
Research Directions:
Cyber-Physical Systems

www.cambridge.org/cbp

Results

Cite this article: Li R, Qin T, Yang P, Huang C-C,
Sun Y, and Zhang L (2025). QUANTIVA:
quantitative verification of autonomous
driving. Research Directions: Cyber-Physical
Systems. 3, e1, 1–15. https://doi.org/10.1017/
cbp.2024.7

Received: 21 May 2024
Revised: 18 September 2024
Accepted: 4 November 2024

Keywords:
Autonomous driving; verification; AI safety

Corresponding author:
Cheng-Chao Huang;
Email: chengchao@njis.ac.cn

© The Author(s), 2024. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution-NonCommercial licence
(https://creativecommons.org/licenses/by-nc/
4.0/), which permits non-commercial re-use,
distribution, and reproduction in any medium,
provided the original article is properly cited.
The written permission of Cambridge
University Press must be obtained prior to any
commercial use.

QUANTIVA: quantitative verification of
autonomous driving

Renjue Li1,2, Tianhang Qin1,2, Pengfei Yang1,2, Cheng-Chao Huang3 ,

Youcheng Sun4 and Lijun Zhang1,2

1SKLCS, Institute of Software, CAS, Beijing, China; 2University of Chinese Academy of Sciences, Beijing, China;
3Nanjing Institute of Software Technology, CAS, Nanjing, China and 4The University of Manchester, Manchester, UK

Abstract

We present a practical verificationmethod for safety analysis of the autonomous driving system
(ADS). Themain idea is to build a surrogatemodel that quantitatively depicts the behavior of an
ADS in the specified traffic scenario. The safety properties proved in the resulting surrogate
model apply to the original ADSwith a probabilistic guarantee. Given the complexity of a traffic
scenario in autonomous driving, our approach further partitions the parameter space of a traffic
scenario for the ADS into safe sub-spaces with varying levels of guarantees and unsafe sub-
spaces with confirmed counter-examples. Innovatively, the partitioning is based on a branching
algorithm that features explainable AI methods. We demonstrate the utility of the proposed
approach by evaluating safety properties on the state-of-the-art ADS Interfuser, with a variety of
simulated traffic scenarios, and we show that our approach and existing ADS testing work
complement each other. We certify five safe scenarios from the verification results and find out
three sneaky behavior discrepancies in Interfuser which can hardly be detected by safety testing
approaches.

Introduction

Autonomous driving systems (ADS) are anticipated to revolutionize road traffic by enhancing
efficiency and safety. However, ensuring the safety of such AI-enabled systems is a critical
challenge. An ADS relies on a variety of sensors, algorithms and hardware components that
must work together to ensure safe and efficient driving. However, each of these components can
fail or malfunction, leading to incorrect or unexpected behaviors. Additionally, environmental
factors such as weather, traffic and road conditions can also affect the performance of the
system. Another challenge in the reliability of autonomous driving is ensuring that the system
can handle corner cases. Corner cases refer to rare scenarios that the system may encounter but
are crucial for its safety, such as unexpected behavior by other drivers, pedestrian crossings, or
sudden changes in road conditions. Ensuring that the system can handle these scenarios requires
a rigorous testing process that covers a wide range of possible scenarios and corner cases.

ADS evaluation

The ADS evaluation encompasses both component-level and system-level assessments, using
various metrics to gauge the performance and behavior of the system or its components and
determine whether they meet the specified design requirements. Common component-level
metrics include accuracy, precision, recall and Intersection over Union, while system-level metrics
often focus on passenger experience, robustness and system latency. Public datasets are essential to
ADS evaluation, with widely used datasets like nuScenes (Caesar et al. 2020), KITTI (Geiger, Lenz,
andUrtasun 2012), CityScapes (Cordts et al. 2016) and ApolloScape (Huang et al. 2018) serving as
valuable benchmarks. Although real-world datasets can address some evaluation needs, certain
metrics – such as system latency and passenger experience – necessitate real-world road testing for
more comprehensive analysis. While ADS evaluations provide a solid understanding of a system’s
or component’s overall performance, their static nature limits the ability to explore corner cases,
which are crucial for thorough safety assessment.

Safety assessment

Testing is a critical approach to evaluating and improving the safety of ADS. However,
conducting thorough real-world testing of an ADS is impractical due to the significant resources
required to build scenarios and simulate real traffic. To address this challenge, driving
simulators such as CARLA (Dosovitskiy et al. 2017) and BeamNG (BeamNGGmbH 2022) have
been developed, which enable testing in virtual simulated environments and significantly reduce
testing costs. Various testing approaches have been developed based on these simulators to
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generate test cases and analyze different traffic scenarios (Fremont
et al. 2019). Search-based testing approaches (Abdessalem, Nejati,
et al. 2018; Arcaini, Zhang, and Ishikawa 2021; Calò et al. 2020;
Borg et al. 2021; Gambi, Mueller, and Fraser 2019; Gambi, Müller,
and Fraser 2019; Tian et al. 2022; Haq, Shin, and Briand 2022) are
widely used for the rigorous testing of ADS. These approaches are
designed to achieve comprehensive testing of the system by
exploring the search space to identify different scenarios in which
the systemmay fail. One of the main approaches is the use of meta-
heuristic search techniques such as genetic algorithms and particle
swarm optimization. These methods can efficiently search for
optimal test cases based on various criteria, such as coverage, fault
detection and diversity. Another approach is model-based testing
(Abdessalem et al. 2016; Haq, Shin, and Briand 2022), where a
model of the ADS is used to generate test cases. These models can
be crafted using techniques such as finite-state machines, Petri
nets, or hybrid systems. The generated test cases can then be used
to validate the system’s behavior under different conditions. These
testing approaches have identified numerous unsafe testing cases,
they offer minimal safety guarantees for ADS.

Verification

In contrast to traditional testing approaches, formal verification
aims to provide a mathematical proof of a given property of a
system. This involves formally modeling the system and specifying
the desired property in a formal language. In the context of ADS,
they can be modeled as Neural Network Controlled Systems
(NNCS), which combine neural networks with control systems to
enable autonomous decision-making and control. Previous works
have explored safety verification of NNCS based on reachability
analysis. These methods utilize techniques such as activation
function reduction (Ivanov et al. 2019), abstract interpretation
(Tran et al. 2020) and function approximation (Ivanov et al. 2020;
Ivanov et al. 2021; Huang et al. 2019; Fan et al. 2020; Huang et al.
2022). However, these white-box methods have limitations when
applied to large systems like ADS. They often suffer from
inefficiency due to the complexity of the neural network models.
Therefore, there is a need for more efficient verification techniques
that can handle the scale and complexity of ADS.

In this paper, we propose a formal verification framework for
ensuring safety properties of ADS. To illustrate our methodology
more vividly, we describe it and perform experiments in the
context of self-driving cars, but it is applicable to a wide range of
autonomous systems (such as drones) and can be extended to them
without major modifications. Unlike traditional reachability
analysis methods, our approach provides quantified certificates
of safety properties in a more efficient and general black-box
manner. To specify safety properties, we adopt the concept of
fitness functions. Inspired by previous work on learning linear
models from deep neural networks (Li et al. 2022), we learn a fully
connected neural network (FNN) model that approximates the
fitness function. Unlike testing-based approaches, the learned
FNN model can be proven to be probably approximately correct
(PAC), which was not achievable with prior ADS testing methods.
This allows us to verify the safety property of a given ADS under
various traffic scenarios with a PAC guarantee. For example, with
99.9% confidence, the ADS is collision-free with a probability of at
least 99% in an emergency braking scenario. A traffic scenario can
include parameters such as vehicle velocity, weather conditions
and more.

The core idea of our approach is to learn a surrogate model that
approximates the fitness function of the ADS with a measurable
difference gap. If the surrogate model is proven to be safe, we can
derive a probabilistic guarantee on the safety property for the ADS
in the same scenario. In cases where the surrogate model fails to
meet the safety property, we further explore its parameter space by
dividing the entire space into cells based on specified parameters.
We then analyze the quantified level of safety in each of these cells.
This allows us to provide a quantitative verification framework that
includes the formal specification of safety properties, the learned
surrogate model with its probabilistic guarantee, and the analysis of
safe and unsafe regions. Overall, our approach provides a more
efficient and rigorous method for verifying the safety of ADS in
various traffic scenarios, considering a wide range of parameters.

Our approach demonstrates significant effectiveness and
advantages in verifying ADS. Firstly, compared to traditional
verification methods, our approach offers a more efficient
verification process. By learning a surrogate model that approx-
imates the original ADS fitness function, we can provide
probabilistic guarantees of ADS safety in a shorter timeframe.
This enables us to verify the safety of ADS in a wider range of traffic
scenarios, encompassing various parameters and conditions.
Secondly, our approach provides quantified safety proofs. By
learning the surrogate model of the fitness function, we can derive
safety probabilities of ADS in different traffic scenarios. This
quantified proof allows for a more accurate assessment of ADS
safety and provides decision-makers with more reliable evidence.
Furthermore, our approach is black-box, requiring no knowledge
of the internal structure and implementation details of ADS. This
makes our method more versatile and applicable to different types
of ADS. Whether the ADS is based on deep learning or other
technologies, our approach can effectively verify its safety. Lastly,
our approach also enables analysis of safe and unsafe regions. By
partitioning the parameter space into different cells, we can further
analyze the safety levels within each cell. This analysis helps us
better understand the behavior of ADS under different parameter
combinations and provides guidance for improving the design and
implementation of ADS.

The contributions of this paper are threefold:

• We propose a noval verification framework for ensuring the
scenario-specific safety of ADSwith a probabilistic guarantee.
To our best knowledge, it is the first of its kind designed
specifically for complex ADSs, providing an efficient and
reliable approach for verifying ADS safety in various traffic
scenarios.

• Our framework provide a new technique to perform
quantitative analysis of configuration parameters for ADS.
It helps identify potentially unsafe regions in the configu-
ration space that require attention and improvement.

• We apply our verification approach and configuration space
exploration method to a state-of-the-art ADS in five different
traffic scenarios. The results validate the potential of
learning-based verification techniques and provide evidence
for the applicability of the framework in practical ADS.

Background

ADSs

AnADS is designed to assist or replace human drivers in real traffic
scenarios. The level of automation of an ADS can be categorized
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into six levels, ranging from L0 to L5, as defined by the SAE
standard. The ultimate goal is to achieve a Level 5 ADS, which can
independently handle all driving tasks without any human
intervention.

A modern ADS consists of various components, including
sensors, perception module, prediction module, planning module
and control module. The sensors collect data from the surrounding
environment, while the perception module processes this data to
understand the current traffic situation. The prediction module
anticipates the future behavior of other road users, and the
planning module generates a safe and efficient trajectory for the
vehicle. Finally, the control module translates the planned
trajectory into control signals to execute the desired actions.

Ensuring on-road safety properties in different traffic scenarios,
such as collision-free, route completion, speed limitation, lane
keeping, etc., is of paramount importance for ADS. Especially,
collision-free is the key requirement among these properties, which
evaluates the general safety by judging whether a collision occurs.

CARLA & scenario runner

We utilize the high-fidelity simulator CARLA, which is built on
Unreal Engine 4, to generate realistic traffic scenarios for our
research. CARLA offers real-time simulation capabilities for
sensors, dynamic physics and traffic environments. It also provides
an extensive library of traffic blueprints, including pedestrians,
vehicles and street signs, making it a popular choice for developing
modern ADSs such as Transfuser (Chitta et al. 2022) and LAV
(Chen and Krähenbühl 2022).

In our study, we employ the Scenario Runner tool provided by
CARLA to construct various traffic scenarios within the simulator.
The Scenario Runner utilizes a behavior tree structure to encode
the logic of each scenario. This tree consists of non-leaf control
nodes (such as Select, Sequence and Parallel) and leaf nodes
representing specific behaviors. By executing the scenario based on
the state of its behavior tree, we can simulate and analyze the
interactions and decision-making processes of the ADS in different
traffic situations.

By leveraging the capabilities of CARLA and the Scenario
Runner, we can create a diverse range of realistic traffic scenarios to
evaluate the performance and safety of ADSs. This allows us to gain
valuable insights and make informed improvements to enhance
the reliability and effectiveness of these systems in real-world
driving conditions.

PAC-model learning

PAC-model learning was first proposed in Li et al. (2022) to verify
local robustness properties of deep neural networks. The key idea
behind PAC-model learning is to train a simplified model using a
subset of the original training data. This subset is carefully selected
to cover the critical regions of the input space where the DNN is
most sensitive to adversarial perturbations. The learned model can
provide robustness guarantees for the DNN’s performance.

We state the PAC-model learning technique in a more
generalized way. Let ρ : ! R be a real-valued function with
the domain � Rm a closed set. The purpose of PAC-model
learning is to learn amodel f θ; βð Þ 2 F whose difference from ρ θð Þ
is uniformly bounded by a constant λ as small as possible, whereF
is a parametric function space with parameter β 2 Rn. Given a set
of samples Θsample i.i.d from a probability distribution P on , the
problem is reduced to an optimization problem

min
λ;β

λ

s:t: f θ;βð Þ � ρ θð Þj j � λ; 8θ 2 Θsample:
(1)

In general, the solution of (1) does not necessarily bound ρ

within λ. However, the following lemma shows, the optimal
solution of (1) does probably approximately correctly, if the
number of samples in Θsample reaches a threshold.

Lemma 1 ((Campi, Garatti, and Prandini 2009)) Let ε and η be
the pre-defined error rate and the significance level, respectively. If
(1) is feasible and has an optimal solution λ�; β�ð Þ, and
Θsample

�� �� ¼ K with

ɛ � 2
K

ln
1
η
þ nþ 1

� �
; (2)

then with confidence at least 1� η, the optimal λ� satisfies all the
constraints in but only at most a fraction of probability measure ε,
i.e., Pð f θ; β�ð Þ � ρ θð Þj j> λ�Þ � ɛ.t

In Li et al. (2022), the component-based learning technique is
proposed to handle the situations when it is difficult to solve (1).
The idea is to first learn a function f θð Þwithout the PAC guarantee
and then estimate the margin λ with the PAC guarantee. In this
situation, the problem is reduced to the optimation problem

min
λ2R

λ

s:t: f θð Þ � ρ θð Þj j � λ; 8θ 2 Θsample;
(3)

and the number of samples K should satisfy

ɛ � 2
K

ln
1
η
þ 1

� �
(4)

to establish the PAC guarantee, according to Lemma 1.
After obtaining the PACmodel f with a margin λ, we can derive

properties of the black-box function ρ based on f and λ. These
derived properties hold for ρ with the same PAC guarantee. In the
following section, we will demonstrate how to formally model
autonomous driving scenarios and specify safety properties within
these scenarios. PAC-model learning will play a crucial role in
verifying these safety properties in autonomous driving scenarios.

Scenario driven safety verification

In this section, we introduce the verification framework (see
Figure 1) in detail. We first formalize the autonomous driving
scenario (Section “Formalism of autonomous driving scenarios”).
Then, we propose a model learning-based verification approach
starting from Section “Safety verification with PAC guarantee.”When
the verification cannot conclude the safety property, in Section
“Configuration space exploration,” techniques are also proposed to
partition the configuration space into safe/unsafe regions.

Formalism of autonomous driving scenarios

An autonomous driving scenario comprises an autonomous
driving agent ego and other NPC agents in the simulator
environment. Let θ ¼ θ1; . . . :; θmð Þ 2 ½0; 1�m be a configuration
which consists of m normalized parameters defining the scenario.
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Denoted by � ½0; 1�m a configuration space which represents a
certain range of configurations.

Denote by st 2 S the status at step t of all agents in the virtual
world, including locations, speeds, accelerations, etc. The
simulator generates the next state stþ1 according to the current
state st as well as the actions of both ego and NPCs at step t. We call
a sequence of states s0; s1; . . . ; st? a simulation generated by the
simulator, where s0 is the initial state and st? is the final state
satisfying some terminating conditions.

With the assumption that the behavior of the simulator and
NPCs is deterministic, the simulation s0; s1; . . . ; st? is uniquely
determined by the configuration θ and the behavior of ego.
Therefore, for a fixed ego, i.e., an ADS need to be verified, each state
st in a simulation can be considered as a function st θð Þ. It is
important to note that the assumption of the determinacy here
does not imply that the behavior or simulation environment is
entirely fixed. Instead, they are varying with the aforementioned
parameters. This assumption is made to establish a unified
probability space by eliminating other sources of randomness.

Safety properties

We are interested in the safety requirement of critical scenarios. In
traffic scenarios, many safety properties can be described as a
physical quantity (such as velocity, distance, angle, etc.) always
satisfying a certain threshold during the entire driving process. In
autonomous driving scenarios, we define a function ω to measure
such physical quantity at a given state, and the safety properties can
be defined as follows.

Definition 1 (Safety Property) For a given configuration θ 2 ,
a quantitative measure ω : S ! R and a threshold τ 2 R, the state
sequence s0; s1; . . . ; st? is safe if

8t 2 0; 1; . . . ; t?f g ω st θð Þð Þ � τ: (5)

We introduce a fitness function ρ θð Þ ¼ min0�i�t? 0½ �ω si θð Þð Þ,
and the property can be equivalently rewritten as ρ θð Þ � τ. For
instance, we can use the distance between two vehicles as the

quantitative measure ω, and the collision-free property requires
that the distance is no smaller than a safe threshold τ > 0.

We illustrate a scenario – Emergency Braking in Figure 2. The
safety property is to guarantee the safe distance of τ ¼ 0:2 (m)
between two vehicles. The problem is how to verify that an ADS
meets the safe requirement defined by Equation (5), as a scenario
can be initialized with all possible configuration values.

Safety verification with PAC guarantee

In general, checking a safety property is challenging because the
fitness function ρ θð Þ relies on the behavior models and the
simulator, which cannot be explicitly expressed. Additionally,
both the simulator and the ADS often operate as black boxes,
further complicating the analysis. To address this challenge, we
propose analyzing safety properties at two different levels: PAC-
model safety and PAC safety. PAC-model safety involves
constructing a surrogate model that approximates the
behavior of the original ADS. This surrogate model is trained
using PAC learning techniques, which provide a probabilistic
guarantee of its performance. By analyzing the surrogate model,
we can assess the safety properties of the original ADS with a
certain level of confidence. On the other hand, PAC safety is a
statistical method that directly analyzes the sample behaviors of
the ADS. This approach involves collecting a set of sample
behaviors and performing statistical analysis to evaluate the
safety properties. While this method does not rely on a surrogate
model, it still provides insights into the safety performance of
the ADS.

PAC-model safety
We use a surrogate model f to approximate the original fitness
function ρ. An illustrative example is in Figure 3 for assisting the
following discussion. By extracting K samples in , solving the
absolute distance λ between the surrogate model f and the original
fitness function ρ can be reduced to the optimization problem (3).
As stated in Section “PAC-model learning,” when there are
sufficient samples, i.e., Equation (4) holds, the optimal absolute
distance λ� we obtain satisfies the PAC guarantee
Pð f θð Þ � ρ θð Þj j> λ�Þ � ɛ with confidence at least 1� η. Intui-
tively, the PAC model f can effectively approximate the fitness
function ρ by given enough samples. The surrogate model in this
paper adopts an FNN with the ReLU activation function, whose
well-defined mathematical structure with piecewise linearity
allows it to be effectively verified within a certain model size.
Meanwhile, compared to simpler models (e.g., affine function), it is
more expressive to model the nonlinearity characteristics of the
fitness function.

Once obtaining the absolute distance evaluation λ�, we can
utilize neural network verification tools such as DeepPoly (Singh
et al. 2019) and MILP (Dutta et al. 2019) to determine whether it
holds that

∀θ ∈ Θ f (θ) – λ∗ ≥ τ.

Here, f θð Þ � λ� serves as a probabilistic lower bound of the
fitness function ρ of the original model, and τ represents the
threshold for safety requirements. By verifying that Equation (6)
holds, we can conclude that the ADS satisfies PAC-model safety
with an error rate of ε and a significance level of η. This verification
process allows us to ensure that the ADS meets the required safety
standards and provides a level of confidence in its performance.

sampling old samples

learn & verify

incremental sampling
C.surrogateB. deviatedA.uniform

update dateset

space dividingexplanation

iterations

output
PAC-model safe
PAC safe
Unsafe

Surroagte models
SHAP & exploration
(Adversarial examples)

+

ADSScenario Property
input

Figure 1. The verification framework. We learn a surrogate model and verify the
property on it. The surrogate model is iteratively refined by incremental sampling. The
whole procedure is recursive by dividing the configuration space.
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PAC-model safety refers to the existence of a PAC model f as
the surrogate model that, when combined with the induced
probability lower bound from the absolute distance estimation λ�,
still guarantees safety. In other words, if we can construct a PAC
model and verify the system’s safety using this model and the
probability lower bound from the margin, we can trust that the
systemwill also be safe in practical operation. By using PAC-model
safety, we can validate and test ADSs in practical scenarios to
ensure their safety under various conditions. This approach helps
us better understand and assess the performance and reliability of
ADSs, providing guidance for further improvement and opti-
mization of the system.

PAC safety
If there is no sample in Θsample that violates the safety property,
i.e., ρ θð Þ � τ for all θ 2 Θsample, but the probabilistic lower
bound f θð Þ � λ� proves unsafe on Θ, we may further lower the
requirements and say that it satisfies a weaker property – PAC
safety, i.e., P ρ θð Þ � τð Þ � 1� ε with confidence at least 1� η.

PAC safety is an statistical relaxation and extension of the strict
safety. Compared to PAC-model safety, it is much weaker since it
essentially only focuses on the input samples butmostly ignores the
behavioral nature of the original model. For a detailed comparison,
please refer to Section 2 & 5 of Li et al. (2022). Here we infer PAC
safety instantly via the samples used in the verification for PAC-
model safety, since by Lemma 1, the number of the samples is
sufficient for estimating a constant lower bound of ρ θð Þ (Anderson
and Sojoudi 2023).

Surrogate model learning

As mentioned above, we adopt model learning to approximate,
with the PAC guarantee in Lemma 1, the original fitness function
ρ. The effectiveness of the verification procedure relies heavily on

the precision of the surrogate model, which is indicated by the
absolute distance evaluation λ�. To obtain a small λ�, the surrogate
model is trained iteratively. After each training iteration, we
calculate λ� and verify whether it is PAC-model safe at this stage. If
not, it means that the surrogate model f is not sufficiently trained,
and we need to perform incremental sampling to improve its
accuracy. We propose the following three methods for incremental
sampling:
• Uniform sampling: In order to improve the diversity of the

database, we sample extra configurations uniformly. These new
configurations (denoted by Θincu ) are randomly selected from
the configuration space , following a uniform distribution. This
helps to explore undiscovered areas of the configuration space.

• Deviated sampling: We examine the predictions of the current
surrogate model and identify the configurations with the most
deviated predictions, indicating the areas where the surrogate
model is most inaccurate. We then sample additional
configurations (denoted by Θincd ) in the neighborhood of these
deviated samples (denoted byΘdevi) to refine the learnedmodel.
The size of such neibourhood is bounded by a constant a. In
our settings, we sample one additional sample near each
deviated configuration θdevi uniformly from the interval
θdevi � a; θdevi þ að Þ.

• Surrogate-assisted sampling: We can exploit the surrogate model
to generate extreme configurations that potentially maximize or
minimize the predictions. These extreme configurations
(denoted byΘsa) are more likely to be over-fitted or adversarial
examples. We achieve this by utilizing adversarial attacks like
PGD (Goodfellow, Shlens, and Szegedy 2015). We generate the
extreme configurations using the PGD attack for both
optimization directions (maximization and minimization).
The generated configurations are obtained by perturbing the
original configurations in the direction that maximizes or
minimizes the surrogate model’s predictions.

The configurations obtained through incremental sampling are
added to the current training set, and the surrogate model is re-
trained in the next iteration. If PAC-model safety is not proven
after a certain number of iterations, it indicates that incremental
sampling alone cannot significantly improve the accuracy of the
surrogate model f . In such cases, we employ a strategy of splitting
the configuration space , and the verification procedure will
proceed along different branches.

Explanation based branching

When the surrogate model is not precise enough or adversarial
examples have been found, the ADS cannot prove PAC-model safe.
In such situations, we employ a strategy of splitting the
configuration space into smaller blocks to refine our surrogate
model and improve the verification results. To determine the
branching parameter for the splitting, we utilize explanation
methods. Explanation methods are techniques that can quantify
the importance of different parameters for a specific prediction.
They provide insights into which parameters have the most
significant influence on the predictions and help us understand the
underlying relationships between parameters and output predic-
tions. By analyzing the explanation results, we can gain a better
understanding of the critical factors that affect the safety of
the ADS.

In our implementation, we utilize the SHAP values (Lundberg
and Lee 2017) as the explanation tool. SHAP values provide a

Figure 2. Scenario (i) Emergency Braking: the ego drives along the road while the
leading NPC brakes. The configuration � 2 consists of several parameters such as
NPC’s velocity, deceleration, trigger distance, etc. A function !measures the distance
between the two vehicles.

Figure 3. We show the fitness function � and the learned surrogate model f w.r.t. �1
(NPC’s initial velocity), by fixing other parameters. Here, � is bounded by f 	 �� with
PAC guarantee. Note that there exist velocity values that makes the lower bound
smaller than threshold τ (at bottom right corner), which violates Equation (6), i.e., the
ADS may break the collision-free property.
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measure of the contribution of each input feature to the output of a
model. In our case, the scenario configurations in our settings are
relatively low-dimensional, which makes SHAP values a suitable
choice for feature importance analysis. The SHAP values, denoted
as SVi θð Þ (i ¼ 1; 2; . . . ;m), represent the contribution of the i-th
entry in the input configuration θ. By calculating the absolutemean
of the SHAP values over the samples, we can determine the most
important parameter, denoted as i�, which has the highest absolute
mean of SHAP values:

i� ¼ arg max
i

X
θ2Θ

SVi θð Þj j:

Then we accordingly bisect the current configuration space ,
denoted by Bisecti� ( ), into two sub-spaces 0 and ″ by evenly
splitting the range of the i�-th entry.

This bisection process allows us to focus on refining the
surrogate model in specific regions of the configuration space that
are deemed to be more critical for safety. By iteratively refining the
model and exploring different branches, we can improve the
accuracy of the surrogate model in those areas, ultimately
enhancing the precision of the verification procedure.

Main algorithm

We name our verification method QUANTIVA. We present the
main algorithm of QUANTIVA in Algorithm 1. Given a safety
property ρ θð Þ � τ with the configuration space , we maintain a
sample set Θ � as the sample legacy for surrogate model
learning. At the beginning, we ensure thatΘ has sufficient samples
by sampling a configuration set Θ0 and add it to Θ (Line 2–3).

Now we start the iterative surrogate model learning. In each
iteration, we first learn an FNN f with the current setΘ of samples
(Line 5) and evaluate the absolute distance evaluation λ� with the
PAC guarantee (Line 6–7). If PAC-model safety is proved, the
algorithm terminates and return the result (Line 8–9), or otherwise
it executes incremental sampling introduced in Section “Surrogate
model learning” and adds these samples toΘ for the next learning
iteration, until the number of iterations reaches a threshold niter
(Line 10–12).

Throughout the iterative surrogate model learning, we cannot
prove PAC-model safety, so we have to split the current
configuration space if the current branching depth d is still
not 0. We calculate the mean absolute SHAP values of each input
dimension and choose the one with the largest to bisect into two
sub-spaces 0 and ″ (Line 13–16). Nowwe divide the verification
problem into two branches, and the output of this verification
procedure is the union of the verification results of these two
branches, initialized with the configuration space 0 and ″, the
sample legacy Θ\ 0 and Θ\ ″, respectively, and the max
branching depth both d � 1 (Line 17–18). For the branches where
PAC-model safety cannot be proved and the max branching
depth d ¼ 0, we output the current verification result (Line
19–22).

The output of Algorithm 1 is a set of pairs ð j;PjÞ which
indicates the safety level on each block. The blocks with the
verification result NOT PAC-model safe must be in the branching
depth d ¼ 0, so these potentially risky sub-spaces are the most
fine-grained. That is to say, our verification of a safety property on
a set of parametric scenarios is not simply a binary answer of being
safe or not, but a detailed analysis report on which sub-spaces are
highly likely to be safe (PAC-model safe), which have potential
risks (PAC safe) and which are indeed unsafe with counter-
examples (unsafe). These potentially risky blocks are small enough
so that wemay find valuable insights in why they are risky and how
we improve them.

Configuration space exploration

Since an ADS is a complex combination of many components and
algorithms, it is hard for them to behave safely in the whole
configuration space. When the verification result is not PAC-
model safe, it is meaningful to further analyze the relationship
between the unsafe behavior and the parameters, which will
provide an important reference for improving the system. Thus,
based on the parameters we care about, which we call the associated
parameters, we divide the configuration space into cells, and in a
quantitative way, an indicator ρ 2 0;þ1½ Þ can be computed to
express how unsafe the model is within each cell.

With two associated parameters θ1 2 a1; b1½ � and θ2 2 a2; b2½ �,
we can evenly split the two-dimensional parameter space into an l-
by-l grid where each rectangle has the size b1�a1

l 
 b2�a2
l . Namely,

the whole configuration space is divided into l2 cells,
denoted by ¼ [i;j¼0;...;l�1 i;j.

For a cell i;j, we define the quantitative unsafe indicatort

ρi,j := min{δ ≥ 0 | ∀θ ∈ Θi,j f (θ) – λ ≥ τ – δ}.

The quantitative unsafe indicator ρi;j can be computed by
MILP. Intuitively, each τ � ρi;j indicates the maximal threshold
such that the surrogate model is safe with all θ 2 i;j. The region

safe ¼ [ρi;j¼0 i;j is an under-approximation of the configuration
region where the surrogate is safe, and a larger ρi;j implies that the

Algorithm 1 QUANTIVA

Require: fitness functionρ, configuration spaceΘ, sample legacyΘ,
error rate ε, significance level η, safety threshold τ, max refine
iterations niter, andmax branching depth d.

Ensure: set of pairs (Θj,Pj), with Pj ∈ {SafePM, SafeP,Unsafe} in-
dicating the safety level satisfied in each configuration spaceΘj.

1: function (Θ,Θ, d; ρ, ε, η, τ, niter)
2: SamplingΘ0 ⊂ Θ
3: Θ ← Θ ∪ Θ0
4: for iter in {1 . . . niter} do
5: f ← DNNTraining({(θ, ρ(θ))}θ∈Θ)
6: SamplingΘsample ⊂ Θ � |Θsample| = K satisfies Eq. (4)
7: λ∗ ← the solution of the optimization problem (3)
8: if ∀θ ∈ Θ f (θ) – λ∗ ≥ τ then � DeepPoly and MILP
9: return {(Θ, SafePM)} � PAC-model safe
10: else if iter < niter then
11: Θincu ,Θincd ,Θsa ← Incremental sampling onΘ
12: Θ ← Θ ∪ Θincu ∪ Θincd ∪ Θsa

13: if d > 0 then
14: Calculate SHAP values SVi (i = 1, . . . ,m)
15: i∗ ← argmaxi

∑
θ∈Θ

∣
∣SVi(θ)

∣
∣

16: Θ′, Θ′′ ← Bisecti∗ (Θ)
17: Θ′ ← Θ ∩ Θ′,Θ′′ ← Θ ∩ Θ′′
18: return (Θ′,Θ′, d – 1) ∪ (Θ′′,Θ′′, d – 1)
19: if No adversarial examples found inΘ then
20: return {(Θ, SafeP)} � PAC safe
21: else
22: return {(Θ,Unsafe)} � Unsafe
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ADS is more prone to unsafe behavior in such scenarios within the
corresponding configuration region. In this work, we focus on the
analysis for pairs of two associated parameters since the results can
be easily visualized by heat map. It is straightforward to generalize
this analysis to more associated parameters.

Experiments

In this section, we evaluate QUANTIVA with the state-of-the-art
ADS Interfuser (Shao et al. 2023).1 We report the experiment
results for answering the following five research questions.

RQ1: Can QUANTIVA effectively quantify the safety of an ADS in
critical scenarios?

RQ2: Can QUANTIVA reveal abnormal behaviors of an ADS?
RQ3:What are the insights from the explanations by QUANTIVA?
RQ4: What is efficiency and scalability of QUANTIVA?
RQ5: What is the relation between QUANTIVA safety verification

and existing testing approach for autonomous driving?

Setup

QUANTIVA is implemented based on python 3.7.8 with Gurobi
(Gurobi Optimization, LLC 2023) as the MILP solver. We use
CARLA 0.9.10.1 to run Interfuser and build our traffic scenarios.
All the experiments are conducted on two servers with AMDEYPC
7543 CPU, 128G RAM and 4 Nvidia RTX 3090. The detailed
settings of our experiments are described as follows.

Safety requirement
Here, we consider the safety property of collision-free. Note that it
is relevant more complex among kinds of safety properties
aforementioned, since it usually involves the relationship of more
than one agents. We require a safe road distance (0:2 m) between
the ego and the NPCs in various scenarios. Namely, we define the
fitness function ρ θð Þ as theminimum distance between the ego and
the NPCs at every step of the simulations and require ρ θð Þ � 0:2
to hold.

Scenarios & parameters
By Scenario Runner, we build five traffic scenarios for the property,
shown in Figure 2 and Figure 4. Four of them have two variants
each at different locations, labeled with “Case #1” and “Case #2.”
These scenarios are based on key scenarios mentioned in industry
standards (Sun et al. 2022) and government documents (NHTSA
2007). There are totally 12 parameters to determine the scenarios:
besides the parameters as detailed in Table 1, there are also 8
weather parameters in each scenario, including cloudness, fog
density, precipitation, precipitation deposits, sun altitude angle,
sun azimuth angle, wetness and wind intensity.

Simulation
We set CARLA to the synchronous mode when conducting our
scenario simulation. The time step we set is 0.05 seconds (each
simulation step will forward the simulation 0.05 seconds). We
build route scenarios defined by the Scenario Runner. These
scenarios spawn the ego vehicle at a given spot and instruct the
vehicle to reach a pre-defined position. The termination of such
route scenario is either the autonomous vehicle reaching the goal
or a time-out triggered. In our experiments, the time-out is set as 10
minutes.

QuantiVA settings
For each scenario, an initial sample database was given before
running QUANTIVA. The total number requirement of initial
samples is 1000 in our experiments. We add extra samples if the
given database doesn’t meet the requirement. The surrogate model
is a 2-layer FNN with 50 neurons in each hidden layer. The error
rate ε and the significance level η of the model are 0:01 and 0:001
respectively. The model is trained in 6 iterations of refinement by
increasing 80 uniform samples, 10 surrogate-assisted samples
(5 for each direction) and 20 deviated samples after each iteration.
The initial max branching depth is set as d ¼ 2.

Verification results

We first apply QUANTIVA to evaluate the safety property on the
five traffic scenarios. We start the verification on the whole
configuration space and then branching the space according to the
SHAP value. The execution paths of the verification form a tree,
each of whose node corresponds to a configuration (sub)space that
needs to be verified. The result is depicted in Figure 5, in which we
additionally record the absolute difference evaluation λ of the
model and the number of adversarial examples found in the
verification procedure.

The verification shows that the ADS is PAC-model/PAC safe in
the scenarios (i) Emergency Braking, (ii) Follow Pedestrian and
(iv.2) Pedestrian Crossing #2: It is verified to be PAC-model safe in
the scenarios (i.2) & (ii.2) with the whole configuration space;
Especially, it further satisfies PAC-model safe in the scenarios (i.1) &
(ii.1) with the sub-spaces of SUN� ALT � 0:5 and
SUN� ALT � 0:5 ^ VELOCITY � 0:5, respectively. In the rest
scenarios, the ADS is verified to be unsafe since adversarial examples
are found in the verification procedure. We also find it seems to be
more dangerous in the scenarios (iii.1) Cut-in #1 & (v.1) Through
Redlight, where the number of adversarial examples is enormous.

Note that we utilize the SHAP values to guide the branching in
QUANTIVA. The branching can help to reduce the absolute
distance λ� between the surrogate model and the ground truth. For
instance, in scenario (i.1) Emergency Braking #1, the distance
decreases from 8:21 to 1:32 after branching on the condition
SUN� ALT � 0:5. As mentioned before, we can infer stronger
safe property under smaller distance. Moreover, such branching
can divide the configuration space into sub-spaces with different
safety levels. In the scenario (iv.1) Pedestrian Crossing #1, it is
branched into two sub-spaces containing 591=2933 and 144=2933
adversarial samples, respectively. It is evident that the second sub-
space is safer than the first one.

Abnormal behaviors

From the verification results, we have observed that the absolute
distance λ is anomalously large in some scenarios. Such
occurrences prompt us to review these scenarios and analyze the
behavior of the ADS.We have successfully identified outliers in the
samples and traced some abnormal behaviors of Interfuser.

Answer RQ1: QUANTIVA adeptly identifies safe scenarios and
validates safety properties across varying levels. It proficiently
discerns the safer sub-space from the hazardous counterpart.
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• Unexpected Stop: The autonomous vehicle halts in the middle of
the road, which occurs in scenarios (i.1) Emergency Braking #1,
(ii.1) Follow Pedestrian #1, and (iv.2) Pedestrian Crossing #2.

• Repetitive Braking: The autonomous vehicle repeatedly brakes
immediately after moving forward. This occurs in scenario (iv.2)
Pedestrian Crossing #2.

These abnormal behaviors violate the logic of normal driving,
making the behavior of autonomous vehicles more difficult to
predict, and consequently increase the absolute distance between
the surrogate model and the ground truth. We closely scrutinize
the intermediate output of Interfuser in these abnormal scenarios
and identify the root causes of these behaviors:

• Crude Redlight Logic: Interfuser halts the vehicle immediately if it
senses a red light, even if the vehicle is unreasonably far from the
junction. This is because Interfuser cannot accurately predict the
distance between the vehicle and the junction. As a result,
unexpected stops occur in scenarios (i.1) Emergency Braking #1
and (ii.1) Follow Pedestrian #1.

• Mistaken Detection: Interfuser can produce mistaken detections
of traffic lights, leading to incorrect decisions. In scenario (iv.2)
Pedestrian Crossing #2, it detects a nonexistent red light and
triggers braking. Coupled with the crude redlight logic, this
causes the vehicle to stop in the middle of the road.

• Redundant Stopline Response: Interfuser can detect the stopline
multiple times and engage in unnecessary braking. This triggers
the repetitive braking in scenario (iv.2) Pedestrian Crossing #2.

It is difficult to detect these underlying defects through testing
since they actually make the ADS more conservative and, as a result,
appear to bemore “safe.”QUANTIVA proposes a surrogatemodel and
further evaluates the absolute distance λ� between the surrogatemodel
and the ground truth, where a large distance indicates a poorly learned
model. Since the traffic scenarios we verify belong to the same
category, the operation and outcome of an ADS should be similar and
can be learned easily. Such a poorly learned model becomes an
indicator of abnormal behavior in the ADS.

Insights from explanation

The SHAP values of the top-3 important parameters for each
scenario are visualized in Figure 6, from which we can get more
explanations about the ADS as well as our verification results. The
pattern of SHAP values for most parameters is spindle-shaped.
This situation can be roughly understood as the influence of the
parameters on the fitness function is close to a normal distribution,
which is reasonable and common. However, we note that effect of a
small number of parameters presents a bimodal shape showing two
peaks concurrently at where SHAP values are positive and
negative. For example, we consider the sun altitude angle (SUN-
ALT) in #1 of scenario (i), whose SHAP implies its influence on the
fitness function is polarized, either extreme positive or extreme
negative. Here we can draw two insights: (1) we might be able to
obtained more accurate sub-models if we divide the configuration
space at this parameter. In fact, our verification results confirmed
this. (2)We find a negative correlation of SUN-ALT with the value
of the fitness function, which implies that the safe distance is more
likely to be violated during the day, but satisfied at night – this
counter-intuitive phenomenon may point to incorrect behavior or
potential flaws of the ADS (see Section “Abnormal behaviors” for
detailed analysis).

As described above, we obtain explanations from the SHAP
values. For more insights, the exploration of the configuration
space is further conducted. For the scenario of pedestrian crossing
#1, we focus on three associated parameters FOG-DENS, PREC-
DEP and SUN-ALT, which are the top-3 important parameters
according to the SHAP values. The analysis result is illustrated in
Figure 7.

From the figure (a) and (b), we find that the ADS is more likely
to violate the safe distance when FOG-DENS is small. Similarly,
from the figure (c), we also find that the large SUN-ALT may lead
to unsafe behavior. These two conclusions are counter-intuitive,
but consistent with the verification results (see the number of the
adversarial examples in iv.1 of Figure 5). The underlying reason
may be that the decision-making of the ADS in foggy weather is
more conservative, as well as in dark environments.

The figure (d) demonstrates the exploration result in the sub-
space of FOG� DENS � 0:5, fromwhich we find that the safety of
ADS is almost independent of FOG-DENS but highly negatively
correlated with PREC-DEP. It is also consistent with the
verification results – 8 versus 227 adversarial examples in the
two rightmost leaf nodes of the corresponding tree in Figure 5.
More interestingly, the figure (d) exhibits a completely different
pattern than that in the whole configuration space, i.e., the figure (a).

Figure 4. (ii) Follow Pedestrian: The ego car keeps a safe distance with the pedestrian in front. (iii) Cut-in with Obstacle: An NPC car in front of a van tries to cut into the road where
the ego car drives along. (iv) Pedestrian Crossing: A pedestrian crosses the road while the ego car enters the junction. (v) Through Redlight: The ego car encounters a NPC car
running the red light when crossing the junctions.

Answer RQ2: QUANTIVA facilitates the revelation of behavioral
discrepancies within the ADS. The absolute distance between the
surrogate model and the ground truth serves as an indicator of such
abnormal behavior.
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It implies that the behavior of the ADS in different configuration
sub-spaces may vary greatly, which further illustrates the
necessity of dividing the space during surrogate model learning.

Efficiency

We investigate the efficiency of QUANTIVA in this section. We
measure the time consumed by different phases of QUANTIVA
individually and list the times in Table 2. It is evident that the
sampling process accounts for a significant proportion of the total

time. In our experiments, the average sampling time across all
scenarios is 389:68 hours, which takes about 99.98% of the total
average time. This demonstrates that the learning, verification and
explanation of the surrogate model are relatively lightweight
compared to the sampling process. Considering that extensive
sampling effort is also unavoidable in testing approaches,
combining QUANTIVA with testing shows promise. For instance,
testing approaches can generate additional samples for training
the surrogate model in verification. Meanwhile, QUANTIVA can
serve as a criterion to assess whether the tested scenario is safe
enough and can be skipped.
We also record the time taken by three incremental sampling

approaches, namely uniform, deviated and surrogate-assisted
sampling. The average time to sample by these approaches is 2:34,
2:51 and 2:43 minutes, respectively. Compared to uniform
sampling, the deviated and surrogate-assisted sampling do not
require significantly more time, but obtain the configurations

Figure 5. Verification result for each scenario formed as a tree according to the branching paths. Each � and #adv indicate the absolute distance between the surrogate model
and the fitness function and the number of the adversarial examples found in such (sub)space, respectively.

Table 1. The physical value corresponding to the range of parameters in the safety property for each scenario

Scenario Case velocity m=s trig-dist m init-dist m brake ½0; 1�
Emergency Braking #1 2 � 2:5 15 � 20 15 � 20 0:5 � 1

#2 2 � 2:5 15 � 20 15 � 20 0:5 � 1

Follow Pedestrian #1 1 � 2 15 � 20 15 � 20 —

#2 1 � 2 15 � 20 15 � 20 —

Cut-in with Obstacle #1 4 � 5 13 � 15 15 � 20 —

#2 4 � 5 15 � 17 15 � 20 —

Pedestrian Crossing #1 2 � 3 11 � 15 — —

#2 1 � 2 8 � 10 — —

Through Redlight #1 5:5 � 6:5 15 � 20 15 � 20 —

Answer RQ3: The embedded SHAP value within QUANTIVA can be
harnessed to yield deeper insights into ADS behavior in specific
scenarios. Also, exploring the configuration space can provide further
quantitative analysis of safety properties.
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where the surrogate model is potentially under-fitting. As a result,
these two strategies can efficiently improve the accuracy of our
surrogate model.

Testing

We have verified that the scenarios (i) Emergency Braking and (ii)
Follow Pedestrian are at least PAC safe. To validate our findings,
we try to evaluate the safety in these scenarios by genetic
algorithms. Genetic algorithms are widely used in prior ADS
testing methods (Tian et al. 2022; Haq, Shin, and Briand 2022).
We implement a genetic algorithm tester with uniform crossover
and elitism. We mutate the parameters with probability 0:2 and
save top 10% configurations for elitism. The size of the population
is 100. The time budget of the genetic algorithm is 14 days. We
report the testing results in Table. 3.

The testing results report no adversarial example in the
scenarios where the ADS is verified to be PAC-model safe. For the
scenarios (i.1) and (ii.1), there is also no adversarial example found

in the former, but 6 in the latter. Note that the sampling in genetic
algorithm is not uniform, but tends to search for the samples that
violate the safety property, which somehow implies the rate of the
parameters causing unsafe behavior in scenarios (ii.1) is indeed
less than 6

3150, this confirms the correctness of the PAC safety (with
ε ¼ 0:01) we have verified in this scenarios.

Furthermore, by checking these adversarial examples, we
observe that none of them belongs to the configuration sub-space
(SUN� ALT � 0:5 ^ VELOCITY � 0:5) verified to be PAC-
model safe (recall Figure 5). This situation is consistent with our
verification results and shows that PAC-model safety is indeed a
higher-level safety property compared to PAC safety.

Case study on comprehensive scenario

In previous experiments, the scenarios we used were derived from
critical situations outlined in standards or documentation. These
scenarios were typically highly abstract and focused on isolated

Figure 6. The visualization of SHAP values for the surrogate model learned for the whole configuration space in each scenario (i.e., corresponding to the root of each tree in the
verification results).

(a) (b) (c) (d)

Figure 7. By heatmap, the results of parameter space exploration are illustrated for the Pedestrian Crossing #1. The grid marked with brighter color implies that the ADS is more
likely to violate the safety property with the parameters in it.

Answer RQ4: Learning, verification and explanation in QUANTIVA
are remarkably lightweight. The predominant time consumption
arises from inevitable sampling, prompting us to consider synergizing
QUANTIVA with testing approaches.

Answer RQ5: The safety guarantee endorsed by QUANTIVA aligns
with the genetic testing outcomes, thereby underscoring the
promising potential of integrating QUANTIVA with testing
approaches.
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elements, meaning they involved fewer traffic components. In this
case study, we utilize a comprehensive scenario with more
complex traffic situations to demonstrate the performance of our
verification framework in a denser and more intricate
environment.

As shown in Figure 8, we created a multi-lane scenario with
heavy traffic. This scenario includes two pedestrians walking on
the sidewalk, two vehicles and a motorcycle driving near the ego
vehicle. Additionally, a vehicle in front of the ego vehicle is
changing lanes to the left. The two vehicles and the motorcycle are
controlled by an autonomous system with a “god view” (i.e., it has
access to map-level information such as the positions of
surrounding vehicles). Meanwhile, the control of the tested
vehicle is subject to intermittent jitters, affecting both the throttle
and steering. In addition to the parameters aforementioned, such
as the distance between the two vehicles and the speed of the
NPCs, this scenario also includes the magnitude of the jitters, with
throttle variations ranging from 0% to 40% and steering
disturbances ranging from �10% to 10%.

In this more complex scenario, the sampling time increased
compared to simpler ones, with the average time per sample rising
approximately from 2 minutes to 3 minutes. This increase is due
to the larger number of scene elements and more intricate
behaviors, resulting in a longer overall verification process.
However, the rise in complexity is not exponential, and no
dimensionality explosion occurs. QUANTIVA remains efficient in
evaluating the safety of the scenario through sampling.

Moreover, even in this more challenging setting, the neural
network-based surrogate model successfully approximated the
behavior of the autonomous system under test. Using this
surrogate model, our incremental sampling algorithm identified
43 corner cases. Shapley value-based interpretability analysis
revealed that the most critical factor affecting safety was the
distance to the lane-changing vehicle, followed by its speed.
Finally, despite the increased complexity of the scenario, the
verification algorithm we designed – based on DeepPoly andTa
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Scenario Safety Rounds � �ð Þ #Adv./All

i.1 PAC 45 1.972 0/4140

i.2 PAC model 50 1.871 0/4590

ii.1 PAC 34 0.019 6/3150

ii.2 PAC model 71 2.483 0/6480

Figure 8. A comprehensive scenario under more complex traffic situations, which
involves various traffic participants and intermittent jitters of the ego vehicle.
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MILP – maintained high verification efficiency without a
significant increase in the size of the surrogate model.

Related work

We discuss more results on testing, verification and probabi-
listic approaches. Search-based testing is studied in Dreossi et al.
(2019), Sun et al. (2022), Zhong, Kaiser, and Ray (2023),
Abdessalem, Nejati, et al. (2018), Arcaini, Zhang, and Ishikawa
(2021), Calò et al. (2020), Borg et al. (2021), Gambi, Mueller,
and Fraser (2019), Gambi, Müller, and Fraser (2019), Tian et al.
(2022), Haq, Shin, and Briand (2022), Abdessalem, Panichella,
et al. (2018), Klück et al. (2019), Li et al. (2020), Arcaini, Zhang,
and Ishikawa (2021), Gladisch et al. (2019), Ishikawa (2020),
and Luo et al. (2022). These approaches utilize optimization
methods like genetic algorithm and evolution algorithm to
search scenario configurations that introduce abnormal ADS
behaviors. Such testing approaches cannot give safety guarantee
if no violations are found through the testing trails, while
QUANTIVA is a good complement which can reuse the testing
samples and give safety guarantee of different levels. In Tao et al.
(2019), Li, Tao, and Wotawa (2020), Klück et al. (2018), Gambi,
Huynh, and Fraser (2019a), Chandrasekaran et al. (2021), Zhou
et al. (2020), Zhang and Cai (2023), Nguyen, Huber, and Gambi
(2021), and Gambi, Huynh, and Fraser (2019b), domain
knowledge is leveraged to assist the corner case discovery.
Metamorphic testing approaches (Zhang et al. 2018; Tian et al.
2018; Han and Zhou 2020; Valle 2021; Deng et al. 2021) exploit
the metamorphic relations to find potential dangerous cases,
e.g., weather and time should not affect the control of the
autonomous vehicle. QUANTIVA follows such ideas and goes
deeper to the influence on the behavior regarding the
parameters. Runtime verification methods (Zapridou,
Bartocci, and Katsaros 2020; Balakrishnan et al. 2021; An
et al. 2020; Alotaibi and Zedan 2010; Bogomolov et al. 2022)
monitor the ADS status and alarm the abnormal status to avoid
disastrous outcome. Compared with QUANTIVA, they only
observe the status during execution and cannot provide global
safety guarantee. Besides, components of ADS are formally
verified in Xu et al. (2019), Zhang et al. (2022), Ivanov et al.
(2019), Tran et al. (2020), Ivanov et al. (2020), Ivanov et al.
(2021), Huang et al. (2019), Fan et al. (2020), and Huang et al.
(2022). These methods work on a subset of a ADS, limited in
evaluating the ADS behaviors as a whole. We note that
QUANTIVA is a probabilistic verification approach, and similar
works include (Li et al. 2022; Anderson and Sojoudi 2023;
Cardelli et al. 2019; Mangal, Nori, and Orso 2019; Webb et al.
2019; Weng et al. 2019). Our approach integrates multiple safety
level and can give a more comprehensive safety assessment.

Limitations

While we believe our work have made a step forward in verifying
ADS at the system-level, there are still some limitations that
warrant discussion here.

One key limitation of QUANTIVA is its efficacy, which can vary
based on the system’s complexity and the dimensionality of the
parameter space. When dealing with highly complex scenarios or
resource-intensive ADSs, the sampling time may increase
significantly, potentially extending the overall verification process.

Another significant limitation lies in the gap between
simulation environments and real-world autonomous driving
scenarios. At present, our method cannot be directly applied to
real-world settings due to the challenges of modeling real-world
environments solely through parameters. Furthermore, perform-
ing uniform sampling in real-world conditions is difficult, if not
impossible, making the direct deployment of this framework
impractical in real-world applications.

Lastly, our approach relies on black-box methods, which
approximate the behavior of ADSs in various scenarios using
surrogate models. However, if the surrogate model fails to
sufficiently capture the original system’s behavior – due to limited
expressiveness or insufficient sampling and learning – the entire
verification framework may be unable to provide an accurate
assessment, reducing the reliability of its results.

In terms of future work, managing intricate systems with
expansive parameter spaces could be addressed by exploring
lightweight pre-branching techniques to mitigate complexity.
Additionally, the development of high-fidelity simulators is crucial
to bridging the simulation-reality gap. Recent advancements in real
traffic scenario simulation, such as those utilizing neural radiance
fields [?], offer a promising direction toward achieving high-
fidelity simulations. For surrogate models, we plan to investigate
more expressive models – such as behavior trees – to approximate
the behavior of ADS and scenario elements.

Conclusion

We introduce QUANTIVA, a novel approach to verify safety
properties of ADS at the scenario level. A safety property is
formally specified by a fitness function with scenario configura-
tions. A surrogate model is learned for approximating this fitness
function, and the safety property verified on the surrogate model
can be inherited to the ADS with specified confidence and error
rate. By introducing a divide-and-conquer design to configuration
space splitting, QUANTIVA gives fine-grained analysis on which
sub-spaces are potentially risky or even unsafe. The experiments
validate the utility of our approach with promising results and
vivid examples.
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