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Maximal sum-free sets in finite
abelian groups

H. P. Yap

Maximal sum-free sets in elementary abelian 3-groups and groups

G = Z © Z © Z where p is a prime congruent to 1 modulo

3 are completely characterized.

Let G be an additive group. If S and T are non-empty subsets

of G , we write S ± T for {s±t; s (. S, t € T} respectively, |s| for

the cardinality of 5 and S for the complement of S in G . We say

that S is sum-free in G if 5 and S + S have no common element and

that 5 is maximal sum-free in G if S is sum-free in G and

\S\ > 12*1 for every T sum-free in G . We denote by X(G) the

cardinality of a maximal sum-free set in G .

The numbers X(G) for abelian groups G were determined except when

every prime divisor of \G\ is congruent to 1 modulo 3 • In this

exceptional case,

\G\(m-l)/3m 5 X(G) £ (|c|-l)/3

where m is the exponent of G [J]. If G is an elementary abelian

p-group of order pn , where p = 3k + 1 , then X(G) = kpn~1 [3].

The structure of maximal sum-free sets in the following groups were

completely characterized:

(i) G is an abelian group such that \G\ has a prime divisor

congruent to 2 modulo 3 LI, 5];
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(ii) G = Z where p is a prime congruent to 1 modulo 3

(iii) C (abelian and non-abelian) is of order 3p , where p is a

prime congruent to 1 modulo 3 [ 7];

(iv) G is an elementary abelian p-group where p = 3k + 1 [4];

(v) in a recent letter to A.H. Rhemtulla, Anne Penfold Street

mentioned that she is able to characterize maximal sum-free

sets completely in G = Z 2 where p is a prime congruent to

1 modulo 3 .

In this note, we shall completely characterize maximal sum-free sets

in the following groups:

(i) G is an elementary abelian 3-group;

(ii) G = Z © Z © Z where p is a prime congruent to 1 modulo

3 .

We shall apply Theorem h of [7] and Theorem 1 of [7], which are

restated respectively as Theorems 1 and 2 here, to prove Theorems 3 and 1*.

THEOREM 1. Let G be a finite abelian group. Suppose \G\ has no

prime factor congruent to 2 modulo 3 but has 3 as a factor. If S

is a maximal sum-free set in G , then S is a union of cosets of a

subgroup H , of order \G\/3m [3m \G\) , of G , such that one of the

following holds:

(i) \S+S\ = 2|S| - \H\ ,

(ii) |5+5| = 2\S\ and S u {S+S) = G .

THEOREM 2. Let S be a maximal sum-free set in G - Z such that

S is not a coset of H , H = {0, 3, 6, ..., 3(p-l)} ; then there exists

an automorphism 6 of G for which S = S'Q where

S1 = {p, p+1, ..., 2p-l} .

THEOREM 3. Let G be an elementary abelian 3-group. If S is a

maximal sum-free set in G , then S is a coset of a subgroup H , of

order |c|/3 , of G .
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THEOREM 4. Let S be a maximal sum-free set in G = Z © Z © Z .

Then either S is a union of cosets of Z and S/Z is a maximal

sum-free set in G/Z or there exists an automorphism § of G such

that S = S'4> where S' is a union of cosets of a subgroup K , of order

3 , of G for which S'/K is a maximal sum-free set in G/K .

Theorem k together with Theorems 2 and 3 completely characterize

maximal sum-free sets in G = Z © Z © Z

Proof of Theorem 3. Let |G| = 3* , n > 2 .

If x i S , then -x = 2x { S . Thus -5 n S = </> . Also

5 n (S-S) = Ifl and -5 n (S-5) = |i) imply that

\S-S\ < 3" - 2-3n~X = 3""1 . But \S-S\ > \S\ = 3*"1 . Hence

15-51 = 3"-1 .

By Kneser's Theorem [2, Theorem 1.5], there exists a subgroup H of

G such that

S-S+H=S-S and \S-S\ 2 \S+H\ + \-S+H\ - \H\ .

It is clear that H is a proper subgroup of G .

Suppose that |fl| = .3W , n-2 2 m > 0 . Then

|S-5| i 2|S| - \ti\ > 3n-1 which is impossible. Consequently, S is a

coset of a subgroup H , of order 3 , of G .

Proof of Theorem 4. Let H = H be a subgroup, of order 3p , of

G . Let x\, Xi i. G be such that x\ + xi = 0 , 2xi = xi and

G = HQ v Hi u #2 . where H^ = xi + H .

Let a; = 0 , x. + 5. = S n fl. , i = 0 , l , 2 . (This method is
o t % v

due to Rhemtulla and Street [3].)

If 5 is a coset of H , then there is nothing to prove. We assume

that S ^ Hi and Si t 0 . We know that \S \ £ p and we assume that

Case 1. Suppose that 0 5 \S \ < p .
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We first consider the case that \S | > 0 , |S2|
 < P • From

Sx) n SQ = 0 and (Sl-S1) u SQ c H , we have 3p 2 |5Q| + ISx-S^

By Kneser's Theorem, there exists a subgroup K of G such that

Si + K = Sj - S r and |SI-S'1 | > I-S^l + |-5j+A:| - \K\ .

It is clear that K is a proper subgroup of H .

If \K\ = p3 , j = 0 or 1 , then

3p = \SQSQ\

\Si p+v P° - v3 {\S\\ = p+y >

where (x] denotes the smallest positive integer > x . Thus

3p £ |SQ| + \Si\ + p > |5Q| + \Si\ + |S2| = 3p

which is impossible.

If |#| = 3 , then

- 3 (y = 2p-|50|

= \SQ\ + 2(&+(t+l))3 - 3 (p = 3fe+l, 3* < v+1 < 3(t+l)j

2 6p - |5Q| - 2|52| - 3

Z 6p - 3(p-l) - 3 = 3p •

Hence equality holds good for each of all the above steps. We then have

\SQ\ = p - 1 = \S2\ , \Si\ = p + 2 ,

and

are unions of cosets of K in H . Applying Vosper's Theorem [2, Theorem

1.3] to Si/K + Si/K in H/K , we can prove that 5 2 =

Suppose that S = u[a.+k) , S = ui&.+K) , So = u[y.+K)

a., 3., Y- € ff • Then

https://doi.org/10.1017/S0004972700046499 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046499


Maximal sum-free sets 221

which is what we intend to prove.

For either the case |S | = 0 and 0 < |S2|
 < P o r t a e case

|S2| i p , using (.Si+Si) n S2 = 0 , {Si+Si ) u 5 2 c S and applying

arguments similar to that given above, we will get a contradiction.

Case 2. When \S \ = p , S is a maximal sum-free set in H . We

now write H = {0, 1, 2, ..., 3p-l} .

If SQ is a coset of H' = {0, 3, 6, ..., 3(p-l)> , then since

IS1! | > |S2| > we have \SX | 2 p . If |^x | > p , then |SQ+5! | > 2p

which contradicts (5 +Si] n 5j = 0 . Hence |Sj| = p = |S2| •

By simple arguments, using (S +Sj) n Si = |) , we can show that Si

is a coset of H' . Similarly, 52 is also a coset of H' .

Let S. = a. + H' , a. € H , i = 0, 1, 2 . Then

S = (ao+fl'j u (xx+ai+ff
1) u (

= (aQ u (*i+a!) u (0:2+02))
 + H' »

which shows that S is a union of cosets of Z and S/Z is sum-free

P P
in ff/Z .

P

If S is not a coset of H' , then by Theorem 2, S is isomorphic

to {p, p+1, ..., 2p-l} under the automorphism 9 of H given in [7].

We now extend 6 to an automorphism § of G by means of the following

mapping:

For each x £ H , we define

(x.+x)(j> = x . + x 6 , i = 0 , l , 2 .

Thus, up to isomorphism, we can write

Now, if \SiI > p , then applying Kneser's Theorem to Si - Si in

H , we will get a contradiction. Hence |Si| = |S2| = p .
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Let S = {s1, s2, ..., s } , 0 5 s± < Sg < ... < s £ 3p-l .

We first consider the case that s - s1 > p - 1 .

Suppose that s. - s. Sp for every i = 1, 2, ..., p-1 ; then

from Si c S +5j , we wi l l get a contradiction. Otherwise, for at most

one i = 1, 2, . . . , p-1 , s . 1 - S. > p , and again from Si c S +5j ,

we get another contradict ion.

We now consider the case that s - s = p - 1 . We have

5! = {a, o+l, . . . , a+p-l}
, 0 5 a £ 6 .

5 2 = {£, 6+1, . . . , 6+p-l)

We can prove that a + B = 2 p or a + 6 = 2p + 1 .

The case that a + 3 = 2p + 1 cannot occur.

The case that a + 0 = 2p will yield a = 0 or a = p .

The final results are

(i) S2 = Si = 5 and

(ii) 5: = {0, 1, ..., p-1} , S2 = {2p, 2p+l, ..., 3p-l} .

The first case shows that S/Z3 is a maximal sum-free set in C/Z3

In the second case, if we write H = {0, 1, ..., 3p-l) as

{(0, 0, 0), (0, 0, 1), ..., (0, 2, p-1)} and take xx = (l, 0, 0) ,

x2 = (2, 0, 0) , then 5 = {(0, 1, 0), (l, 0, 0), (2, 2, 0)} + K ,

K = {(0, 0, 0), (0, 0, 1), ..., (0, 0, p-1)} .

The proof of Theorem k is now complete.
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