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A CHARACTERIZATION OF SPACES HAVING BASES OF
COUNTABLE ORDER IN TERMS OF PRIMITIVE BASES

H. H. WICKE AND ]J. M. WORRELL, JR.

1. Introduction. The main theorem of this paper characterizes the class
# of essentially T, spaces having bases of countable order as those spaces of
the class & of essentially T’ spaces having primitive bases in which closed sets
are sets of interior condensation. In addition we deduce some corollaries of
this theorem, derive some other characterizations, and prove a lemma con-
cerning primitive sequences which is a key to the proof of the main theorem
and has other applications.

The class & has, in the past decade, been perceived to be a fundamental
class of spaces. Some initial reasons for this perception may be found in the
following two theorems.

1.1. THEOREM [Arhangel’skil, 1]. 4 T paracompact space is metrizable if and
only if it has a base of countable order.

In [20] it was shown that if essentially 7' is added to base of countable order,
then the presence of such a base can be expressed by means of a sequence of
covers. This brought out clearly the resemblance to and distinction from
developable spaces and showed the anticipation of the concept by N. Aronszajn
[2] in an axiom (which incorporated some completeness) formulated for the
express purpose of proving an arc theorem. A precise connection with develop-
able spaces is given next.

1.2. THEOREM [20]. A space is developable if and only if it is essentially T},
0-refinable, and has a base of countable order.

We think a particularly significant aspect of 1.1 and 1.2 is that there are
spaces having bases of countable order which are not even weakly 6-refinable,
e.g., the space Q) of countable ordinals with the order topology. Thus 1.1
achieves a factorization of metrizability in which a covering property and a
base property are isolated with little obvious overlap; this is in contrast to
factorizations involving developability which carries the covering property of
subparacompactness with it.

Since [20], the theory has undergone generalization to non-first-countable
cases and the underlying techniques have been systematized [7-13; 19]. In
rough terms, what has been shown is that concepts such as developable space,
p-space, and wA-space, which involve sequences & of open covers and arbitrary
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representatives G of ¥ with nonempty intersection, permit generalization to
concepts involving monotonically contracting sequences & of open covers and
their monotone decreasing representatives, i.e., there is a transition from finite
intersection type properties to monotone ones. The possibility of such a transi-
tion involves techniques illustrated below. The resulting ‘“monotone’” theories
are more general and, in a sense, more harmonious. The results that have been
obtained for & are typical: invariance, for the regular case (subsequently,
pararegular [14]), under open, continuous, uniformly monotonically complete
mappings [10], characterization of the T elements of & as images of metrizable
spaces under such mappings [10], a theory of complete T, members of Z [12],
invariance under perfect mappings [25], hereditarity, countable productivity,
and ‘“local implies global”’. Many of these theorems have been generalized to
non-first-countable cases in [7; 8; 11; 13; 22].

The class & properly includes & and has a theory of comparable richness
[15; 16; 17; 23; 24]. The fundamental technique of base of countable order
theory takes a place in its very definition and an even more general theory is
obtained which also has a non-first-countable counterpart [18]. The main
purpose of this paper is to characterize those members of & which are also in
Z. A notable aspect of Z is that it includes both & and the class of essentially
T, quasi-developable spaces, or, what is equivalent, by [4], the class of essen-
tially 7', spaces having 6-bases [20].

We here analyze the property of membership in & into two factors:

(1) having a primitive base, and
(2) closed sets are sets of interior condensation.

This may be compared with the two (equivalent) factorizations of developable
into (1) quasi-developable, (2) closed sets are G;'s [3], or into (1’) 6-base, and
2) [20].

Section 2 provides information on primitive bases and sets of interior con-
densation, respectively. We prove a key lemma in Section 3 and the main
theorem in Section 4. Section 5 contains another point of view concerning the
distinction between developable spaces and the members of & and Z.

Our set-theoretic usage is close to that of [5]. The letter V denotes the set of
natural numbers. We use < and = ambiguously to denote orderings whose
fields are contextually clear. We frequently use single letters to denote se-
quences. Given a sequence I', by a representative of T we mean a sequence A
such that A, € T, for all # € N. A decreasing representative A is one such that
A, D A,y for all w € N. A space is essentially T, [20] if and only if for all
x,y € X, x € {yJ} implies y € {x}. For other concepts not defined here see
[7; 12; 20; 22].

2. Primitive base, primitive sequences, sets of interior condensation.
In this section we define primitive base, some terminology of primitive sequence
theory, and sets of interior condensation. We also state several theorems in-
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volving these concepts, some of which we apply in the proof of the main
theorem.

2.1. Definition [21]. A space X has a primitive base if and only if there exists
a sequence % of well-ordered collections of open sets such that for each x € X,
if Uisopen and x € U, then there exist # € N and n € N such that x belongs
to at least # elements of #, and the #-th such element is a subset of U.

2.2. THEOREM [17]. Spaces having bases of countable order and quasi-develop-
able spaces (equivalently [4), spaces with 0-bases) have primilive bases.

2.3. Example [17]. The topological sum and topological product of the
Michael line [6, p. 90], and the space of countable ordinals with the order
topology are spaces having a primitive base but neither a base of countable
order nor a f-base.

2.4. Definition [17]. Suppose (Z°, <) is a well-ordered collection of sets.
For each W € Z let

p(W,Z) denote {x € W:if W € Z and W < W, then x ¢ W'}.

2.5 Definition [11]. Suppose X is a set and M C X. A primative sequence of M
in X is a sequence S of well-ordered collections of subsets of X which cover M
such that for each n € N:

(a) Forall H € 32,, M N p(H,,) # 0.
(b) 1§ < nand MO p(H,2,) N p(H',H#,) % @, then H C H'.

In case M = X,# is called a primitive sequence of X.

2.6 Definition [17]. If (X, 7) is a space and M C X, then an open primitive
sequence of M in X is a primitive sequence . of M in X such that each %, C r.

2.7 Definition. Let # be a primitive sequence of M in X. A primitive repre-
sentative of £ is a sequence H such that for all # € N,

p(Hm%rJ m p(Hn+lyfn+l) m ]‘r[ # ﬂ
Notation. 1f # is a primitive sequence of M in X, PR (%) denotes
{H: H is a primitive representative of J}.

2.8 Definition [17]. 1f # is a primitive sequence, then for all H € PR (),
pc(H) denotes MNyenp (H,, #,). This set is called the primitive core of H .

2.9 THEOREM [17]. A4 topological space is essentially T and has a primitive
base if and only if it has an open primitive sequence A such that for all H €
PR(S), if pc(H) # @, then {H,: n € N} is a base at each element of (M penH,.

2.10 Definition. A sequence S related to a space X as in 2.9, will be called a
primitive sequence (of X) of basic type.
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2.11 THEOREM [20]. A space X € Z if and only if there exists an open primi-
tive sequence A of X such that for all H € PR(H), if NuexH, # 0, then
{H,: n € N} is a base at each point of NypenH,.

2.12 Definition [7; 11]. A subset M of a space X is a set of interior condensa-
tton in X if and only if there exists a sequence & of collections of open sets
covering M such that:

(1) Forallnw € Nand x € M, if x € A € &, then there exists
A’ € A, such thatx € 4’ C 4, and

(2) if foreachn € N, 4, € &/, and 4,4, C A4,, then N,cxyd, C M.

The next theorem is proved in [19]. A proof may be constructed using the
proof of Theorem 1 of [20] as a guide.

2.13 THEOREM. Suppose M is a subspace of a space X such that each x € M
15 in an open set U such that U (M M 1s a set of interior condensation in X. Then M
15 a set of interior condensation in X, i.e., sets of interior condensation locully are
sets of imterior condensation globally.

2.14 THEOREM. A subspace M of a space X s a set of interior condensation in X
if and only if there exists an open primitive sequence # of M in X such that for
all H € PR(%), Muent, © M.

Proof. By Lemma 2.1 of [12] and Definition 2.12, there exists an J# with
the property described. On the other hand, if such an J# exists, apply Lemma
2.3 of [12] to obtain an.%/ satisfying the conditions of 2.12.

2.15 THEOREM. If (A,: n € N) is a sequence of sets of interior condensation in
a space X, then MypenA, 15 a set of interior condensation in X.

Proof. See 3.3.
3. A key lemma. The lemma we prove here is basic to the proof of 4.1. The
result needed for 4.1 is Corollary 3.2. Another application is 3.3.

3.1. LEMMA. Suppose W 1is a primitive sequence of M in X. Suppose that
(fa: m € N)is a sequence of functions such that for each n € N:

(1) the domain of f, is W , and its range is the power set of X,
(2) for each W € W, MO\ p(W, W) C fo(W) C p(W, W), and

(3) for each W € W, there exists a primitive sequence ¥ of f,(W) in W such
that for all V € PR(¥ ), N {V;:j € N} C f.(W).

Then there exists a primitive sequence S of M in X such that for all H € PR(J)
there is a W € PR(W') such that for each n € N,

H,C W,and N {H,;:n € N} SN {fu(W,):n € N}
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If X is a space and the primitive sequences involved in the above hypothesis are
open in X, then H# s also open in X.

Proof. We introduce some notation: If (41, ..., 4;) is a j-tuple of sets let
a(Ay, ..., 4;) denote N {4;: 1 £¢ =j}. If each 4, € %, where &, is
well-ordered, let ap(4,, ..., 4;) denote

a(P(Alvgl)y e )P(Aiygj))
(in ap(Ay, ..., A;) the appropriate Z';'s are contextually understood). For

each W ¢ W, let (S (W, n,1): 1 € N) denote a primitive sequence of f,(W)
in W with the property of (3) of 3.1. Let n ¢ N. Define %, as

{(Wy,...,W,):foralli £n, W, ¥ ;andap(W,,..., W,) N\ M #0}.

Well-order %, by the lexicographic order on #; X ... X #,. For each
(Wr, ..., W,) € G, let

D Wyyoo o W) ={(Wip...,Wyo1): Wy, € (W, 14,4) for
1 24j<nandi+j=n+ 1suchthatap(Wi,, ..., W,1)
N M = B}.

Well-order each & (W, ..., W,) by the lexicographic order on.# (Wi, 1, n)
X ...XH (W, n1).Let &, = {(4,B): A € €,and B € D (A4)}, again
well-ordered lexicographically.

The function a| &, is an injection on &,,. For suppose a(A41, B1) = a(As, Bs),
where A, = (W, ..., W,*) and B, = (Wi.,% ..., W,.*) for k=1, 2.
Then a(4,, Byx) 2 ap(4;, B;) for (k, j) = (1, 2) and (&, j) = (2, 1). Thus
each W;! = W,;? and each W;;! = W, 2.

For each n € N we define, as the range of «| &, well-ordered by H < H’
if and only if a='(H) <« '(H’). If x € M, there exists (4, B) € &, such
that x € ap(A4, B). For if x € M, there is, for each £ < n, a W, € #/, with
x € ap(Wy, ..., W,) N\ M. Thus, x € fi(W,) for all B < n. Hence there is a
Be¢Z (Wi, ..., W, such that x € ap(4, B). Therefore x € a(4, B) € S,.
If x € a(44, By), thenap(4, B) M a(A4,, B:) # 0. Hence (4, B) £ (4,4, By).
Thus x € p(a(4, B), #,). If H ¢ S, there exists (4, B) € &, such that
H = a(4, B). Since ap (A4, B) # @, condition (a) of 2.5 is satisfied. Note that:

*) pla(4, B),#,) N\ M = ap(4, B) N\ M for all (4, B) € &,.
Suppose

x € MM pH,H,) N p(H ,H 1), where H = a((Wy, ..., W,),
Wi oo, Wo)) and H' = a((Wy, ..., W)/, W),
(Wl,n+llv se ey Wn+l,ll))-

By (*), Wi/ = Wi fOl‘ 1 é 1: é n and ij 2 W]"];+ll fOr 1 é j, k § n and
j+k=mn+1 Thus H C H. Therefore 3 is a primitive sequence of M in X.
Suppose H € PR(), where for each n € N,

H, = a((Wy", ..., W), (Wit ..., Woi™)
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and each W,* € (W, 1, 7). Thus

MN P(Wnn»Wn) N p(Wn+1n+lrWn+l) #= 0
by the definition of £,,,. As was seen in the preceding paragraph, W," =
Wy tiforalll £k £ nandn € N. Let W, denote W,*. Then W/ = W, for

all i = %, and we have, foreachn ¢ N, W,» ¢ S (W, 4,j) for1 <4,j < n
and 7 + j = # + 1. Moreover, H € PR(3# ) and (*) imply that

pWi s H (Wi 4, §) N p (Wi, (Wi, i, 5+ 1)) # 0.
Thus (W, ;1.5 ¢ Ny € PRU{HK (W4 14,7):j € N)). Thus
x € N {H,;n € NJ
implies that
x € N{W, -1 € N} C f;(W,) forall « € N.
Therefore N {H,: n € N} C N { fo(W,): n € N}. Since the elements of each

J, are finite intersections of elements of primitive sequences, the last state-
ment of the conclusion is valid.

3.2. COROLLARY. Suppose X is a space and W is an open primitive sequence
of X such that for eachn € N and W € W, p(W, W) is a set of interior conden-
sation in X. Then there exists an open primitive sequence H in X such that for
each H € PR() there is a W ¢ PR(Y) such that H, & W, for all n ¢ N
and N {H,: n € N} C pc(W).

Proof. In the hypothesis of Lemma 3.1, let f,(W) = p(W, ¥,) for all
W €W, By 2.14, each f,(W) has an associated open primitive sequence in W.
Thus an open primitive sequence # of X exists such that if H ¢ PR(3¢),
there is W € PR(¥#’) such that each H, & W, and

N{H,n € N} S N A{p(W, W) n € N} = pe(W).

3.3. Proof of 2.15. Let M = N {A,: n € N}. Foreachn € N let¥, = {X}
considered as a well-ordered, one-element set. Let f,(X) = 4, for each n € N.
There exists an open primitive sequence of f,(X) in X by 2.14. By 3.1 there is
an open primitive sequence J# of M in X satisfying the conclusions of 3.1.
The only member of PR(%') is W where W, = X for all w € N. If H ¢
PR (S ), then

N{Hy:n € NV SN {fu(W):n € Ny = M.

Thus M is a set of interior condensation in X by 2.14.

4. The main theorem.

4.1. THEOREM. 4 space is essentially Ty and has a base of countable order if and
only if it has a primitive base and closed sets are sets of interior condensation
locally.
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Proof. Necessity. If X € &, then X has a primitive base by 2.1 or 2.2. It is
easy to establish that closed sets are sets of interior condensation.

Sufficiency. Let X satisfy the condition. Closed sets in X are sets of interior
condensation by 2.12. Suppose x, y € X and x € {¥}. Since {&} is a set of
interior condensation, there exists a sequence % related to {#} = M asin 2.11.
There exists a decreasing representative 4 of .97 such thatx € N {4,: n € N}.
Since x € {3}, ¥y € N {4,: n € N}. Thus y € {&}. Therefore X is essentially
71. By Theorem 2.9, there exists an open primitive sequence % of basic type
for X. Suppose W € #,. Then

p(W, W) = WNUIW € W,: W' < W}.

Hence p (W, ¥ ,) is the intersection of an open set and a closed set. Since
open sets are obviously sets of interior condensation, p (W, #",) is also, by 2.15.
Therefore there exists an open primitive sequence J# of X related to # as in
3.2. Suppose H € PR(# )andx ¢ N {H,: n € N}. There exists W € PR(¥)
such that H, € W, for all # € N and x € pc(W). Thus {W,: n € N} is a
base at x and, therefore {H,: n € N} is also. By 2.11, X € &4.

4.2. THEOREM. A space 1s essentially T and has « base of countable order if
and only if it has « primitive sequence W of basic type such that for all m € N and
W e, p(W, W ,) is a set of interior condensation in W.

Proof. This follows from 2.10 and the proof of 4.1.

4.3. THEOREM. A space is developable if and only if it is essentially T, 0-
refinable, has « primitive base, and closed sets are sets of interior condensation
locally.

Proof. This follows from 4.1 and 1.2.

4.4. THEOREM. A space is metrizable if and only if it 1s T's paracompact, has a
primitive base, and closed sets are sets of interior condensation locally.

Proof. This follows from 4.1 and 1.1.

In view of 4.2, it seems natural to ask whether a space having a primitive
sequence ¥ of basic type has a base of countable order if for all W ¢ PR(%#),
pc(W) is a set of interior condensation. The Michael line [6, p. 90] provides a
counterexample, since singletons are Gs's and the space has a primitive se-
quence ¥ of basic type such that for all W € PR(¥), pc(W) = @ implies
that pc(W) is a singleton.

5. Sets of interior condensation uniformly. In this section we define
uniform notions of a space having closed sets G;'s or sets of interior condensa-
tion in order to view a different aspect of the base of countable order-develop-
able distinction. We also define primitive set of interior condensation to bring
bring out a distinction from primitive base. Similar approaches may be made
to other concepts as in the final note.
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5.1. Definition. Suppose M is a set. If % is a collection of sets we define
CM ={A€C: AN M} #=0.

5.2. Definition. If X is a space, and M C X, a Gs-sequence for M in X is a
sequence & of X-open covers of M such that if D is a representative of &,
then N {D,:n € N} C M.

An SIC-sequence for M in X is a sequence 2 related to M as in 2.12.

We note that a set is a G; in a space if and only if it has a Gs-sequence in
the space.

5.3. Definition. If X is a space, then closed sets are Gy sets uniformly in X if
and only if there exists a sequence & of open covers of X such that for all
closed M C X the sequence (%,": n ¢ N)isa G;-sequence for M.

Closed sets are sets of interior condensation uniformly in X if and only if there
exists a monotonically contracting sequence .2/ of open covers of X such that
for all closed M C X, (&,™: n € N) is an SIC-sequence of A in X. (A mono-
tonically contracting, [7; 22], sequence.2Z is one such that x € 4 ¢ .27, implies
the existence of 4’ € &7, withx € 4’ C Aforalln € N.)

5.4. THEOREM. A space is developable if and only if closed sets are Gy sets
uniformly in the space.

Proof. The necessity may be proved by using a development 4. Suppose &
is a sequence for a space X as in 5.3. If x € X is in an open set U, then M =
X\U has a Gs-sequence (%4 ,™: n € N). For some n ¢ N, st(x, ¥,) C U.
Otherwise there is a representative G of (%,": n € N} such that x € N
{Gn,: m € N} and thusx ¢ U.

5.5. THEOREM. A space 1s essentially Ty and has « base of countuble order if
and only if closed sets are sets of interior condensution uniformly in the spuce.
Proof. Similar to the proof of 5.4.

5.6. Definition. 1f X is a space and M C X, then M is a primitive set of
interior condensation in X if and only if there is an open primitive sequence %
of M in X such thatif W € PR(¥') and pc(W) = @, then N\ {W,:n ¢ N} C
M.

5.7. Definition. Closed sets are primitive sets of interior condensation uniformly
in a space X if and only if there exists an open primitive sequence . of X such
that for all closed M C X, (#,™: n € N) is related to M as ./ is in 5.6.

5.8. THEOREM. A space s essentially Ty und has a primaitive base if and only if
closed sets are primitive sets of condensation uniformly in the space.

Proof. The necessity follows from the existence of a sequence for the space
as in 2.9. Suppose there is a sequence 3 for a space X as in 5.7. Suppose H €
PR(S), pc(H) # 0, and x € N {H,: n ¢ N}. If Uis open and x € U, let
M=X\U If H,N\ M @ for all n € N, then H € PR({F,M: n € N)).
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Since pc(H) # @, it follows that N {H,: n € N} C M, a contradiction. Thus

SO

me H, C U. By 2.9, the proof is complete.

Note. If we replace closed sets by points in the preceding discussion we

obtain analogous characterizations of the concepts of Gs-diagonal, diagonal a

se

t of interior condensation [9], and diagonal a primitive set of interior conden-

sation. Extensions may be made to non first countable analogues of developable
spaces and spaces having base of countable order as well. We describe the

fo
in

undations of a theory of primitive structure for non first countable spaces

(18].

REFERENCES

1. A. V. Arhangel’skil, Certain metrization theorems, Uspehi Mat. Nauk. 18 (1963), 139-145

(Russian).

. N. Aronszajn, Uber die Bogenverkniipfung in topologischen Riumen, Fund. Math. 15 (1930),
228-241.

. H. R. Bennett, On quasi-developable spaces, General Topology and Appl. I (1971), 253-262.

. H. R. Bennett and D. J. Lutzer, 4 note on weak 6-refinability, General Topology and Appl.
2 (1972), 49-54.

. J. D. Monk, Introduction to set theory (McGraw-Hill, New York, 1969).

. L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology (Holt, Rinehart, and
Winston, New York, 1970).

. H. H. Wicke, Open continuous images of certain kinds of M-spaces and completeness of map-
pings and spaces, General Topology and Appl. 1 (1970), 85-100.

8. Base of countable order theory and some generalizations (Proceedings, University of
Houston Point Set Topology Conference 1971, Houston, Texas, 1972).
9. On spaces whose diagonal is a set of interior condensation, Notices Amer. Math. Soc.

19 (1972), A-657.

10. H. H. Wicke and J. M. Worrell, Jr., Open continuous mappings of spaces having bases of

countable order, Duke Math. J. 34 (1967), 255-272; errata, 813.

11. On the open continuous images of paracompact Cech complete spaces, Pacific J. Math.
37 (1971), 265-275.

12. Topological completeness of first countable Hausdorff spaces I, Fund. Math. 75 (1972),
209-222.

13. Completeness and topologically uniformizing structure, in TOPO 72, edited by R.
Alo, R. Heath, ]J. Nagata (Springer-Verlag, New York, 1972), 557-585.

14. Pararegularity, Notices Amer. Math. Soc. 20 (1973), A-173.

15. The preservation of primitive base by certain open mappings, Notices Amer. Math.
Soc. 20 (1973), A-533.

16. Uniformly primitively complete mappings, Notices Amer. Math. Soc. 20 (1973),
A-675.

17. A characterization of primaitive bases, Proc. Amer. Math. Soc. 560 (1975), 443-450.

18. Primitive structures in general topology, in Studies in Topology, edited by N. Stavrakas
and K. R. Allen (Academic Press, New York, 1975), 581-599.

19. Sequential definitions for which local implies global, in preparation.

20. J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces,

Can. J. Math. 17 (1965), 820-830.

21. Concerning spaces having bases of countable order, Notices Amer. Math. Soc. 12
(1965), 343.
22. Perfect mappings and certain interior images of M-spaces, Trans. Amer. Math. Soc.

https://doi.org/10.4153/C)

181 (1973), 23-35.

M-1975-115-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-115-1

PRIMITIVE BASES 1109

23. ——— A central metrization theorem I, Notices Amer. Math. Soc. 20 (1973), A-355.

24. A central metrization theorem 11, Notices Amer. Math. Soc. 20 (1973), A-381.

25. J. M. Worrell, Jr., Upper semi-continuous decompositions of spaces having bases of countable
order, Portugal. Math. 26 (1967), 493-504.

Ohio Unaiversity,
Athens, Ohio

https://doi.org/10.4153/CJM-1975-115-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1975-115-1

