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SEARCHING FOR SIMULTANEOUS ARITHMETIC
PROGRESSIONS ON ELLIPTIC CURVES

IRENE GARCIA-SELFA AND JOSE M. TORNERO

We look for elliptic curves featuring rational points whose coordinates form two arith-
metic progressions, one for each coordinate. A constructive method for creating such
curves is shown, for lengths up to 5.

1. INTRODUCTION

Let us consider an elliptic curve E defined over Q by a general Weierstrass equation

Y2 + a,XY + a3Y = X3 + a2X
2 + a4X + a6, a{ € Q.

DEFINITION: We shall say that the points P0,...,Pn e E are in (or form an)
x-arithmetic progression if their x-coordinates are. The symmetric concept of y-arithmetic
progression is denned analogously.

We denote by SX(E) and Sy(E) the maximal number of points in i-arithmetic pro-
gression and y-arithmetic progression respectively that can be found in E.

REMARK. What we don't know about arithmetic progressions on elliptic curves is far
more than what we know. Apparently the first one to consider the problem was Mohanty
([5]) who focused on the Mordell equation Y2 = X3 + k and looked for integral points
forming arithmetic progressions of difference 1. He proved that for all these curves and
for just these progressions SX(E) ^ 2 and Sy(E) ^ 4.

Later on, Lee and Velez [4] fixed their attention in the same family, but they took
into consideration all possible progressions. They found infinite families of such curves
satisfying SX{E) ^ 4 and (not simultaneously) Sy(E) > 6.

Bremner, Silverman and Tzanakis [2] took another quite popular family of curves,
Y2 — X(X2 — n2), and proved that for all these curves, and considering only integral
points, SX(E) ^ 5. They went further and proved very interesting results on this line
concerning free subgroups of rank one in arbitrary elliptic curves. Their proofs were quite
lengthy, involving very delicate computations of local heights.
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After this (although it was published earlier) Bremner [1] carried out very clever com-
putations in order to show that there are infinitely many curves satisfying
SX{E) ^ 8. Campbell [3] followed this line to produce curves with eight points in
x-arithmetic progression and also a genus 1 curve with 12 such points (unfortunately
the curve was not in Weierstrass form!). Maybe the more intriguing parts of Bremner's
results are, on one side, the numerical evidence of the fact that the length of x-arithmetic
progressions on elliptic curves may well not be bounded (although Bremner himself did
not risk stating such a conjecture) and, on the other hand, the apparent connection
between long arithmetic progressions and high ranks of the Mordell-Weil group.

Prom these last papers it becomes clear that the main problem, when one deals with
arithmetic progressions on elliptic curves, is that the number of parameters involved (if
one wants to work in full generality) becomes unmanageable. This is why the only precise
results known are confined to one-parametric families.

This paper is devoted to finding simultaneous arithmetic progressions on elliptic
curves. The precise definition goes as follows:

DEFINITION: We shall say that the points P0,...,Pn£E are in (or form a) simulta-
neous arithmetic progression if their x-coordinates and their y-coordinates are arithmetic
progressions (maybe not in the same order).

We shall denote by Sx<y(E) the maximal number of points in simultaneous arithmetic
progressions that can be found in E.

REMARK. When one looks for such progressions with more than three points, things start
to become difficult, as the ordering of the points in both progressions may not coincide
(see below for a precise explanation of this). Our initial aim, following [1], was to impose
the conditions with full generality in order to narrow the search with respect to the x-
arithmetic progression problem. Unfortunately it eventually became too complicated to
deal with as well. So, we took a different point of view from Bremner [1]. We have
worked with (almost) arbitrary elliptic curves, but we have looked for a restricted class
of arithmetic progressions. With this starting point, we have been able to prove the
following new results.

THEOREM 1. There are elliptic curves over Q with Sy{E) ^ 7.

THEOREM 2 . There are elliptic curves over Q with Sx<y{E) ^ 5.

2. A CONSTRUCTION SCHEME

As is well-known ([7]), any change of variables preserving the Weierstrass form of E
must be of the form

X' = u2X + r, Y' = u3Y + sX + t,

so the existence (and the length) of x-arithmetic progressions is not affected by changes
of variables. This also implies that, up to such a change, we can consider all the points in
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a certain x-arithmetic progression to be integral (the y case being symmetric). Therefore
as an immediate corollary of Siegel's theorem (see [6] for the original proof or [7] for a
modern one) E cannot contain infinite x-arithmetic progressions.

Hence we are left to study if there is a universal bound, independent of the chosen
curve, for the length of arithmetic progressions. So, assume we have a curve with an
x-arithmetic progression on it, say Po,...,Pn, and assume [2]P0 ^ 0. Then we can take
Po to be (0,0) and rotate the axes in order to take the tangent at (0,0) to the line X = 0
(warning: this may dismantle y-arithmetic progressions in the original model). Then our
curve must look like

E: Y2 + aXY + bY = X3 + cX2.

Now, if we make the change

our curve will be defined by

E{a, 6) : Y2 + aXY + bY = X3- bX2.

This equation (also called Tate normal form) features two another obvious points
in E(a,b) other than (0,0): (6,0) and (0, —b). Hence, in what follows we shall make a
new (strong indeed) assumption and suppose Pi = (6,0). This implies that the differ-
ence in our x-arithmetic progression must be precisely 6. In fact, we shall actually take
Po = (0, —6) in order to avoid the repetition of 0 in the y-progression.

We must look for conditions which assure us that points (kb,yk) appear in E(a,b).

Furthermore, we want these points to form as well a y-arithmetic progression. Although
the subindex of the points will represent the increasing order in the first coordinate it is
obvious that, as far as the second coordinate is concerned, the subindex of a point might
have nothing to do with its position in the y-arithmetic progression.

In order to do that, remember that if Pk = {kb, yk) G E(a, b) then we must have

_ -6(afc + 1) ± 6^(0*; -I-1)2 + 4k2b{k - 1)
Vk- 2 ;

so proving the existence of Pk is equivalent to finding a rational solution for the diophan-
tine equation

Z\ = (ak + I ) 2 + 4A;2(Jfc - 1)6.

We now make the change of variables

ak = ak + 1 + Zk, 0k = ak + l - Zk,

and so our previous equation becomes

+ Ak2{k - 1)6 = 0.
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Now, when we gather together the equations for P2,..., Pn we must take into account
that, for all k, a* + 0k = 2ak + 2. The diophantine system which is equivalent to the
existence of our x-arithmetic progression is, therefore

2

302

n02

0(303

- 2 a 3 - 203

+166
+726

an0n +4n2(n-l)i>

-2an - 20n

0
0

0

= 2(n-2)na2

This can be viewed as the intersection of (n — 1) hyperquadrics and (n — 2) hy-
perplanes in the affine (2n — l)-dimensional space over the rationals. Such a system is
clearly unmanageable for, say n = 10 (not to say less). Observe that, as 6 = 0 leads to
no progression at all, we must in fact ask all a, and fa to be non-zero.

What looks particularly useful with this formulation of the problem is that, in this
context, we can write

and hence the two solutions for yk are precisely, —6a*/2 and —6/?t/2. We can choose
freely one of them, as the above equations are symmetric in {at, fa}. This is quite useful
in order to force the existence of a simultaneous y-arithmetic progression.

3. NUMERICAL RESULTS

Unlike the case of x-arithmetic progressions (for instance, in [1]), where the con-
ditions for the existence of a progression of length, say, k are also to be filled for the
existence of a longer progression, in our case, if a set P0,...,Pn displays a simultane-
ous arithmetic progression, that does not mean, in principle, that Po,... ,Pk also does
(although we have not been able so far to find an example of this).

All the calculations in this section have been carried out with MapleV and PARI/GP.

L E N G T H 3. There are infinitely many curves with a simultaneous arithmetic progression

of length 3. In fact, we may even ask both coordinates to share the same order in the

progression. This clearly implies the three points must be collinear, and it also explains

why one cannot hope to have such examples with longer lengths.

For instance, all curves of the family

E(b) : Y2 + (26 - \)XY + bY = X3 - bX2

have the progression:

{(0,-6), (6,0), (26,6)}.
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L E N G T H 4. The system needed for the existence of an x-progression of length 4 is

a2ft +166 = 0
a3ft +726 = 0

3(a 2 +f t ) -2(a3 + ft) = 2

with 2/2 = —fob/2, j/3 — —fob/2. Now, we can choose two values for fo and fo which will
guarantee the existence of the y-arithmetic progression. These values, when replaced in
the system will lead to a system of three linear equations in Q>2,Q3,b whose matrix is

ft
0
3

0

ft
- 2

16
72
0 2 -

0
0

3ft 2ft

Hence we shall have a unique solution if ft / ft/3, a family of solutions if
ft = -2 /3 , ft = -2 and no solutions at all otherwise. The pair (ft = - 2 / 3 , ft = -2)
does not guarantee a length 4 y-progression but it will appear later, in the length 5 study.

If we want 0 and —6 to be in the y-progression, there are only six possibilities for
this sequence and they are precisely

{(26,6,0, -6), (6,0, -6, -26), (0, -6, -26, -36), (\, 0, ̂ -, -b)

- 6 . -36 \ / - 6 -26

Each of them allows two possible choices for fo and fo, except the penultimate case,
in which {fo = l,fo = 3) is forbidden. The results found are shown in the following
table, except the cases (ft = —2, fo = —4), which leads to a degenerate case 6 = 0, and
(ft = 4, fo — 6), which gives the same curve as (ft = 4,ft = —2).

{fo, ft)

(-4,-2)
(-2,4)

(-1,1)
(2/3,4/2)

(1,-1)
(4/3,2/3)

(3,1)
(4,-2)
(6,4)

(a,6) Sx

(-5/3, -1/6) > 5
(-7/15,4/15) £ 5

(-29/48,7/192) > 4
(-7/9,2/27) £4
(-5/16,1/64) ^ 6

(-7/45,-1/270) ^ 4
(29/96, -5/128) ^ 4

(1/3,1/6) >4
(25/21, -2/7) ^ 6

Sy

> 5
^ 4
^ 4
^ 5
^ 7
^ 4
^ 4

^ 5
> 4

This search gave us the first interesting example, announced in Theorem 1: the
existence of an elliptic curve with a y-arithmetic progression of length 7, a fact not
reported until now, as far as we know. We shall look more closely at this example below.
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LENGTH 5. The system needed for the x-progression is

+166 = 0
a303 +726 = 0

a40t +1926 = 0

•fa) = 2
-2(a4 + /?4) = 4

where yj = —0jb/2, for j = 2,3,4. Observe now that a blind choice of {02,03,0A) as in
the previous case will lead, in general, to an incompatible system of equations.

In fact, the rank of the coefficient matrix is 4, except in the case 02 = /33/3 = /34/6
but, in this case the system is incompatible. However, these relations will prove useful
later on.

There are ten possible progressions of length 5 containing both 0 and -6, each of
them permitting six different choices for the triple {02,03,0*), which are the permutations
of a single choice. From this 60 cases only two led to a compatible system. This two
cases, shown below, prove therefore Theorem 2.

CASE 1. 02 = - 4 , 03 = - 2 , 04 = - 6

This triple gives the curve E{—5/3, -1/6) with the following points lying on it:

!(o ±\ (zl o) (— zl\ (zl zl) (— zl\\
^ \ 6/ \ 6 •/ V 6 6 / \ 6 6 / \ 6 6 / J

which form a simultaneous arithmetic progression of length 5.

CASE 2. 02 = l, 03 = - 1 , 0A = - 2

The resulting curve is E{—5/16,1/64) with the following points:

\VU> 128/' V 6 4 ' / ' V64' 1 2 8 ^ 6 4 ' 128/' V64' 128/J'

which form a simultaneous arithmetic progression (note that this curve also appeared in
the previous case). Furthermore, other points lying on the curve are

(I z±)(zl zl\ (L zl\
\8' 128/ \32 '128/ ' V64' 6 4 / '

hence as noted above Sx > 6, Sy > 7, although there are no simultaneous progressions
in the curve of length 6.

REMARK. AS we mentioned at the beginning of the section, both examples of simulta-
neous arithmetic progressions of length 5 also have arithmetic progressions of length 4.
This is also the case with the nine examples of length 4 found. However, this does not
seem to us to be enough to conjecture that this holds in general.
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Back to our search. Another reasonable way of constructing simultaneous arithmetic

progressions of length 5 seems to be using 0 and — b(a + 1) as terms of our progression

and again we have 60 possibilities, but none lead to a solution, as we now show.

CASE 1. 02 = 4(a + l),/33 = 6(a + l),/34 = 8(a + l)

If this choice made sense, we would have the y-progression

{0, -b{a + 1), -2b(a + 1), -3b(a + 1), -46(o + 1)}.

As we said above, there are 5 more possibilities giving this sequence, permuting the

values of ft, ft and ft, but this one suits us well as an illustration. Our system matrix

is now

16

72

192

-4(o

0
0
3

0

-6(a +

0

- 2

0

0

0

-8(a +

0

- 2

0

0

0\
0

0

2

4/

with determinant -3072(a + I)2. Hence we must take a = - 1 if we want the system to

have solution, but this case is degenerate.

CASE 2. ft = 6(o + 1), ft = 4{a + 1), ft = 8(o + 1)

This case is also impossible, but for different reasons: it has a matrix with deter-

minant 7168(a + l)2(4a + 5). The choice a = -5 /4 leads to a compatible system. But

remember that it also must satisfy

a =
Pi-2
2i

1 = 2,3,4,

which is not true in this case. In fact, this extra condition annihilates the advantage of

making such a choice, because the value of the parameter cannot be truly arbitrary.

4. FINAL REMARKS

The above arguments, when applied to a length n simultaneous arithmetic progres-

sion lead to n(n - l)/2 progressions with (n — 2)! possible value choices for each one.

That is, n!/2 systems have to be checked. We have done the 360 calculations for n = 6,

obtaining no simultaneous progressions. Of course, that does not mean that the case

n — 7 will also be unsuccessful, as we noted before, but most probably this kind of search

will not produce further results.

As a final comment, we would like to stress possible ways for expanding the results

in this paper:

(a) The first obvious thing to do it is enlarging the scope of the progressions consid-

ered. Full generality, although desirable, may be too messy to deal with, at least with the
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current state of the art. A simpler way could be, for instance, considering i-progressions

in which b appears, although not necessarily as the first term. However, this has also

proved to be unsuccessful for n = 6 (at a cost of around 72 CPU hours).

(b) While looking for y-progressions seems difficult, the formulation used here for

the existence of x-progressions of given length can be found useful. In a future paper, we

expect to explore this presentation of the problem, with the help of elimination theory

and Grobner bases.
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