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Maximal sum-free sets in finite
abelian groups

H.P. Yap

Maximal sum-free sets in elementary abelian 3-groups and groups

G = Z3 6)23 ® %p where p 1is a prime congruent to 1 modulo

3 are completely characterized.

Let G be an additive group., If S and T are non-empty subsets
of G , we write S * T for {stt; s € S, t € T} respectively, |S| for
the cardinality of S and S for the complement of S in G . We say
that S is sum-free in ¢ if S and S + S5 have no common element and
that S 1is maximal sum-free in G if S is sum-free in (G and
|8] = |7| for every T sum-free in G . We denote by A(G) the

cardinality of a maximal sum~free set in G .

The numbers A(G) for abelian groups G were determined except when
évery prime divisor of IGI is congruent to 1 modulo 3 . In this

exceptional case,
|G| (m=-1)/3m < A(G) = (|6|-1)/3
vhere m 1is the exponent of G [!]. If G is an elementary abelian
7 _ _ n~1
p-group of order p , where p = 3k + 1 , then A(G) = kp £33.

The structure of maximal sum-free sets in the following groups were

completely characterized:

(i) G is an abelian group such that [G| has a prime divisor
congruent to 2 modulo 3 [, 51;
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(ii) G = Zp wvhere p 1is a prime congruent to 1 modulo 3
L6, 31;

(iii) G (abelian and non-abelian) is of order 3p , where p is a
prime congruent to 1 modulo 3 [7];

(iv) G is an elementary abelian p-group where p = 3k + 1 [4];

(v) 1in a recent letter to A.H. Rhemtul la, Anne Penfold Streeft
mentioned that she is able to characterize maximal sum-free

sets completely in G = sz wvhere p 1is a prime congruent to
1l modulo 3 .

In this note, we shall completely characterize maximal sum-free sets

in the following groups:
(i) G 1is an elementary abelian 3-group;
(ii) G = Z3 ® Z3 ® Zp where p is a prime congruent to 1 modulo
3.

We shall apply Theorem Y4 of [1] and Theorem 1 of [7], which are

restated respectively as Theorems 1 and 2 here, to prove Theorems 3 and k.

THEOREM 1. Let G be a finite abelian group. Suppose |G| has no
prime factor congruent to 2 modulo 3 but has 3 as a factor. If S
18 a maximal sun-free set in G , then S 18 a union of cosets of a
subgroup H , of order |G|/3m (3ml|G|) » of G , such that one of the
following holds:

(i) |s+s| = 2|s| - |H] ,

(ii) |5+S| = 2|S| and S u (5+S) =G .

THEOREM 2. Let S be a maximal sum-free set in G = ZBp such that

S is not a coset of H, H=1{0, 3,6, ..., 3(p-1)} ; then there exists
an automorphism © of G for which S = S'0 where
s' = {p, p*¥1, ..., 2p-1} .

THEOREM 3. Let G be an elementary abelian 3-group. If S is a

maximal sum-free set in G , then S 1is a coset of a subgroup H , of
order |G|/3 , of G .
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THEOREM 4. Let S be a maximal swn-free set in G = Z3 @ Z3 ® Zp .
Then either S 1s a union of cosets of Zp and S/Zp is a maximal
sun-free set in G/Zp or there exists an automorphism ¢ of G such

that S = 5'¢ where S' <is a union of cosets of a subgroup K , of order

3, 0f G for which S'/K is a maximal swn-free set in G/K .

Theorem 4 together with Theorems 2 and 3 completely characterize

maximal sum-free sets in G = Z3 @® Z3 G)Zp .

Proof of Theorem 3. Let |G| = T, nz2.

If £ €S ,then z=2c¢S. Thus -SnS=p. Also
Sn(S-8) =p and -5 n (S-S) = ¢ imply that
ls-s] = 3" - 23" = 3 | Buy |5-5| 2 |5] = 3"Y . Hence
|5-5] = 3"1

By Kneser's Theorem [2, Theorem 1.5}, there exists a subgroup H of
G such that
S-S5+H=5-5 and |5-5] = |s+H| + |-5+H| - |H| .
It is clear that H 1is a proper subgroup of G .

.fﬂ , m=22m=0 . Then

Suppose that |H|

|s-s| = 2|s] - |4]| > 3™ 1 yhich is impossible. Conmsequently, S is a

coset of a subgroup H , of order 3% ,of G.

Proof of Theorem 4. Let H = Ho be a subgroup, of order 3p , of
G . Let x;, x € G be such that x; +xp =0, 2r; = xy and

G = Ho v H) v Hy , where Hi =zt H .

et . =0, x.+S.=SnH,, ©2=0,1, 2 . (This method is
° i i 1
due to Rhemtulla and Street [3].)

If S 1is a coset of H , then there is nothing to prove. We assume

that S # H; and S5) # § . We know that {Sol < p and we assume that
Is1| = |s2] -

Case 1. Suppose that O < |Sol <p .
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We first consider the case that ISOI >0, |S] <p . From
(51-5,) n S, =9 and (5-51) uS CH , ve have 3p = lsol + |5,-51]

By Kneser's Theorem, there exists a subgroup X of (G such that
S) -8 +K=25 -85 and |5-51| = |5,+K]| + |-S1+k| - || .

It is clear that K 1is a proper subgroup of H# .

If |K|=pj, J =0 or 1, then

3p z [s,| + |s1] + [51+k] - |&]
2 15, + Isil + B[ - 7 (Isi] = pwo > p)
P
where (x] denotes the smallest positive integer = x . Thus

3p 2 |5 | + [S1] +p > IS | + |s1] + |S2] = 3p
which is impossible.

If |X| =3, then

3z s, + 2[‘2‘3‘3]3 -3 (v = 2p-15,1-[521)
= |5, + 2(k+(2+1))3 - 3 {p = 3k+1, 3t < v+l = 3(z+1))
= 6p - ISOI —2[52' -3

v

6p - 3(p-1) - 3=3p .
Hence equality holds good for each of all the above steps. We then have

ISOI=P‘1=|521, 'Sl|=p+2’

Sl, SO = Sl-Sl s Sz = Sl+Sl

are unions of cosets of X in H . Applying Vosper's Theorem [Z, Theorem

1.3] to S3/K + S)/K in H/K , we can prove that S, = S;+S5) .
Suppose that Sy = U(a+k) , 5 = U(B+K) , S, = U[y+X) »

o, Bi’ Y; € H . Then

S = [Uai U (x1+UBi) U Lr2+UYi)] + K

https://doi.org/10.1017/50004972700046499 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700046499

Maximal sum-free sets 221

which is what we intend to prove.

For either the case |So[ 0 and O < |52| < p or the case

|S2] 2 p , using (5)+51) n Sy =@ , (51+51) U S, € # and applying
arguments similar to that given above, we will get a contradiction.

Case 2. When |So| =p, 5, is a maximal sum-free set in # . Ve
now write H = {0, 1, 2, ..., 3p-1} .

If So is a coset of H' = {0, 3, 6, ..., 3(p-1)} , then since

[S1] = |S3| , we have |Sy| zp . If |S5;] >p , then |so+51| > 2p

which contradicts (So+51] nS =@ . Hence |[S5] = p= ISZ| .

By simple arguments, using (So+51] nS; =¢ , we can show that 35
is a coset of H' . Similarly, S, 1is also & coset of H' .

Let Si = o+ ;L o €H, ©2=0,1, 2 . Then

S

(ao+H’) U (21+0+H") U (xo+a+H")

((Xo 8] (:c1+a1) V] (x2+0L2)) + H' N
which shows that S is a union of cosets of Zp and S/Zp is sum-free
in G/Z_ .
p
If SO is not a coset of H' , then by Theorem 2, So is isomorphic

to {p, p*1, ..., 2p-1} under the automorphism 6§ of H given in [7].
We now extend 6 to an automorphism ¢ of G by means of the following

mapping:
For each x € H , we define
Lri+x]¢ =z, + x6 , 1 =0,1, 2.
Thus, up to isomorphism, we can write

5, = p, pt1, ..o, 2p-1} .

Now, if |51| > p , then applying Kneser's Theorem to §; ~ §; in

H , we will get a contradiction. Hence |31| = |52| =p.
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, 8}, 0=<s <sg, 6 <...<s =3p-1.

Let Sl = {sl, S +e . N 2 s

We first consider the case that sp -5 >p-1.

Suppose that si+l - Si <p for every 7 =1, 2, ..., p=1 ; then

from S§) € SO+SI , we will get a contradiction. Otherwise, for at most

one 7 =1,2, ..., p-1, §:44 — 8; > P , and again from 5y ¢ SO+51 s

we get another contradiction.

We now consider the case that sp -8 =p- 1l . We have
51 = {o, o+1, ..., o#p-1}
, 0=a=8.
Sy = {B, B+l, ..., B+p-1}

We can prove that a+ B8 =2p or a+B=2p +1.
The case that o + 8 = 2p + 1 cannot occur.

The case that o + 8

2p will yield =0 or a=p .
The final results are

(i) 85 =8 = 5, eand

(ii) s, = {o, 1, ..., p-1}, S, = {2p, 2p+1, ..., 3p-1} .
The first case shows that &§/Z3 1is a maximal sum-free set in G/Z23

In the second case, if we write H = {0, 1, ..., 3p-1} as
{(o, 0, 0), (0, 0, 1), ..., (0, 2, p~1)} and take x; = (1, 0, O0) ,
xy = (2, 0, 0) , then S = {(0, 1, 0), (1, 0, 0), (2, 2, 0)} + K ,
k = {(o, 0, 0), (0, 0, 1), ..., (0, 0, p-1)} .

The proof of Theorem 4 is now complete.
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