontal and vertical neighbors, the queen criterion additionally connects the units to

their diagonal neighbors (e.g., Cliff and Keith Ord 1981).11 The sample sizes specified here contain

49, 100, 225, and 400 observations distributed on regular grids (7×7, 10×10, 15×15, and 20×20)

to realistically reflect small tomediumsized samples frequently encountered in political science.12

Since the consequences of model misspecification for the estimation of unbiased effect esti-

mates have been studied elsewhere (e.g., LeSage and Pace 2009; Pace and LeSage 2010; Lacombe

andLeSage2015; Rüttenauer 2019), thisMonteCarlo analysis focuses on theability of theWald test

to identify the true spatial model and differentiate between substantive and residual dependence

across a range of alternative DGPs.13 To this end, I investigate the performance of the Wald test

using the four alternative null hypotheses of common factors summarized in Table 1.14

4.2 Performance of the Original Wald Test
Table 2 reports the rejection ratesof the four expressionsof thenull hypothesesof common factors

at an α -level of 0.05 across the simulations when the true DGP is that of the SEM model (γ = 0).

Since there are no omitted spillovers in this scenario, the common factor restriction holds and the

four variants of the Wald test are expected to reject the true null hypothesis in about 5% of the

simulation trials with a 95% confidence interval of [3.65%;6.35%].
AlthoughSection 3 analytically shows that the alternativeWald tests are asymptotically equiva-

lent, their type I error rates differ notably in finite samples. EspeciallyH0(I I ) but alsoH0(IV ) devi-

ate considerably from the expected error rate. Across all sample sizes, H0(I I ) is too conservative

when ρ is small. Since ρ̂ appears in the restriction’s denominator (see Table 1), the restriction has

no derivative at zero which violates the assumed continuity of derivatives. However, theWald test

based onH0(I I ) remains valid as its asymptotic distribution is obtained under the null hypothesis

which precludes the problematic value (Gregory and Veall 1985).15

10 Supplementary Material B contains information on the correlation between the regressor x and the omitted variable z for
the different values of γ.

11 SinceW is row-stochastic, any value of ρ in the interior of ω−1
min

and 1 ensures matrix invertibility (LeSage and Pace 2009;
Elhorst 2014b).

12 To perform the simulations, I rely on resources from the High Performance Computing Cluster bwHPC and use the R
package spdep (Bivand and Piras 2015) to estimate all spatial regression models. Replication materials are available on
the Political Analysis Dataverse (Juhl 2020a).

13 For an investigation of the substantive effects of spatial misspecification bias in nonspatial OLS and SEM models, see
Supplementary Material C.1.

14 Supplementary Material C contains additional robustness tests including a scenario with negative spatial autocorrelation
(C.2), an alternative specification of the connectivity scheme and an investigation of possible edge effects (C.3).

15 This situation also occurs at β̂ = 0 for H0(I I I ) and at θ̂ = 0 for H0(IV ).
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Table 2. Share of false positives (type I error rates) using asymptotic critical values.

n = 49

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 6.9 0.1 7.1 2.6

0.2 7.5 0.1 7.9 4.0

0.4 7.5 0.0 7.2 6.0

0.6 9.4 0.7 8.9 7.3

0.8 11.0 4.9 10.7 11.5

n = 100

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 6.4 0.2 6.0 3.5

0.2 5.5 0.0 5.5 2.8

0.4 5.8 0.1 5.6 4.3

0.6 7.7 1.7 7.6 7.5

0.8 6.0 3.5 6.0 5.1
n = 225

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 5.2 0.0 5.0 4.9

0.2 5.4 0.0 5.4 5.8

0.4 6.3 1.2 6.7 5.3

0.6 6.2 4.3 6.5 6.1

0.8 5.6 4.8 5.5 4.2

n = 400

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 5.9 0.0 5.8 2.0

0.2 4.3 0.3 4.3 4.6

0.4 4.7 2.4 4.8 5.9

0.6 3.7 3.0 3.8 4.2

0.8 4.9 4.6 5.0 4.9

Based on the χ2 distribution with df = 1 and α = 0.05, the asymptotic critical value used for all variants of
the Wald test and across the different levels of spatial autocorrelation is χ2

asym = 3.841. The theoretically
expected rejection rate across the 1,000 simulation iterations is 5% with a 95% (binomial proportion)
confidence interval of [3.65%;6.35%].

At the same time, incorrectly rejecting a true null hypothesis might be less problematic in

this case since the SDM model derives unbiased impact estimates even if only the residuals are

spatially clustered and no substantive spillovers exist (e.g., Elhorst 2010). The only drawback is

that the appropriate SEM specification would be more efficient which might affect inferences

regarding the statistical significance of a regressor’s impact. Consequently, it is crucial for any test

of thecommon factorhypothesis tohave satisfactorypowerproperties inorder to reduceconcerns

about biased effect estimates.

Against this background, Figure 1 compares the performance of the alternative variants of the

Wald test for different levels of correlation between the spatially dependent omitted variable and

the included regressor by reporting their power. As the correlation increases, the tests should be

more likely to reject the null hypothesis. In order to account for the effects of the sample size and

the strength of the interdependence on the performance of the tests, Figure 1 is comprised of 16

panels. In each panel, the horizontal axis depicts the different values of γ and the vertical axis

shows the observed share of rejections across the simulation trials.

A brief inspection of Figure 1 already confirms that alternative parameterizations of the null

hypothesis—although algebraically equivalent—yield strikingly different results in finite samples.

Even with a decently sized sample, there are pronounced differences in the rejection rates of the

four Wald tests. WhileH0(I ), which is considered to be the commonway to express the restriction

(Gregory and Veall 1986, 204), and H0(I I I ) perform comparatively well in these simulations, the

specifications based on H0(I I ) and H0(IV ) have inferior power properties. The remarkably low

rejection rates of these specifications of the Wald test increase the likelihood that researchers

incorrectly infer the absence of meaningful spillover effects.

Moreover, the behavior of H0(IV ) differs greatly from the expectation as its rejection rate

initially decreases in almost all parameter settings as γ increases. This phenomenon—known as

nonmonotonicity in the power function—makes the rejection of the null hypothesis even less

likely as the difference between the true DGP and the restriction increases (King and Goh 2002,
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Figure 1. Share of null hypothesis rejections at a nominal significance level of 5%.

256–58).16 In practice, these tests would suggest that the data was generated by a DGP with

spatially correlated errors even if there are sizable spillover effects. Researchers would incor-

rectly conclude that a SEM model or even a nonspatial OLS model appropriately represents the

unobservable DGP. Given that these model specifications produce biased impact estimates if a

SDM process generated the data, the low rejection rates are highly problematic for substantive

inferences.

Although the different variants of the Wald test use the same data and identical parameter

estimates, this simulation study shows that, depending on the functional representation of the

null hypothesis, they can come to contradictory conclusions regarding the validity of the common

factor restriction.17 In fact, Breusch and Schmidt (1988) analytically show that it is possible to

obtain any desired Wald statistic by appropriately specifying the restriction which opens up the

possibility to intentionally manipulate the test result (see also King and Goh 2002). Therefore,

any search strategy utilizing the Wald test, like the basic general-to-specific approach or the

multistep procedure suggested by Elhorst (2014a), is subject to this malfunctioning. Since there is

no theoretically justified functional representationof the common factor hypothesis andgiven the

16 The Wald test based on H0(IV ) is also strongly affected by β in the DGP. As Supplementary Material C.4 shows, the test’s
performance is even worse for smaller values of β .

17 Supplementary Material C.5 provides a more detailed discussion on these inconsistencies and identifies regions of the
parameter space where the alternative Wald tests diverge most frequently.
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Table 3. Share of false positives (type I error rates) using bootstrap critical values.

n = 49

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 5.5 1.4 5.8 4.1

(4.696) (1.533) (4.648) (3.330)

0.2 5.2 1.3 5.2 4.7

(4.839) (1.364) (4.734) (3.491)

0.4 5.1 2.5 5.4 5.7

(4.963) (1.462) (4.923) (3.853)

0.6 5.2 4.3 5.4 6.1

(5.192) (2.032) (5.132) (4.757)

0.8 5.8 8.5 5.8 6.8

(5.380) (3.083) (5.365) (5.894)

n = 100

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 5.1 1.3 4.8 4.1

(4.308) (1.449) (4.293) (3.218)

0.2 4.8 1.1 5.0 4.7

(4.409) (1.359) (4.379) (3.244)

0.4 4.8 4.2 4.8 4.3

(4.476) (1.788) (4.428) (3.675)

0.6 5.6 6.7 5.6 7.0

(4.600) (2.611) (4.542) (4.387)

0.8 4.3 5.2 4.2 4.0

(4.690) (3.637) (4.646) (4.862)

n = 225

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 5.5 0.6 5.6 5.0

(4.125) (1.305) (4.097) (3.629)

0.2 5.0 2.2 5.0 5.4

(4.147) (1.593) (4.131) (4.002)

0.4 5.6 6.1 5.6 4.3

(4.168) (2.583) (4.173) (4.515)

0.6 5.9 6.0 5.9 5.5

(4.249) (3.509) (4.193) (4.628)

0.8 4.9 5.3 4.6 4.5

(4.307) (3.999) (4.264) (4.313)

n = 400

ρ H0(I ) H0(I I ) H0(I I I ) H0(IV )

0 5.4 0.8 5.5 3.7

(4.038) (1.283) (4.012) (2.917)

0.2 4.2 4.0 4.2 6.1

(4.082) (1.863) (4.074) (3.374)

0.4 5.1 5.7 5.1 5.6

(4.128) (3.037) (4.111) (3.817)

0.6 3.2 3.3 3.3 3.7

(4.137) (3.707) (4.130) (3.850)

0.8 4.9 4.9 4.9 5.4

(4.179) (4.010) (4.150) (3.955)

For the different levels of spatial autocorrelation, the median bootstrap critical values χ2
boot

for each variant
of theWald test at the nominal significance level of 5%are displayed in parentheses. Again, the theoretically
expected rejection rate across the simulation trials is 5% [3.65%;6.35%].

strikingly large share of inconsistent inferences across a range of parameter settings, the evidence

presented here strongly caution against the use of the standardWald test based on an asymptotic

reference distribution.

4.3 Performance of the Modified Wald Test Based on Bootstrap Critical Values
While the simulations performed here illustrate that the standard Wald test based on asymptotic

critical values is unreliable for the identification of the unobservable spatial process, this section

investigates whether the application of simulated reference distributions improves the test’s

performance. To this end, I use the bootstrap procedure outlined in Section 3.3 and compare the

observed Wald statistics based on the different formulations of the common factor restriction to

their estimated critical values.

The results reported in Table 3 show that the estimated critical values from the bootstrap

approach, χ2
boot

, displayed in parentheses not only differ from their asymptotic counterpart

χ2
asym = 3.841 on which the original Wald test is based. They also reveal sizable discrepancies

between the alternative parameterizations of the null hypothesis. While the estimated critical

values for H0(I ) and H0(I I I ) are always higher than χ2
asym , the simulated null distributions of

H0(I I ) suggest much smaller critical values for this expression of the null hypothesis in most

scenarios.
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Since the functional expression of the nonlinear common factor restriction determines the

Wald statistic’s rate of convergence to the asymptoticχ2 distribution, estimating critical values for

each alternative parameterization improves the empirical size of the Wald test in finite samples.

Compared to the original tests based on the asymptotically derived critical value, the observed

rejection rates of each of the four variants of the Wald test is closer to the nominal significance

level of 5% across all sample sizes. Whereas the observed rejection rate of H0(I ) ranges from

6.9% to 11% across the different values of ρ for a sample size of n = 49 when relying on the

asymptotic χ2 distribution (see Table 2), its corresponding range is narrowed to 5.1%–5.8% when

using bootstrap critical values. Similarly, the bootstrap critical values even improve the size of

H0(IV ) which performed poorly under the asymptotic reference distribution. For n = 49, basing

inferences on the simulated null distribution narrows the range of rejection rates from2.6%–11.5%

to 4.1%–6.8% across the different levels of spatial autocorrelation.

In conclusion, the Monte Carlo evidence presented here demonstrate that using the sim-

ulated null distribution as a reference distribution and basing inferences on estimated rather

than asymptotically derived critical values ameliorates the problems posed by the Wald test’s

lack of invariance to alternative parameterizations of the common factor hypothesis.18 Since the

bootstrap critical values account for differences in the convergence rates of the Wald statistics,

this modification constitutes a superior alternative that facilitates the empirical assessment of

the common factor restriction in spatial regression models. Alternatively, the LR test constitutes

another option that is invariant to such reparameterizations (Godfrey and Veall 1998).19 Hence,

irrespective of the empirical model search strategy employed, researchers should utilize the

modified Wald test based on the simulated null distribution or the LR test in order to empirically

evaluate the appropriateness of the spatial model employed.

5 Empirical Example: Spatial Contagion Effects in Economic Voting
An empirical example helps to demonstrate the consequences of the problem for applied research

aiming to evaluate the empirical evidence for a theorized mechanismwhile ruling out alternative

mechanisms. To this end, I reanalyze a study conducted by Williams and Whitten (2015) that

investigates spatial contagion effects, understood as the process by which “[. . .] a policy success

or failure of one political party in the eyes of voters similarly affects those parties that are ideo-

logically proximate” (Williams andWhitten 2015, 312). The utilization of different sample sizes and

the availability of a plausible alternative mechanism make this study an ideal case to investigate

the consequences of the Wald test’s lack of invariance to reformulations of the common factor

hypothesis.

Williams and Whitten (2015) argue that the electorate not only rewards or punishes the parties

forming the current government for the country’s economic performance at the ballot box as

predictedby theeconomic votinghypothesis. Sincevoters grouppartiesbasedon their ideological

stances, the effect of economic prosperity also spills over to ideologically proximate parties

irrespective of whether or not these parties also belong to the government. These indirect effects

conjectured by the authors link the economic wellbeing of a country to the electoral performance

of oppositionparties. Therefore, the study contributes to the literatureonelectoral competitionby

combining insights from the hitherto separated literatures on economic voting and spatial party

competition.

To assess the empirical support for the proposed mechanism, Williams and Whitten (2015,

315–16) analyze data on electoral contests in 23 parliamentary democracies from 1951 to 2005,

where the parties constitute the unit of analysis. The change in a party’s vote share between

18 The application of bootstrap critical values can also improve the Wald test’s power as Supplementary Material C.6 shows.
19 Supplementary Material C.7 verifies the good performance of the LR test in the Monte Carlo simulations conducted here.
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two consecutive elections is the dependent variable and the country’s economic performance,

measured by the real GDP per capita growth, is themain regressor of interest.20 In their study, the

authors emphasize the importance of spatial regression models which facilitate the estimation

of the theoretically expected contagion effects in the form of spatial spillovers. They choose

the SAR model specification in order to quantify (global) spillover effects (Williams and Whitten

2015, 313–14). In line with the economic voting literature suggesting that the voters’ ability to

clearly attribute the responsibility for the economic (mis)fortune is a necessary precondition for

economic voting to occur, they estimate separate SAR models for elections with high (n = 398)

and low levels of clarity (n = 1,030). While economic voting itself should be less pronounced

in elections characterized by a low clarity of responsibility because it is harder for voters to

hold a party accountable for the country’s economic performance, the authors expect to find

larger spatial contagion effects in this context. The argument proposed in the study is that in low

clarity settings, the electorate is more experienced in switching their support from one party to

an ideologically similar party. Therefore, the voters’ sophistication in terms of reallocating their

support creates stronger interdependencies between parties in low clarity elections as compared

tohigh clarity settingswhere voters caneasily identify thepartywho is responsible for thenational

state of the economy (Williams and Whitten 2015, 312–13).

Given these theoretical expectations, the SAR model constitutes an appropriate choice as

it links the electoral fortune of a party to the performance of the other parties and allows to

distinguish between direct and indirect effects of economic prosperity on the parties’ vote shares.

Yet, while unfocused diagnostics, like Moran’s I, indicate the existence of spatial interdepen-

dencies, it is possible that an alternative spatial process caused the clustering detected in the

data.21 Unmodeled election specific particularities, for example, that are unrelated to a country’s

economic performance—like the general appeal of a candidate or political scandals—might affect

the election outcome of ideologically proximate parties as well. Since these factors are not part

of the regression’s systematic part, they potentially cause spatial clustering in the residuals.

Insteadof substantivelymeaningful contagioneffects, thisplausiblealternativeprocess impliesno

indirect effectof economicperformancebutamerediffusionof shockswhichwouldbeadequately

captured by the SEM model. Consequently, there is a risk that the SAR models specified by the

authors lead to incorrect inferences regarding the existence of contagion effects.

To demonstrate the substantive differences between the two alternative spatial processes,

Figure 2 displays the estimated direct and indirect effects of the main regressor of interest—

economic performance—on the vote share of opposition parties derived from the SAR, SEM,

and SDM model.22 As the theory suggests, spatial contagion effects should mitigate the negative

effect of a strong economy for opposition parties. This is because the beneficial effect of positive

economic conditions for governing parties spills over to ideologically neighboring opposition

parties. In contrast, if merely the errors are spatially correlated, no contagion takes place and only

a direct negative effect of a country’s economic performance exists for opposition parties.

Despite a significant spatial parameter estimate, Figure 2 illustrates that the alternative spatial

models suggest no indirect spillover effect of economic growth in low clarity elections.23 In high

clarity elections, only the SAR model identifies significant spillover effects. While the SEM model

assumesnospillovers, theaverage indirect impactof economicgrowthon thechange invote share

20 Williams and Whitten (2015) present a more detailed discussion on the dataset as well as a comprehensive derivation of
their theoretical expectations regarding spatial contagion effects.

21 Table 1 in the study byWilliams andWhitten (2015), 316) reports the Moran’s I and Geary’s C tests of spatial interdependen-
cies which both indicate spatial autocorrelation. Note that, while this table also reports results of a Wald test, this is not
the Wald test of common factors but rather a test of the null hypothesis of no spatial dependence (see Section 3.2).

22 While Table 2 in the original work only contains the prespatial marginal effects, the estimates presented here explicitly
disentangle direct and indirect (or contagion) effects.

23 This highlights the necessity to base substantive inferences on impact rather than coefficient estimates. Elhorst (2010) and
LeSage and Pace (2009) provide a more detailed discussion on this important issue.
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Figure 2. Average direct and indirect impact estimates of economic performance in low- and high-clarity
elections.

for opposition parties as estimated by the SAR model is 0.020 with a simulated 95% confidence

interval within [0.004;0.045].24 In contrast, the estimate derived from the SDM specification is

0.025 [−0.208;0.244], suggesting no significant spillovers. Besides the SDM model’s remarkable
efficiency loss, this example illustrates that the identification of the theorized contagion effects

is contingent on the specification of the underlying spatial process. Although the SAR and SEM

models produce similar and statistically indistinguishable total impact estimates of economic

performance in high clarity elections, the results have very different theoretical implications.25

Notably, the overall impact of economic growth on an opposition party’s vote share in the SEM

model solely consists of the direct impact of xi on yi . In contrast, the SAR model also identi-

fies significant indirect impacts. Therefore, while the SAR model supports the theory of spatial

contagion effects, there are no substantive spillover effects in the SEM model which highlights

the importance of adequately distinguishing between these alternative processes for substantive

inferences.

In order to address the problem of model misspecification and to empirically distinguish

the two plausible spatial processes, I implement the Wald test of common factors by using the

SDM model estimates and the four specifications of the common factor restriction outlined in

Table 1. If the data supports the theory of indirect contagion effects, the tests should reject the

null hypothesis. Yet, Table 4 illustrates that in both high and low clarity contexts, the alternative

Wald tests not only differ in their test statistics. Based on the asymptotic critical values, they also

come to substantively different conclusions regarding the existence of the spillover effects. While

H0(IV ) supports the theory proposed by Williams and Whitten (2015), the other three alternative

versions of the Wald test fail to reject the common factor hypothesis. Instead of substantively

meaningful spillovers, these tests only indicate residual dependencewhich implies that no spatial

contagion takes place among the parties. Given the rather large number of observations in the

lowclarity scenario, thesedifferences becomeevenmore alarming. Alternatively,when inferences

regarding the underlying spatial process are based on the simulated null distribution of each

parameterization of the common factor restriction, all four variants of the Wald test fail to reject

the null hypothesis at conventional significance levels.

Taken together, this empirical case study confirms the Monte Carlo evidence by demonstrating

that relying on bootstrap critical values in order to identify statistically significant deviations from

24 In order to appropriately account for sampling uncertainty, I use the point estimates and the variance-covariancematrices
obtained from the different spatial models to set up multivariate normal distributions from which I sample 1,000 sets of
coefficients.

25 The SARmodel’s ATI estimate in high clarity elections is−0.237[−0.410;−0.056] while the ATI derived from the SEMmodel
is −0.254[−0.448;−0.075].
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Table 4. Wald tests of common factors for the analysis of spatial contagion effects.

High clarity Low clarity

w pasym χ2
boot

pboot w pasym χ2
boot

pboot

H0(I ) 18.02 0.39 38.15 0.41 19.81 0.41 29.43 0.42

H0(I I ) 8.20 0.96 12.72 0.27 15.60 0.68 22.92 0.36

H0(I I I ) 9.19 0.93 20.40 0.51 12.73 0.85 19.30 0.35

H0(IV ) 1,596.76 0.00 11,276.70 0.36 465.51 0.00 1,323.40 0.58

n 398 1,030

df 17 19

χ2
asym 27.59 30.14

w is the observedWald statistic. pasym and pboot denote p values based on asymptotic critical valuesχ
2
asym

and on bootstrap critical valuesχ2
boot

respectively. While each restriction has an individual simulated critical
value, they share a single asymptotic critical value which depends on the α -level and the number of degrees
of freedom.

the Wald statistic’s null distribution improves its finite sample performance and alleviates the

conflict between alternative parameterizations of the nonlinear common factor hypothesis. While

the tests based on the asymptotic χ2 distribution come to contradictory conclusions even with

a sample size of more than 1,000 observations, the bootstrap procedure is able to correct for

this undesirable circumstance. Regarding the theorizedmechanism, this analysis finds insufficient

evidence to convincingly dispel doubts that, instead of the theorized spatial contagion effects,

correlation in the residuals caused the spatial clustering found in the data.

6 Conclusion
Distinguishing substantivelymeaningful indirect spillover effects fromamere diffusion of random

shocks is essential as there is a serious risk of making incorrect inferences when estimating a

misspecified model. Yet, the task of appropriately modeling the process underlying observable

patterns of interrelatedness between the units poses notable difficulties for political scientists.

Although many empirical specification search procedures rely on the Wald test to assess the

nonlinear common factor restriction, the test’s lack of invariance to algebraically equivalent

formulations of the null hypothesis poses a serious problem for the accuracy of inferences.

This study investigates the consequences of the Wald test’s sensitivity to alternative and

algebraically equivalent expressions of the common factor hypothesis for its ability to guide the

empirical model specification search. By presenting analytical evidence and using Monte Carlo

simulations as well as an empirical example, it shows that the necessity to approximate the

sampling variability of a nonlinear function by a Taylor series expansion causes the Wald test’s

sensitivity to algebraically equivalent reparameterizations of the null hypothesis. While asymp-

totically valid, this approximation produces considerable differences in finite samples, depending

on the restriction’s functional representation. Inmany instances, alternative null hypotheses even

suggest contradictory conclusions regarding the underlying spatial process since they converge to

the Wald statistic’s asymptotic χ2 distribution at different rates. Given that there is no theoretical

justification foranyparticular expressionandsince theirperformance is contingenton the relevant

region of the parameter space, the results caution against relying on the Wald test’s asymptotic

results in any specification search strategy. Instead, practitioners should either base inferences on

a simulated null distribution by estimating bootstrap critical values or turn to the LR test which is

invariant to such reparameterizations in order to avoid spurious inferences.
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Subsequent research might continue this line of research by developing more reliable strate-

gies that help practitioners to differentiate between substantive and residual dependence. AsMur

and Angulo (2009) show, the evidence in favor of any search strategy proposed in the literature

is mixed which explains the debate about the most appropriate strategy and prevents the devel-

opment of general guidelines for the empirical identification of the correct model specification

(Rüttenauer 2019, 16). In this regard, Lacombe and LeSage (2015), for example, demonstrate

that Bayesian methods constitute a promising alternative to the frequentist null hypothesis

significance testing approach. Additionally, multimodel inference might help overcoming the

current fixation onmodel selection and instead allows researchers to focus on the identification of

substantively meaningful spillover effects in the data (see also Juhl 2020b). Especially regarding

the considerable difficulties researchers facewhen attempting to empirically distinguish between

different spatial processes (e.g., Gibbons and Overman 2012), following this line of investigation

will enhance model building and contribute to our understanding of different interaction effects

among the units of analysis.

Spatial autocorrelation poses notable challenges for the correct specification and interpreta-

tion of statistical models as model misspecification can bias the substantive inferences. Notwith-

standing these difficulties, interdependencies are paramount in social science theories which

obliges researchers to carefully consider the process generating these dependencies when build-

ing empiricalmodels in order tomake valid inferenceswith respect to the theories. Consequently,

especially in the absence of design-based identification strategies as proposed by Gibbons and

Overman (2012),methodological research facilitating theappropriate specificationof spatialmod-

els constitutes an important contribution for a thorough assessment of theoretical expectations.
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