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Let
) f(@) =z+a2%+ -+,

be regular in the unit disc E = {z||z| < 1}. G. Szegé [5] and Y. Miki {3] proved
that if f(z), given by (1), is univalent (starlike with respect to the origin; convex;
close-to-convex in E) then any one of the partial sums

(2) sfz) =z+Y a2, n=23--,
k=2

is also univalent (starlike with respect to the origin; convex; close-to-convex) in
|z| < % and that the constant + cannot be replaced by a larger one.

MacGregor in [2] considered the class R of functions of the form (1) that are
regular in E and satisfy the condition that for z in E, Re f'(z) > 0. It follows from
the Noshiro-Warschawski theorem [4; 6] that functions of the class R are univa-
lent in E. MacGregor showed that each partial sum of the form (2) of functions
of the class R is univalent in |z} < % and that each function of the class R maps
lz| < ({/2—1) onto a convex domain; and the numbers 4 and (/2—1) are the
best possible ones. In the present short note we consider the radius of convexity
of partial sums of functions belonging to the class R. We establish:

THEOREM. If f(z) = z+Y ;- ,a,z* € R, then any one of the partial sums
n
si(z) = z+ Y a 25, n=23" "
k=2
is convex in |z| < %. The number % cannot be replaced by a greater one.

We shall make use of the following estimates in the proof of the theorem.
If f(z) = z+ Y 2%, @ 2" € R, then

(3) lakl é ’ k = 2? 3) Y s [2]

&N
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4 lf(Z)I;:—, lzl=r, O0=r<t1 ;[2]
147
zf"'(z) 2r
(5) ! ) — {1, Lemma 3.17.
ProoF. Let
f(z) = s5,(2) +0,(2).
where

0,(z) = i a, 2.

k=n+1

Making use of estimate (3), we see that

(6) oyl <2 Y At
k=n+1 1—r
® 2nr" 2yt
7 ze)(z)] £ 2 k-1t = ¢ =
0 70w ()l < k=;+1( ) (1=r) (1-r?

Now we have

22 _ 2 () =0, (2);

14z

S (z) f'(z2)—al(z)
zf"(z) y
., 0.(2)—z20,(2)
ﬂ+d@+“u
f'(z) f'(z)—0u(2)

It is well-known that s,(z) will be convex if Re [1+{zs,’(z)/s,(z)}] > 0. Making
use of estimates (4), (5), (6) and (7) we conclude that Re [1 + {z%,/(z)/ %(z)}]1> 0

provided
2r 2r" nr' il
(255 2 s ]
1~ 2r L\ =r/1~r I-r (1-7) S0
1—7? 1—r 21" ’
1+r 1—r
or
2r" 2 2
® T _(m{3r+r +n(1—r°)} .
1-r* 1—r 2r"
1:7_1—;«

If we take r = I, then on the left-hand side of (8) we obtain
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2 (13+15n)
T%_4"'1 45

. 2

S 3xgnt

which is greater than zero for n = 3. Therefore, we conclude that

©) Re {1+ %} >0 (n23)

for |z| = 4. From the maximum principle for harmonic functions it then follows
that (9) holds for |z} < 4. Next we consider the case n = 2. We have

SZ(Z) = Z+a222,

and hence
285 (2) - 2a,z
53(2) 142a,z
Thus
Re {1_’_ ZS:'I(Z)} 2 1_ 2|a2”ZI
53(2) 1—2|a,||z|
> A
1-2|z|

We therefore see that Re[l+{zs5'(z)/s3(z)}] > O provided |z| < }.
To show that the constant 4 cannot be replaced by a larger one, we consider
the function fj,(z) defined as

fo(z) = 2log (1 +2)~z,

which belongs to R. If we denote by s, o(z) the sum of the first 2 terms of the ex-
pansion of fy(z), we find that

zs50(z) _ 1—4z

1+ = .
83.0(2) 1-2z

which shows that Re [1+{zs3 o(z)/s5 0(z)}]1 =0 when z =4. This completes
the proof of the theorem.
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