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A Complete Classification of AI Algebras
with the Ideal Property

Kui Ji and Chunlan Jiang

Abstract. Let A be an AI algebra; that is, A is the C∗-algebra inductive limit of a sequence

A1
φ1,2
−→ A2

φ2,3
−→ A3 −→ · · · −→ An −→ · · · ,

where An =
Lkn

i=1 M[n,i](C(Xi
n)), Xi

n are [0, 1], kn, and [n, i] are positive integers. Suppose that A has

the ideal property: each closed two-sided ideal of A is generated by the projections inside the ideal, as

a closed two-sided ideal. In this article, we give a complete classification of AI algebras with the ideal

property.

1 Introduction

Remarkable classification theorems have been obtained for the AH algebras, the in-

ductive limits of matrix algebras over metric spaces (with uniformly bounded dimen-

sions), in two important special cases:

(i) AH algebras of real rank zero (see [1, 2, 5]) and

(ii) simple AH algebras (see [3, 4, 6, 7, 9, 11]).

To unify and generalize the classification of these two special cases, we will consider

C∗-algebras with the ideal property: every closed proper two sided ideal is generated

by its projections. Obviously, the class of C∗-algebras with the ideal property includes

C∗-algebras of real rank zero and simple C∗-algebras as very special cases.

An approximate interval algebra (AI algebra) is a separable C∗-algebra that is the

inductive limit of a sequence of finite direct sums of matrix algebras over C[0, 1], i.e.,

(An =
⊕kn

i=1 M[n,i](C[0, 1])).

In 1991, George Elliott classified the simple unital approximate interval algebras

using an invariant consisting of K0 theory and tracial state data (see [2] or [13]). In

other words,

A ∼= B ⇐⇒ (K0(A), T(A)) ∼= (K0(B), T(B)).

In 1995, Kenneth H. Stevens proved a generalization of this result by permitting the

algebras to be unital and to have the ideal property (see [13]). Furthermore, the

algebra was also assumed to be approximately divisible. In these circumstances, he
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proved that A ∼= B if and only if, for any projection e ∈ A with ψ0[e] = [ f ], there

exist

ψ0 : K0(A)
∼=
→ K0(B) and ψ

e f
T : T( f B f )

∼=
→ T(eAe)

such that the affine isomorphisms ψ
e f
T , ψ

e ′ f ′

T are compatible with one another for

e ′ < e and f ′ < f with ψ0[e] = [ f ] and ψ0[e ′] = [ f ′], where compatibility means

the following diagram is commutative:

T( f B f )

²²

ψ
e f
T

// T(eAe)

²²

T( f ′B f ′)
ψ

e ′ f ′

T

// T(e ′Ae ′).

In this paper, our purpose is to generalize the Stevens result to classify all of the

AI algebras with the ideal property; that is, both of the above restrictions (of being

unital and being approximately divisible) will be removed.

Let us point out that our proof is completely different from Stevens’ proof of his

theorem. In his proof, Stevens introduced a lot of special concepts such as “ribbon

structure”, “n-curtain”, “weighted n-curtain” , and “δ−n subribbon structure”, which

heavily depend on the condition that the spectrum is the interval [0,1], and do not

have higher dimensional analogues.

In this paper, we will prove a dichotomy result (Theorem 4.2) that can be used

to avoid all the technicalities of Stevens’ paper. Let us point out that this dichotomy

result can be generalized to higher dimensions (as will be shown in a joint work of

the second author with others; see [8]). Once the dichotomy theorem is proved,

many techniques of the simple case (see [6, 7, 10]) can be used in this new setting.

We believe that this new approach will be very helpful for the future classification

of AH algebras with higher dimensional spectrum. Besides this, we also need to

overcome the difficulty of the lack of approximate divisibility. As in [6], we will

use Li’s refinement of Thomsen’s theorem (see [9, 15]). But in our case, the partial

homomorphism may not be large as in [6, 1.9]. Lemma 2.5 deals with this problem.

The paper is organized as follows. In Section 1, some notation and known results

will be introduced. In Section 2, we will prove the existence theorem in the case

that the first algebra has only one block. In Sections 3 and 4 we will introduce the

uniqueness theorem and prove the dichotomy theorem. In Section 5, we will use the

existence theorem and the results of Sections 3 and 4 to prove the main theorem.

Since the partial maps may not be unital, we consider the minimal direct summands

Ai
n of An and reduce to the case of unital maps by using the projections (the images

of the unit of Ai
n under partial maps φ

i, j
n,m) to cut down Am. This technique can

be used to avoid the assumption of unital maps and make the existence theorem

and uniqueness theorem compatible. Then, combining with dichotomy theorem, we

finish the classification of AI algebras with the ideal property.

We will first introduce some notation and known results. All the notation is

adopted from [7, 10] (see [10, Section 1] and [7, §1.1 and §1.2]).
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In the inductive system (An, φn,m), we understand that φn,m = φm−1,m◦φm−2,m−1◦
· · · ◦ φn,n+1, where all φn,m : An → Am are homomorphisms.

We shall assume that, for any summand Ai
n in the direct sum An =

⊕kn

i=1 Ai
n,

necessarily, φn,n+1(1Ai
n
) 6= 0; otherwise, we could simply delete Ai

n from An without

changing the limit algebra.

If An =
⊕

i Ai
n and Am =

⊕
j A

j
m, we shall use φ

i, j
n,m to denote the partial map of

φn,m from the i-th block Ai
n of An to the j-th block A

j
m of Am.

For a unital C*-algebra A, let TA denote the space of tracial states of A, i.e, τ ∈
TA, if and only if τ is a positive linear map from A to the complex plane C, with

τ (xy) = τ (yx) and τ (1) = 1. AffT A is the collection of all the affine maps from

TA to C. (In the most references, AffT A is defined to be the set of all the affine maps

from TA to R. Our AffT A is a complexification of the standard AffT A.) An element

1 ∈ AffT A, defined by 1(τ ) = 1 for all τ ∈ TA, will be called the unit of AffT A.

AffT A, together with the positive cone AffT A+ and the unit element 1, form a scaled

ordered complex Banach space. (Notice that for any element x ∈ AffT A, there are

x1, x2, x3, x4 ∈ AffT A+ such that x = x1 − x2 + ix3 − ix4.)
For a unital C*-algebra A, let

∨
(A) denote the collection of all Murray-von Neu-

mann equivalence class of projections in
⋃∞

n=1 Mn(A). Define

K0(A) = {(a, b) : a ∈
∨

(A), b ∈
∨

(A)}/ ∼,

where (a, b) ∼ (a
′

, b
′

) if and only if there is c ∈
∨

(A) such that

a + b
′

+ c = a
′

+ b + c ∈
∨

(A).

Let K0(A)+ = {[(a, 0)] ∈ K0(A), a ∈
∨

(A)} be the positive cone of K0(A). If we

further assume that A is stably finite, then K0(A) has properties

K0(A)+ − K0(A)+ = K0(A) and K0(A)+ ∩ (−K0(A)+) = 0.

To each C*-algebra A, define the scale of A to be the subset
∑

A
△
= {[p]| p

is a projection of A}. Every morphism Λ : A → B induces a homomorphism of

scaled ordered groups (K0(A), K0(A)+,
∑

A) → (K0(B), K0(B)+,
∑

B) in the sense

that K0(Λ)K0(A)+ ⊂ K0(B)+, and K0(Λ)
∑

A ⊂
∑

B.

Remark 1.1 The pairing 〈 · , · 〉 : TA × K0(A) → R is defined by

〈τ , x〉 =

k∑

i=1

τ (pii) −
k∑

i=1

τ (qii), ∀τ ∈ TA,

where x = [p] − [q] ∈ K0(A) is represented by the formal difference of two projec-

tions p, q ∈ Mk(A). Set τ (x) = 〈τ , x〉. Then τ induces a group homomorphism from

K0(A) to R by x(τ )
△
= τ (x). In this way, each element x ∈ K0(A) induces an affine

map from TA to R, and therefore, defines an element of AffT A. This gives us a map

σ : K0(A) → AffT A.
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Let α : K0(A) → K0(B) be a scaled ordered group homomorphism, and let

ξ : TB → TA be an affine map. Then, ξ induces a linear map ξ∗ : AffT A → AffT B

defined by ξ∗( f )(τ ) = f (ξ(τ )) for all f ∈ AffT A and τ ∈ TB. It is obvious that

ξ∗(AffT A+) ⊂ AffT B+, ξ∗(1) = (1).

Hence, ξ induces a positive unital linear map (or scaled ordered map) from AffT A

to AffT B.

We shall say that α and ξ are compatible if

τ (α(x)) = (ξ(τ ))(x), ∀x ∈ K0(A), τ ∈ TB.

It is evident that α and ξ are compatible if and only if the following diagram

commutes:

K0(A)

α

²²

σ
// AffT A

ξ∗

²²
K0(B)

σ
// AffT B.

In the rest of this paper, we will only use the map from AffT A to AffT B. So instead

of ξ∗, we will use ξ to denote this map.

Remark 1.2 Any unital homomorphism φ : A → B induces a unital positive linear

map

AffT φ : AffT A → AffT B.

Suppose that P ∈ Ml(C(X)) is a non-zero projection with constant rank . It is well

known that

AffT(PMl(C(X))P) = AffT(Ml(C(X))) = C(X).

If φ : C(X) → Ml(C(Y )) is a unital homomorphism, then AffT φ : C(X) → C(Y )

is given by

AffT φ( f ) =
1

l

l∑

i=1

φ( f )ii , ∀ f ∈ C(X),

where φ( f )ii denotes the entry of φ( f ) ∈ Ml(C(Y )) at the position (i, i).

Remark 1.3 Let φ1 : C(X) → PMl1 (C(Y ))P, φ2 : C(X) → QMl2 (C(Y ))Q be two

unital homomorphisms. Set

φ = diag(φ1, φ2) : C(X) → (P ⊕ Q)Ml1+l2 (C(Y ))(P ⊕ Q).

Then by Remark 1.2,

AffT φ =
k1

k1 + k2
AffT φ1 +

k2

k1 + k2
AffT φ2,

where k1 = rank P and k2 = rank Q. Also, if P and Q are orthogonal projections in

Ml(C(Y )), then φ = diag(φ1, φ2) can be considered to be a homomorphism from

C(X) to (P + Q)Ml(C(Y ))(P + Q), and the above equality still holds.
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Remark 1.4 Let φ : C(X) → PMk1
(C(Y ))P be a unital homomorphism. For any

given point y ∈ Y , there are points x1(y), x2(y), . . . , xk(y) ∈ X, and a unitary U y ∈
Mk1

(C(Y )) such that

φ( f )(y) = P(y)U y




f (x1(y))

. . .

f (xk(y))

0

. . .

0




U ∗
y P(y) ∈ P(y)Mk1

(C(Y ))P(y)

for all f ∈ C(X). Equivalently, there are k rank one orthogonal projections

p1, p2, . . . , pk with
∑k

i=1 pi(y) = P(y) and x1(y), x2(y), . . . , xk(y) ∈ X, such that

φ( f )(y) =

k∑

i=1

f (xi(y))pi(y), ∀ f ∈ C(X).

Let us denote the set {x1(y), x2(y), . . . , xk(y)}, counting multiplicities, by SP φy .

In other words, if a point is repeated in the diagonal of the above matrix, it is included

with the same multiplicity in SP φy . We shall call SP φy the spectrum of φ at the point

y (see also [6]). Let us define the spectrum of φ, denoted by SP φ, to be the closed

subset

SP φ :=
⋃

y∈Y

SP φy ⊆ X.

Alternatively, SP φ is the complement of the spectrum of the kernel of φ, considered

as a closed ideal of C(X). The map φ can be factored as

C(X)
i∗

−→ C(SP φ)
φ1
−→ PMk1

(C(Y ))P

with φ1 an injective homomorphism, where i denotes the inclusion SP φ →֒ X.

Also, if A = PMk1
(C(Y ))P, then we shall call the space Y the spectrum of algebra

A and write SP A = Y (= SP(id)).

Remark 1.5 In Remark 1.4, if we group together all the repeated points in

{x1(y), x2(y), . . . , xk(y)}, and sum their corresponding projections, we can write

φ( f )(y) =

l∑

i=1

f (λi(y))Pi (l ≤ k),

where {λ1(y), λ2(y), . . . , λl(y)} is equal to {x1(y), x2(y), . . . , xk(y)} as a set, but

λi(y) 6= λ j(y) if i 6= j; and each Pi is the sum of the projections cor-

responding to λi(y). If λi(y) has multiplicity m (i.e., it appears m times in

{x1(y), x2(y), . . . , xk(y)}), then rank(Pi) = m.
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Definition 1.6 We shall call the projection Pi in Remark 1.5 the spectral projection

of φ at y with respect to the spectral element λi(y). If X1 ⊂ X is a subset of X, we shall

call
∑

λi (y)∈X1
Pi the spectral projection of φ at y corresponding to the subset X1 (or with

respect to the subset X1).

Let φ : Mk(C(X)) → PMl(C(Y ))P be a unital homomorphism. Set φ(e11) = p,

where e11 is the canonical matrix unit corresponding to the upper left corner. Set

φ1 = φ|e11Mk(C(X))e11
: C(X) −→ pMl(C(Y ))p.

Then PMl(C(Y ))P can be identified with pMl(C(Y ))p ⊗ Mk in such a way that φ =

φ1 ⊗ idk . Let us define

SP φy := SP(φ1)y , SP φ := SP φ1.

The following fact will be frequently used: For homomorphisms φ and φ1 with

rank p = k,

AffT φ1( f )(y) =
1

k

∑

xi (y)∈SP(φ1)y

f (xi(y)) and AffT φ = AffT φ1.

Let φ : Mk(C(X)) → PMl(C(Y ))P be a (not necessary unital) homomorphism,

where X and Y are connected finite simplicial complexes. Then

#(SP φy) =
rank φ(1k)

rank(1k)
, for any y ∈ Y,

where #( · ) denotes the number of elements in the set counting multiplicity. It is also

true that for any nonzero projection

p ∈ Mk(C(X)), #(SP φy) =
rank φ(p)

rank(p)
.

Let

φ : A =

q⊕
i=1

Mki
(C(Xi)) → B =

t⊕
j=1

P jMl j
(C(Y j))P j

be a homomorphism and denote by Y the disjoint union
∐

Y j of the spaces {Y j}t
j=1.

For each y ∈ Y , y ∈ Y j for some j. The spectrum of the homomorphism φ at the

point y ∈ Y is defined by

SP φy =

q⋃
i=1

SP(φi, j)y ,

where the homomorphism

φi, j : Ai
= Mki

(C(Xi)) → φi, j(1Ai )P jMl j
(C(Y j))P jφ

i, j(1Ai )

https://doi.org/10.4153/CJM-2011-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-005-9


A Complete Classification of AI Algebras with the Ideal Property 387

is the partial map of φ corresponding to i, j. Note that

SP φy =

q⋃
i=1

SP(φi, j)y ⊂ X :=
∐

Xi .

For any f ∈ AffT Ai
= C(Xi),

AffT φi, j( f ) =
rank P j

rank(φi, j(1Ai
))

(AffT φ( f )) j ,

where the AffT map on the left hand side is taken by regarding the homomorphism

φi, j as a map from Ai to φi, j(1Ai )Bφi, j(1Ai ), and the AffT map on the right hand side

is taken by regarding the homomorphism φ as map from A to B j , the j-th summand

of B.

Remark 1.7 For any η > 0, δ > 0, a unital homomorphism

φ : C(X) → QMk(C(Y ))Q

is said to have the property sdp(η, δ) (spectral distribution property with respect to η
and δ), if for any η-ball

Bη(x) := {x ′ ∈ X; dist(x ′, x) < η} ⊂ X

and any point y ∈ Y ,

#(SP φy ∩ Bη(x)) ≥ δ#(SP φy),

counting multiplicity.

For a unital homomorphism φ : PMk(C(X))P → QMl(C(Y ))Q, we shall say that

φ has the property sdp( · , · ) if

φ|pMk(C(X))p : C(X) (∼= pMl(C(X))p) → φ(p)Ml(C(Y ))φ(p)

has the property sdp( · , · ), where P and Q are non-zero projections and p is a rank

1 subprojection of P.

The following lemma is well known. (See [10]).

Lemma 1.8 Let A = limn→∞(An, φn,m) and B = limn→∞(Bn, ψn,m) be unital AI

algebras, and let α : K0A → K0B be a scaled ordered group isomorphism. Then there

are subsequences An1
, An2

, . . . , Ani
, . . . and Bm1

, Bm2
, . . . , Bmi

, . . . and scaled ordered

K0 maps αi : K0Ani
→ K0Bmi

and βi : K0Bmi
→ K0Ani+1

such that

βi ◦ αi = K0φni ,ni+1
, αi+1 ◦ βi = K0ψmi ,mi+1

,

α ◦ K0φni ,∞ = K0ψmi ,∞ ◦ αi , α−1 ◦ K0ψmi ,∞ = K0φni+1,∞
◦ βi .

For convenience, from now on, we will assume that ni = i and mi = i.
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Remark 1.9 For scaled ordered K0 maps αi : K0Ai → K0Bi , βi : K0Bi → K0Ai+1

in Lemma 1.8, by [16, Lemma 12.1.2], there exist homomorphisms Λ̃i : Ai → Bi ,

M̃i : Bi → Ai+1 such that K0(Λ̃i) = αi , K0(M̃i) = βi , where

Ai =

kn⊕
i=1

M[n,i](C(Xi
n)), Bi =

lm⊕
j=1

M{m, j}(C(Y j
m)) and Xi

n,Y j
m

are all intervals.

Remark 1.10 Let A be a unital C∗-algebra, and let q ∈ A be a non-zero projection.

If k[q] = l[1A] in K0(A), then

AffT i( f ) =
l
k

f , ∀ f ∈ AffT qAq,

where 1A is the unit of A and i : qAq → A is the embedding map. In particular, for

the interval algebra A = Mn(C(X)), X = [0, 1], let q ∈ A be a non-zero projection,

then we have

AffT i(g) =
rank q

n
g, ∀g ∈ AffT qMn(C(X))q.

Remark 1.11 Let A = Mn(C(X)) be an interval algebra, and let q ∈ A be a

non-zero projection. For convenience of description, we need to use the notation

qMn(C(X))q to denote the subalgebra of A that is constructed by using the projec-

tion q to cut down the original algebra. Since qMn(C(X))q ∼= Mrank q(C(X)), the

subalgebra qMn(C(X))q is still an interval algebra.

In this paper, for the AI algebras with the ideal property A and B, we will use K0

groups and the ordered vector spaces AffT(eAe), AffT( f B f ) as the invariants of the

classification, where eAe := {eae|a ∈ A}, f B f := { f b f |b ∈ B}, and e, f are certain

projections in A and B, respectively (see Theorem 5.1).

Now let us discuss the question of the compatibility of these invariants. In Theo-

rem 5.1, we need the projections e ∈ A and f ∈ B to satisfy that α[e] = [ f ], where

α : K0(A) → K0(B) is a scaled ordered group isomorphism. And if we let ξe, f de-

note the isomorphism from AffT(eAe) to AffT( f B f ), then we require the following

conditions in Theorem 5.1:

(i) α and ξe, f are compatible (See Remark 1.1);

(ii) ξe, f and ξe ′, f ′

are compatible (∀e ′ < e, f ′ < f ), i.e., the diagram

AffT(eAe)
ξe, f

// AffT( f B f )

AffT(e
′

Ae
′

)

OO

ξe ′ , f ′

// AffT( f
′

B f
′

)

OO

is commutative.
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In fact, we can deduce condition (i) from condition (ii). First, we have the follow-

ing commutative diagrams:

K0(eAe)
σ

// AffT(eAe)

K0(e
′

Ae
′

)

OO

σ1

// AffT(e
′

Ae
′

)

OO
and K0( f B f )

σ ′

// AffT( f B f )

K0( f
′

B f
′

)

OO

σ2

// AffT( f
′

B f
′

).

OO

If we choose [e ′] ∈ K0(eAe), where e ′ ∈ eAe is a non-zero projection (e ′ < e),

then σ([e ′]) is just the unit of AffT(e ′Ae ′). Since ξe ′, f ′

is an isomorphism, we have

ξe ′, f ′

(σ1([e ′])) = 1Aff T( f ′B f ′) = σ2([ f ′]) = σ2(α[e ′]),

where α[e ′] = [ f ′], and

σ1 : K0(e ′Ae ′) → AffT(e ′Ae ′), σ2 : K0( f ′B f ′) → AffT( f ′B f ′)

are the imbedding maps (see Remark 1.1). By condition (ii), the compability of ξe, f

and ξe ′, f ′

, and the two diagrams above, we know that

ξe, f (σ[e ′]) = ξe ′, f ′

(σ1([e ′])) = σ2(α[e ′]) = σ ′(α[e ′]), ∀[e ′] ∈ K0(eAe),

and the following diagram

K0(eAe)

α

²²

σ
// AffT(eAe)

ξe, f

²²

K0( f B f )
σ ′

// AffT( f B f )

is commutative, then we get condition (i) naturally. So we do not list condition (i) in

the main theorem of this paper (Theorem 5.1).

In this paper, we will denote by P(A) the set of all projections in the algebra A. For

convenience, we will use the symbol • to denote every possible positive integer.

2 Existence Theorem

Let A, B be two AI algebras with the ideal property,

A = lim
n→∞

(An, φn,m), B = lim
n→∞

(Bn, ψn,m),

An =

kn⊕
i=1

Ai
n =

kn⊕
i=1

M[n,i](C(Xi
n)), Bn =

ln⊕
j=1

B j
n =

ln⊕
j=1

M{n, j}(C(Y j
n)).
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Let α : K0A → K0B be a scaled ordered group isomorphism, with inverse α−1,

and let ξ : AffT A → AffT B be an isomorphism of ordered complex Banach spaces,

with inverse ξ−1. Assume that α and ξ are compatible. In this section, we will lift the

two maps to finite stages of the sequences, that is, define maps αn : K0An → K0Bm

and ξn : AffT An → AffT Bm with certain properties, and find a homomorphism

Λn : An → Bm such that K0Λn = αn, and AffT Λn is equal to ξn approximately. This is

called the “existence theorem” in Elliott’s framework of the classification theory [10].

To prove the existence theorem, we need to introduce some lemmas, some of

which are well known.

Lemma 2.1 ([10]) Let A = limn→∞(An, φn,m) and B = limn→∞(Bn, ψn,m) be uni-

tal AI algebras as in Lemma 1.8. Let α : K0A → K0B be a scaled ordered group iso-

morphism, and let ξ : AffT A → AffT B be an isomorphism of scaled ordered complete

Banach spaces compatible with α. For any An, any given finite set F ⊆ AffT An, and

any ε > 0, there exists m > n and a map ξn : AffT An → AffT Bm such that, for all

f ∈ F,

‖(AffT ψm,∞ ◦ ξn)( f ) − (ξ ◦ AffT φn,∞)( f )‖ < ε.

In particular, ξn can be chosen to be compatible with K0ψn,m ◦ αn, where αn is as

described in Lemma 1.8.

For Lemma 2.1, although the condition simple was indirectly mentioned in Li’s

paper, we think the proof does not require it after checking the whole proof step by

step.

Lemma 2.2 ([9]) For any connected compact metric space X, finite subset F ⊂ C(X)

and ε > 0, there is an positive number N ≥ 0 such that, if P ∈ Mr(C(Y )) is a trivial

projection with rank P ≥ N , and ξ : AffT(C(X)) → AffT(PMr(C(Y ))P) = C(Y ) is a

unital positive linear map, where Y is an arbitrary compact metrizable space, then there

is a unital homomorphism

φ : C(X) → PMr(C(Y ))P

such that

‖AffT φ( f ) − ξ( f )‖ < ε, ∀ f ∈ F.

Lemma 2.3 ([12]) Let A = limn→∞(An, φn,m), with

An =

kn⊕
i=1

Ai
n, Ai

n = Pi
nM[n,i](C(Xi

n))Pi
n,

where Xi
n are finite, connected CW complexes and Pi

n ∈ M[n,i](C(Xi
n)) are non-zero

projections. Suppose that any ideal of A is generated by projections, i.e., A has the ideal

property. Then, for any n, any finite subset Fi
n ⊂ Ai

n ⊂ An, any positive integer N and

any ε > 0, there is m0 > n such that any partial map φ
i, j
n,m with m ≥ m0 satisfies either

(a) rank(φ
i, j
n,m(Pi

n)) ≥ N · rank(Pi
n), or
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(b) there exists ψ
i, j
n,m, a homomorphism with finite dimensional range, such that

φi, j
n,m(Pi

n) = ψi, j
n,m(Pi

n), and ‖φi, j
n.m( f ) − ψi, j

n,m( f )‖ < ε, ∀ f ∈ Fi
n,

and K0φ
i, j
n,m = K0ψ

i, j
n,m.

In the statement of the original theorem in [12], φ and ψ also satisfy that

φ
i, j
n,m

h
∼ ψ

i, j
n,m. But we do not need this fact; we only need K0φ

i, j
n,m = K0ψ

i, j
n,m. This

always holds here (at least if the sets Fi
n are large enough).

Remark 2.4 By the proof of Lemma 2.3, we can see the following result is also true:

‖AffT φi, j
n.m( f ) − AffT ψi, j

n,m( f )‖ < ε, ∀ f ∈ e11Fi
ne11,

where e11Fi
ne11 ⊂ AffT M[n,i](C(Xi

n)) = C(Xi
n).

Lemma 2.5 Let A1, A2, A3 be C∗-algebras expressed as PsMns
(C(Xs))Ps, where Ps is a

non-zero projection in Mn(C(Xs)), Xs = [0, 1], s = 1, 2, 3.

Let φ : A1 → A2 be a unital homomorphism. Let ξ : AffT A2 → AffT A3 be a unital

positive linear map, and let Λ̃ : A2 → A3 be a unital homomorphism such that K0(Λ̃)

and ξ are compatible. Let ε > 0 be a fixed number, and let E ⊆ AffT A1 be a finite set.

The following statement is true:

If there is a homomorphism ψ : A1 → A2 defined by point valuations at points

x1, x2, . . . , xn ∈ X1 such that ψ( f ) =
∑n

i=1 f (xi) ⊗ pi ,
∑n

i=1 Pi = 1A2
, Pi =

⊕l
1 pi ,

PiP j = 0, i 6= j, pi ∈ P(A2), l = rank A1, and

‖AffT φ( f ) − AffT ψ( f )‖ < ε, ∀ f ∈ E,

K0(φ) = K0(ψ), then there is a homomorphism Λ : A1 → A3 such that

(i) K0(Λ) = K0(Λ̃) ◦ K0(φ), AffT Λ( f ) = ξ ◦ AffT ψ( f ), ∀ f ∈ E, and

(ii) ‖AffT Λ( f ) − ξ ◦ AffT φ( f )‖ ≤ ε, ∀ f ∈ E.

Proof Without loss of generality, we may assume that

A1 = Ml(C(X1)) = Ml(C([0, 1])), A2 = pMr(C([0, 1]))p, A3 = qMk(C([0, 1]))q,

where p, q are projections in Mr(C([0, 1]) and Mk(C([0, 1]), respectively (see Re-

mark 1.11). For this given ε, by the condition of the lemma, there exists ψ( f ) =∑n
i=1 f (xi) ⊗ pi , pi ∈ P(A2), satisfying

‖AffT φ( f ) − AffT ψ( f )‖ < ε, ∀ f ∈ E.

Define Λ : A1 → A3, Λ( f ) =
∑n

i=1 f (xi) ⊗ Λ̃1,i(pi), where we set

Λ̃ = Λ̃1 ⊗ 1rank p, Λ̃1,i = Λ̃1 ⊗ 1rank pi
.
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Set rank(Λ̃(pi)) = r
′

i , rank(pi) = ri . By the definition of AffT, for any f ∈
C([0, 1]), we have that

AffT Λ( f ) =
l

rank q

n∑

i=1

r
′

i f (xi), AffT ψ( f ) =
l

rank p

n∑

i=1

ri f (xi),

where rank p =
∑n

i=1 lri , rank q =
∑n

i=1 lr
′

i . Since ξ and K0(Λ̃) are compatible, we

have

ξ
( lri

rank p

)
=

lr
′

i

rank q
, ∀i = 1, 2, . . . , n.

So AffT Λ( f ) = ξ ◦ AffT ψ( f ).
Then for any f ∈ E, we have

‖AffT Λ( f ) − ξ ◦ AffT φ( f )‖

≤ ‖AffT Λ( f ) − ξ ◦ AffT ψ( f )‖ + ‖ξ ◦ AffT φ( f ) − ξ ◦ AffT ψ( f )‖

= ‖ξ ◦ AffT φ( f ) − ξ ◦ AffT ψ( f )‖ ≤ ε.

So ‖AffT Λ( f ) − ξ ◦ AffT φ( f )‖ ≤ ε,∀ f ∈ E.
Notice that K0(φ) = K0(ψ). By the definition of Λ,

K0(Λ) = K0(Λ̃ ◦ ψ) = K0(Λ̃) ◦ K0(φ).

This completes the proof.

Theorem 2.6 (Existence Theorem) Let

A = lim
n→∞

(An, φn,m) and B = lim
n→∞

(Bn, ψn,m)

be unital AI algebras with the ideal property, where φn,m, ψn,m are both unital homo-

morphisms,

An =

kn⊕
i=1

Ai
n, Bm =

lm⊕
j=1

B j
m, Ai

n = Pi
nM[n,i](C(Xi

n))Pi
n,

B j
m = Q j

mM{m, j}(C(Y j
m))Q j

m and Xi
n = Y j

m = [0, 1].

Let us assume that A1 has only one block, i.e., k1 = 1. Suppose that there exists an

isomorphism ξ : AffT A → AffT B and an ordered group isomorphism α : K0A → K0B,

such that ξ and α are compatible. It follows that for any ε > 0, and any finite set

E ⊂ AffT A1, there exists a map Λ : A1 → Bm (m large) such that

(i) ‖AffT ψm,∞ ◦ AffT Λ( f ) − ξ ◦ AffT φ1,∞( f )‖ < ε, ∀ f ∈ E, and

(ii) K0Λ = K0ψ1,m ◦ α1.
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Proof By Lemma 1.8, there exists an intertwining of K0 level,

K0A1

α1

²²

// K0A2

α2

²²

// K0A3

α3

²²

// · · · // K0A

α

²²
K0B1

β1xxxx

;;xxxx

// K0B2

β2xxxx

;;xxxx

// K0B3

β3
zzz

==zzzz

// · · · // K0B

such that the following diagram commutes:

K0(A)

α

²²

σ
// AffT A

ξ

²²

K0(B)
σ

// AffT B,

where αi , βi , are scaled ordered homomorphisms, and there exist homomorphisms

Λ̃i : Ai → Bi , M̃i : Bi → Ai+1 such that K0Λ̃i ◦ K0M̃i = K0φi,i+1.

For E ⊂ AffT A1, we can find a finite set F ⊂ A1 such that E ⊂ e11Fe11. For arbi-

trary given ε > 0, we can find N > 0 to satisfy the conditions of Lemma 2.5. Then,

for the given ε > 0 , N > 0 and finite set F, applying Lemma 2.3 and Remark 2.4, we

obtain n1 > 0 such that for any n
′

≥ n1, the partial map φ1,i ′

1,n ′ satisfies either one of

the conditions (recall that A1 only has one block A1
1)

(a) rank(φ1,i ′

1,n ′ (P1
1)) ≥ N · rank(P1

1) or

(b) φ1,i ′

1,n ′ (P1
1) = ψ1,i ′

1,n ′ (P1
1), ψ1,i ′

1,n ′ is a homomorphism with finite dimensional range,

and

∥∥φ1,i ′

1,n ′ ( f ) − ψ1,i ′

1,n ′ ( f )
∥∥ < ε

2
, ∀ f ∈ F,

∥∥AffT φ1,i ′

1,n ′ ( f ) − AffT ψ1,i ′

1,n ′ ( f )
∥∥ < ε

2
, ∀ f ∈ e11Fe11 ⊆ AffT Ai

1.

For n
′

, applying Lemma 2.1, we obtain an integer m > n
′

such that for all f ∈ E,

the following diagram is approximately commutative to within ε
2
:

AffT A1

ξ1

JJJJ

%%JJJJ

// AffT An ′

ξ
′

n

²²

// AffT A

ξ

²²
AffT Bm

// AffT B.

Set ξ1 = ξ
′

n ◦ AffT φ1,n ′ . Then

‖AffT ψm,∞ ◦ ξ1( f ) − ξ ◦ AffT φ1,∞( f )‖ < ε
2
, ∀ f ∈ e11Fe11.
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By Lemma 2.1, ξ ′
n and K0ψn ′,m ◦ αn ′ are compatible. Set

pi ′, j = (ψn ′,m ◦ Λ̃n ′)i ′, j ◦ φ1,i ′

1,n ′(1A1
), P j =

⊕
i ′

pi ′, j .

Then

sizeB
j
m

rank pi ′, j

(ξ ′
n)i ′, j ◦ (AffT φ1,n ′)1,i ′ : AffT A1 → AffT(pi ′, jB

j
m pi ′, j)

is unital, provided that rank(pi ′, j) 6= 0.

(1) If φ1,i ′

1,n ′ satisfies condition (a), and (ξ ′
n)i ′, j is non-zero, then

rank pi ′, j

rank 1A1

≥
rank φ1,i ′

1,n ′(1A1
)

rank 1A1

≥ N (∀i ′, j).

By Lemma 2.2, there exists a unital homomorphism Λi ′, j : A1 → pi ′, jB
j
m pi ′, j such

that for any f ∈ e11Fe11,

∥∥∥AffT Λi ′, j( f ) −
sizeB

j
m

rank pi ′, j

(ξ ′
n)i ′, j ◦ (AffT φ1,n ′)1,i ′( f )

∥∥∥ <
ε

2
.

(2) If φ1,i ′

1,n ′ satisfies condition (b), and (ξ ′
n)i ′, j is non-zero, set

A1 = A1, A2 = φ1,i ′

1,n ′(1A1
)Ai ′

n ′φ
1,i ′

1,n ′(1A1
), A3 = pi ′, jB

j
m pi ′, j .

Applying Lemma 2.5, we can get a unital homomorphism Λi ′, j : A1 → pi ′, jB
j
m pi ′, j

such that

AffT Λi ′, j( f ) =
sizeB

j
m

rank pi ′, j

(ξ ′
n)i ′, j ◦ (AffT ψ1,i ′

1,n ′)( f ).

Since k1 = 1 and φ1,i ′

1,n ′ , ψ
1,i ′

1,n ′ are both unital, we have

(AffT ψ1,n ′)1,i ′ = AffT ψ1,i ′

1,n ′ , (AffT φ1,n ′)1,i ′ = AffT φ1,i ′

1,n ′ .

So

AffT Λi ′, j( f ) =
sizeB

j
m

rank pi ′, j

(ξ ′
n)i ′, j ◦ (AffT ψ1,n ′)1,i ′( f ).

By Remark 2.4, we have

‖AffT φ1,i ′

1,n ′( f ) − AffT ψ1,i ′

1,n ′( f )‖ < ε
2
.

Then, as in the proof of Lemma 2.5, we also can get

∥∥∥AffT Λi ′, j( f ) −
sizeB

j
m

rank pi ′, j

(ξ ′
n)i ′, j ◦ (AffT φ1,i ′

1,n ′)( f )
∥∥∥ <

ε

2
.
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In case (ξ ′
n)i ′, j = 0, let Λi ′, j = 0. Let Λ j =

⊕
i ′ Λi ′, j , then Λ j is a uni-

tal homomorphism. Let Λ : A1 → Bm be the map whose partial maps consist of

Λ j ( j = 1, 2, . . . lm). Since rank Λi ′, j(1A1
) = rank pi ′, j , then by Remark 1.3 we have

(AffT Λ) j =
rank Λ j(1A1

)

sizeB
j
m

AffT Λ j

=

∑
i ′ rank Λi ′, j(1A1

)

sizeB
j
m

AffT
(⊕

i ′
Λi ′, j

)

=

∑
i ′ rank Λi ′, j(1A1

)

sizeB
j
m

(∑

i ′

(
rank pi ′, j∑
i ′ rank pi ′, j

)
AffT Λi ′, j

)

=

∑

i ′

rank pi ′, j

sizeB
j
m

AffT Λi ′, j .

For ξ1 : AffT A1 → AffT Bm, the partial map (ξ1) j =
∑

i ′(ξ
′
n)i ′, j ◦(AffT φ1,n ′)1,i ′ .

When rank pi ′, j 6= 0, we have

∥∥∥
rank pi ′, j

sizeB
j
m

AffT Λi ′, j( f ) − (ξ ′
n)i ′, j ◦ (AffT φ1,n ′)1,i ′( f )

∥∥∥

=
rank pi ′, j

sizeB
j
m

∥∥∥AffT Λi ′, j( f ) −
sizeB

j
m

rank pi ′, j

(ξ ′
n)i ′, j ◦ (AffT φ1,n ′)1,i ′( f )

∥∥∥

≤
rank pi ′, j

sizeB
j
m

ε

2
.

Then, for any f ∈ E, we have that

‖(AffT Λ) j( f ) − (ξ1) j( f )‖ <
rank Λ(1A1

)

sizeB
j
m

ε

2
<

ε

2
.

Thus,

‖AffT Λ( f ) − (ξ1)( f )‖ < ε
2
,

for all f ∈ E, and

‖AffT ψm,∞ ◦ AffT Λ( f ) − ξ ◦ AffT φ1,∞( f )‖ < ε, ∀ f ∈ E.

By the progress of construction of Λ and Lemma 2.3, we have K0Λ = K0ψ1,m ◦ α1.

This completes the proof.

Remark 2.7 For the sake of simplicity, in this existence theorem, we assume that

A1 has only one block. In the future, when we apply the existence theorem to each

block Ai
n, we will apply the theorem to the cut down algebra of Am by the projection

φ
i, j
n,m(1Ai

n
), which will correspond to a unital inductive limit with the first algebra An

having only block Ai
n. In other words, we only need the existence theorem in the case

that A1 (or An, with n fixed) has only one block.
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3 Uniqueness Theorem

First we define the “test functions” introduced in [14].

Suppose that X is a path-connected compact metric space, T is a closed subset of

X, and M > 1 is a positive number. Then χT,M , called the test function associated

with T, M, is defined as follows:

χT,M =





1, x ∈ T,

1 − Mdist(x, T), dist(x, T) ≤ 1
M

,

0, dist(x, T) ≥ 1
M

.

Lemma 3.1 ([9]) Suppose that X is a path-connected compact metric space, and

η, δ > 0. There is a finite set H ⊂ AffT(C(X)) = C(X) such that the following

statement is true. Let Y be a compact metric space, and let two unital homomorphisms

φ, ψ : C(X) → PMk(C(Y ))P satisfy the following two conditions:

(i) For any x ∈ X and η
8

ball B η
8
(x) = {x

′

∈ X|dist(x, x
′

) < η
8
} of x,

# SP φy ∩ B η
8
(x) ≥ δ# SP φy ,

for all y ∈ Y (notice that # SP φy = rank(P));

(ii) ‖AffT φ(h) − AffT ψ(h)‖ < δ
4
, for any h ∈ H.

Then SP φy and SP ψy can be paired to within distance η for each y ∈ Y . That is, one

may write

SP φy = {x1, x2, . . . , xn} and SP ψy = {x
′

1, x
′

2, . . . , x
′

n}

(where n = rank(P)) such that dist(xi , x
′

σ(i)) < η for each i.

Lemma 3.2 ([10]) For each ε > 0, X = [0, 1], there exists δ > 0 such that, if unital

homomorphisms φ, ψ : C(X) → Mn(C(Y )) (Y = [0, 1]) satisfy conditions: for each

y ∈ Y , SP φy and SP ψy can be paired within δ. Then there is a unitary u ∈ Mn(C(Y ))

satisfying:

‖φ(h) − Adu ◦ ψ(h)‖ < ε,

where h is the generator of C(X) with h(x) = x.

In fact, for any given finite set F ⊂ C(X) (instead of h(x) = x), we also can find

the corresponding number δ to make the statement of Lemma 3.2 hold for h(x) and

δ is the generator of C(X).

Combining Lemmas 3.1 and 3.2 in a way similar to the proof of the uniqueness

theorem in [10] (Theorem 5.14), we can easily obtain the following result.

Corollary 3.3 Let A = C(X), with X = [0, 1], F ⊂ A be a finite set. For any ε > 0,

there exists η > 0 such that for any δ > 0, there is finite set H(η, δ, X) ⊂ AffT(C(X))

such that the following statement holds.

If two unital homomorphisms

φ, ψ : A → B =

m⊕
j=1

M{m, j}(C(Y j)),

Y j = [0, 1], satisfy the conditions:
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(i) φ or ψ has property sdp(η, δ),

(ii) ‖AffT φ(h) − AffT ψ(h)‖ < δ, ∀h ∈ H(η, δ, X), and

(iii) K0φ = K0ψ,

then there exists a unitary U ∈ B such that

‖φ( f ) −Uψ( f )U ∗‖ < ε, ∀ f ∈ F.

Remark 3.4 In the proof of Lemma 3.1, the finite set H(η, δ, X) is constructed

by the following procedure. First choose H1 = {χT, 8
η
|T ⊂ X is closed set}; since

H1 is a family of equi-continuous functions, there is a finite set H ⊂ H1 such that

dist(h, H1) < δ
8
, for any h ∈ H, let us denote this by H(η, δ, X). Notice that for any

connected closed subset X
′

of X, if we consider the finite set

H(η, δ, X
′

) = { f |X ′ : f ∈ H(η, δ, X)} = π(H(η, δ, X)),

where π( f ) = f |X ′ ,∀ f ∈ C(X), then the conclusion of Corollary 3.3 is also true

when we consider C(X
′

) instead of C(X). Thus, we have the following corollary at

once.

Theorem 3.5 (Uniqueness Theorem) Let A = C(X), with X = [0, 1], and let a

finite set F ⊂ A be given. For any ε > 0, there exists η > 0 such that for any δ > 0, the

following statement holds:

For any connected subset Xs ⊂ [0, 1], if two unital homomorphisms

φs, ψs : C(Xs) → B =

m⊕
l=1

Mml(C(Yl)), Yl = [0, 1],

satisfy the conditions:

(i) φs or ψs have property sdp(η, δ),

(ii) ‖AffT φs(h) − AffT ψs(h)‖ < δ, ∀h ∈ H(η, δ, Xs) = πs(H(η, δ, X)), and

(iii) K0φs = K0ψs, then there exists a unitary U ∈ B such that

‖φs( f ) −Uψs( f )U ∗‖ < ε, ∀ f ∈ πs(F),

where πs( f ) = f |Xs
for any f ∈ C(X).

4 Dichotomy Theorem

When we try to prove the isomorphism of C∗-algebras A = limn→∞(An, φn,m) and

B = limn→∞(Bn, ψn,m), it is necessary to consider whether or not the nonzero par-

tial maps φ
i, j
n,m, ψ

i, j
n,m have the spectrum distribution property (sdp(η, δ); see Remark

1.7). This is an important condition in the uniqueness theorem, which is one of the

key components of the intertwining argument used to prove the isomorphism of the

inductive limit C∗-algebra; therefore, it is important to be able to ensure that the

partial maps have the spectrum distribution property.
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In this section, we will solve this problem by creating a technique to ensure that

the partial maps have the spectrum distribution property. As mentioned in the in-

troduction, this technique can also be generalized to the case of higher dimensional

spectrum.

We need to make the following preparations.

Lemma 4.1 ([12, Lemma 2.9]) Let A = limn→∞(An, φn,m) be an AI algebra with

the ideal property, with An =
⊕kn

i=1 Ai
n. For any fixed n, i, and δ > 0, there is m0 > n

such that the following statement is true.

For any F = F ⊂ Xi
n, and any m > m0, we have that any partial map φ

i, j
n,m satisfies

either

SP(φi, j
n,m)y ∩ F = ∅,∀y ∈ X j

m or SP(φi, j
n,m)y ∩ Bδ(F) 6= ∅, ∀y ∈ X j

m.

Now for any fixed An =
⊕kn

i=1 M[n,i](C(Xi)) and for any η > 0, apply Lemma 4.1

with δ =
η
4

to obtain m0 > n satisfying the conclusion of Lemma 4.1 for all i =

1, 2, . . . , kn. Considering the partial map φ
i, j
n,m, by the first isomorphism theorem,

there exists an injective map

φ
′i, j
n,m : Ai

n/kerφi, j
n,m → A j

m.

Denote by X
′ j
i the closed subset of Xi such that, in the natural way,

Ai
n/kerφi, j

n,m
∼= M[n,i](C(X

′ j
i )).

Set π
′

i, j( f ) = f |
X

′ j
i

and π =
⊕

i, j π
′

i, j . Then φn,m can be written as

An
π
→ B̃ =

⊕
i

⊕
j

M[n,i](C(X
′ j
i ))

φ
→ Am,

where φ =
⊕

i

⊕
j φ

′i, j
n,m. Notice that X

′ j
i is not necessarily the finite disjoint union

of finite intervals; we wish to enlarge X
′ j
i in ordered to turn it into a finite disjoint

union of intervals. In addition, we also notice that for all y ∈ X
j
m,

SP(φi, j
n,m)y = SP(φ

′i, j
n,m)y .

Set

F j = {x ∈ X
′ j
i |B η

4
(x) ∩ SP(φi, j

n,m)y 6= ∅,∀y ∈ X j
m};

we will prove that X
′ j
i = F j . In fact, for all y0 ∈ X

j
m, x0 ∈ SP(φ

′i, j
n,m)y0

= SP(φ
i, j
n,m)y0

,
we naturally have that

SP(φi, j
n,m)y0

∩ {x0} 6= ∅.

By Lemma 4.1,

SP(φi, j
n,m)y ∩ B η

4
(x0) 6= ∅,∀y ∈ X j

m.
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It means that for all y ∈ X
j
m, SP(φ

′i, j
n,m)y ⊆ F j , then

⋃
y∈X

j
m

SP(φ
′i, j
n,m)y ⊆ F j . Since

φ
′i, j
n,m is injective, then

X
′ j
i =

⋃
y∈X

j
m

SP(φ
′i, j
n,m)y = F j .

And for all x ∈ X
′ j
i , B η

4
(x) ∩ SP(φ

i, j
n,m)y 6= ∅, for all y ∈ X

j
m.

Since X
′ j
i is a closed set in [0, 1], there exist {xk}

L
k=1, xk ∈ X

′ j
i with X

′ j
i ⊆⋃L

k=1 B η
4
(xk). By the discussion above, we have

B η
4
(xk) ⊂ B η

2
(a), B η

2
(a) ∩ SP(φi, j

n,m)y 6= ∅,

for all y ∈ X
j
m, a ∈ B η

4
(xk), k = 1, 2, . . . , L.

Let Y
j,1

i ,Y
j,2

i , . . . ,Y
j,•

i , ( j = 1, 2, . . . lm) denote all the connected components of⋃L
k=1 B η

4
(xk) ⊂ [0, 1].

Then we claim that these finite disjoint intervals

Y
1,1
i ,Y

1,2
i , . . . ,Y

1,•
i ,Y

2,1
i , . . . ,Y

j,s
i , . . . ,Y

lm,•
i

satisfying the following properties.

Property 1 If B̃ =
⊕kn

i=1

⊕lm
j=1

⊕
s M[n,i]C(Y

j,s
i ), then φn,m can be written as

φn,m : An
π
→ B̃

⊕
s

φs

→ Am,

where π =
⊕

s πs, πs( f ) = f |
Y

j,s
i

, and φs : M[n,i](C(Y
j,s

i )) → A
j
m is the homomor-

phism induced by φ
i, j
n,m.

Property 2 We have

SP(φs)y ∩ B η
2
(x0,Y

j,s
i ) 6= ∅, ∀x0 ∈ Y

j,s
i ,∀y ∈ X j

m.

In fact, if x0 ∈ Y
j,s

i , then, by construction, we have x0 ∈ B η
4
(xk) ⊆ Y

j,s
i for some k.

Hence’ SP(φ
′i, j
n,m)y ∩ B η

4
(xk) 6= ∅. Notice that

SP(φs)y = SP(φ
′i, j
n,m)y ∩ Y

j,s
i ,∀y ∈ X j

m,

and B η
4
(xk) ⊆ Y

j,s
i , and we have

SP(φs)y ∩ B η
2
(x0,Y

j,s
i ) =

(SP(φ ′i, j
n,m)y ∩ Y

j,s
i ) ∩ B η

2
(x0,Y

j,s
i ) ⊃ SP(φ ′i, j

n,m)y ∩ B η
4
(xk) ∩ Y

j,s
i 6= ∅.

https://doi.org/10.4153/CJM-2011-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-005-9


400 K. Ji and C. Jiang

The following is the main theorem of this section.

Theorem 4.2 Let A = limn→∞(An, φn,m) be AI algebra with the ideal property, where

An =
⊕kn

i=1 M[n,i](C(Xi
n)), Xi

n ≡ [0, 1]. For any fixed An, and any η > 0, there exist

δ > 0, a positive integer m0 > n, subintervals Y 1
i ,Y 2

i , . . . ,Y •
i ⊂ Xi

n, i = 1, 2, . . . , kn,

and a homomorphism

φ : B̃ =

kn⊕
i=1

⊕
s

M[n,i](C(Y s
i )) → Am,

(m > m0) such that

(i) φn,m factors as φn,m : An
π
→ B̃

φ
→ Am, where π( f ) = ( f |Y 1

i
, f |Y 2

i
, . . . , f |Y•

i
) ∈ B̃,

for f ∈ Ai
n;

(ii) the homomorphism φ satisfies the dichotomy condition, i.e., for all Y s
i , the partial

map φs = φ
j,s
i = M[n,i](C(Y s

i )) → A
j
m is either zero or has the property sdp(η, δ).

And for any m
′

> m, each φm,m ′ ◦ φ also satisfies the dichotomy condition.

Proof For any fixed Ai
n and any η, we can find corresponding m0 > 0, and subsets

Y
1,1
i ,Y

1,2
i , . . . ,Y

1,•
i ,Y

2,1
i , . . . ,Y

j,s
i , . . . ,Y

lm,•
i ⊂ Xi

n,

renamed as Y 1
i ,Y 2

i , . . . ,Y •
i that satisfy conclusion (i) (by Property 1). And for all

x0 ∈ Y s
i , by Property 2, we have

Bη(x0,Y s
i ) ∩ SP(φs)y 6= ∅.

Choose δ = min j,s{
1

rank(φs(1
M[n,i](C(Y

j,s
i

))
))
}, then for any x ∈ Y

j,s
i , we have

# SP(φs
i)y ∩ Bη(x) ≥ 1 ≥ δ# SP(φs

i)y .

Now we only need to prove that for any m
′

> m, each nonzero partial map of

φm,m ′ ◦ φ also has the property sdp(η, δ).

In fact, we only need to prove the following proposition. If the homomorphism

φ : A :=
m⊕

i=1

Mni
(C(Xi)) → B :=

L⊕
j=1

Mn j
(C(Y j))

satisfies the dichotomy condition, then for any homomorphism

ψ : B =

L⊕
j=1

Mn j
(C(Y j)) → C :=

N⊕
k=1

Mnk
(C(Zk)), ψ ◦ φ

also satisfies the dichotomy condition, where Xi
= Y j

= Zk
= [0, 1], for any i, j, k.
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Notice that for each pair (i, k), there is a partial map

(ψ ◦ φ)i,k
=

L⊕
j=1

ψ j,k ◦ φi, j : Mni
(C(Xi)) → Mnk

(C(Zk)).

For any z ∈ Zk,

SP(ψ ◦ φ)i,k
z =

L⋃
j=1

⋃

y∈SP ψ
j,k
z

SP(φi, j)y .

Since φ satisfies the dichotomy condition, then for any Bη(x) and j, we have

#(SP(φi, j)y ∩ Bη(x)) ≥ δ
rank φi, j(1Mni

(C(Xi )))

rank(1Mni
(C(Xi )))

.

(Notice that if φi, j
= 0, then both sides of the equation are equal to zero, so it

still holds.) For convenience, we let 1Mni
(C(Xi )) be 1. And for any projection p ∈

Mn j
(C(Y j)),

#(SP(ψ j,k
z )) =

rank ψ j,k(p)

rank(p)
.

For each pair i, j, k, φi, j(1) 6= 0. If let φi, j(1) = p, then

#(SP(ψ j,k ◦ φi, j)z ∩ Bη(x)) =

∑

y∈SP ψ
j,k
z

#(SP(φi, j)y ∩ Bη(x))

≥
rank ψ j,k(φi, j(1))

rank φi, j(1)
δ

rank φi, j(1)

rank(1)

= δ
rank ψ j,k(φi, j(1))

rank(1)
.

Thus,

#(SP(ψ ◦ φ)i,k
z ∩ Bη(x)) =

∑

j

#(SP(ψ j,k ◦ φi, j)z ∩ Bη(x))

≥ δ

∑
rank ψ j,k(φi, j(1))

rank(1)
= δ

rank(ψ ◦ φ)i,k(1)

rank(1)
.

This completes the proof.

5 Classification

The following theorem is the main result of this paper.
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Theorem 5.1 For AI algebras with the ideal property

A = lim
n→∞

(An, φn,m) and B = lim
n→∞

(Bn, ψn,m),

where

An =

kn⊕
i=1

M[n,i](C(Xi
n)) and Bm =

lm⊕
j=1

M{m, j}(C(Y j
m)),

with Xi
n ≡ Y

j
m ≡ [0, 1], satisfying the following conditions:

(i) There exists a scaled ordered group isomorphism α : K0(A) → K0(B);

(ii) For any e ∈ P(A), f ∈ P(B) with α[e] = [ f ], there exists an isomor-

phism ξe, f : AffT(eAe) → AffT( f B f ) such that for any e ′ < e, f ′ < f with

α[e ′] = [ f ′], ξe, f , ξe ′, f ′

are compatible, i.e., the diagram

AffT(eAe)
ξe, f

// AffT( f B f )

AffT(e
′

Ae
′

)

OO

ξe ′ , f ′

// AffT( f
′

B f
′

)

OO

is commutative.

Then there exists an isomorphism Γ : A → B such that:

(a) K0(Γ) = α;

(b) if Γe : eAe → Γ(e)BΓ(e) is the restriction of Γ in eAe, then

AffT(Γe) = ξe, f ,∀[ f ] = [Γ(e)].

Remark 5.2 To complete the proof of the classification theorem, we need to do

some preparation and give some lemmas.

Let A = limn→∞(An, φn,m) and B = limn→∞(Bn, ψn,m) be AI algebras with the

ideal property satisfying the conditions of Theorem 5.1, where

An =
⊕

i

Ai
n, Bm =

⊕
j

B j
m,

Ai
n = Pi

nM[n,i](C(Xi
n))Pi

n, B j
m = Q j

mM{m, j}(C(Y j
m))Q j

m, Pi
n, Q j

m

are projections of M[n,i](C(Xi
n)) and M{m, j}(C(Y

j
m)) respectively.

Suppose that ξ : AffT A → AffT B and α : K0(A) → K0(B) are both scaled or-

dered group isomorphisms. Furthermore, α and ξ are compatible. If A and B are

both unital, then by Lemma 1.8 and Remark 1.9, there exists an intertwining at the

K0 stage

K0A1

α1

²²

// K0A2

α2

²²

// K0A3

α3

²²

// · · · // K0A

α

²²
K0B1

β1xxxx

;;xxxx

// K0B2

β2xxxx

;;xxxx

// K0B3

β3
zzz

==zzzz

// · · · // K0B

,
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where αi , βi are all scaled ordered group homomorphisms, and there exist homo-

morphisms Λ̃i : Ai → Bi , M̃i : Bi → Ai+1 such that K0(Λ̃i) = αi , K0(M̃i) = βi .

Considering the proof of the main theorem, we need to construct a new inductive

system to make the homomorphisms unital. To establish this, we only need to use

the projections to cut down each summand of the original inductive sequence. The

following is the progress:

Now for fixed Ai
n, define

[An+k]i = φn,n+k(1Ai
n
)An+kφn,n+k(1Ai

n
), [An]i = Ai

n, ei = φn,∞(1Ai
n
),

eiAei = φn,∞(1Ai
n
)Aφn,∞(1Ai

n
), k = 1, 2, . . . ,

and

[Bn]i = Λ̃i(1Ai
n
)BnΛ̃i(1Ai

n
), [Bn+k]i = ψn,n+k(Λ̃i(1Ai

n
))Bn+kψn,n+k(Λ̃i(1Ai

n
)),

fi = ψn,∞(Λ̃i(1Ai
n
)), fiB fi = ψn,∞(Λ̃i(1Ai

n
))Bψn,∞(Λ̃i(1Ai

n
)), k = 1, 2, . . . .

Then we can get the new inductive limits

eiAei = lim
k→∞

([An+k]i , [φn+k,n+l]i), fiB fi = lim
k→∞

([Bn+k]i , [ψn+k.n+l]i),

where 1Ai
n

denotes the unit of Ai
n, and [φn+k,n+l]i , [ψn+k.n+l]i denote the unital homo-

morphisms induced by φn,n+k and ψn+k,n+l respectively. We also can get the following

intertwining

K0[An]i

αi
1

²²

// K0[An+1]i

αi
2

²²

// K0[An+2]i

αi
3

²²

// · · · // K0eiAei

αei , fi

²²

K0[Bn]i

βi
1ssss

99ssss

// K0[Bn+1]i

βi
2rrrr

99rrrr

// K0[Bn+2]i

βi
3wwww

;;wwwww

// · · · // K0 fiB fi

,

where αi
k, β

i
k, α

ei , fi (k = 1, 2, . . . ) are all scaled ordered, and αei , fi [ei] = [ fi].

Similarly, for fixed B
j
m, we can also get other two new inductive limits f̃ jB f̃ j and

ẽ jAẽ j , where

f̃ j = ψm,∞(1
B

j
m

), ẽ j = φm+1,∞ ◦ M̃m(1
B

j
m

), and α[ẽ j] = [ f̃ j].

If we let

{Bm} j = B j
m, {Bm+k} j = ψm,m+k(1

B
j
m

)Bm+kψm,m+k(1
B

j
m

),

and {ψm+k,m+l} j : {Bm+k} j → {Bm+l} j be the unital homomorphism induced by

ψm+k,m+l (k = 0, 1, 2 . . . ), and let

{Am+1} j = M̃m(1
B

j
m

)Am+1M̃m(1
B

j
m

),

{Am+k} j = φm+1,m+k(1{Am+1} j
)Am+kφm+1,m+k(1{Am+1} j

),
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{φm+k,m+l} j : {Am+k} j → {Am+l} j be the unital homomorphism induced by φm+k,m+l,

then we have

ẽ jAẽ j = lim
k→∞

({Am+k} j , {φm+k,m+l} j), f̃ jB f̃ j = lim
k→∞

({Bm+k} j , {ψm+k,m+l} j).

Later we will discuss the cut down algebra, qsB
j
mqs, where {qs}

∞
s=1 is a set of mutually

orthogonal projections. Then, for any non-zero projection qs ∈ B
j
m, considering

qsB
j
mqs instead of B

j
m, we also can obtain the following inductive limits:

ẽs, jAẽs, j = lim
k→∞

({Am+k}s, j , {φm+k,m+l}s, j), f̃s, jB f̃s, j = lim
k→∞

({Bm+k}s, j , {ψm+k,m+l}s, j),

and ẽs, j < ẽ j , f̃s, j < f̃ j , α[ẽs, j] = [ f̃s, j], where the symbols ẽs, j , f̃s, j , {Am+k}s, j ,

{Bm+k}s, j , and {ψm+k,m+l}s, j can be defined in the same way as ẽ j , f̃ j , {Am+k} j ,

{Bm+k} j , and {ψm+k,m+l} j .

To avoid confusion, we need to point out the differences between the notations

above. The symbols [ · ]i ,{ · } j always denote the algebras cut down by the image of

unit of Ai
n, B

j
m under related maps respectively.

Using the definitions and symbols mentioned above, we can obtain the following

lemmas.

Lemma 5.3 Let {qs}
•
s=1 be a set of finitely many nonzero projections in B

j
m1 , qsqs ′ =

qs ′qs = 0, s 6= s ′, m1 > 0, and let Fs ⊂ AffT(qsB
j
m1 qs) be a finite set. For any ε > 0,

there exists δ > 0 and finite set G ⊂ AffT B
j
m1 , such that the following statement is true.

If a homomorphism M j : B
j
m1 → {An2

} j satisfies that

‖AffT{φn2,∞} j ◦ AffT M j(g) − (ξee j ,ef j )−1 ◦ AffT{ψm1,∞} j(g)‖ < δ, ∀g ∈ G,

then the unital homomorphism Ms, j : qsB
j
m1 qs → {An2

}s, j induced by M j satisfies that

‖AffT{φn2,∞}s, j ◦ AffT Ms, j( f ) − (ξees, j ,efs, j )−1 ◦ AffT{ψm1,∞}s, j( f )‖ < ε, ∀ f ∈ Fs.

Proof Let Is : qsB
j
m1 qs → B

j
m1 be the imbedding map, and G

△
=

⋃
s AffT Is(Fs). By

the conditions of this lemma, we can get AffT Is( f ) ∈ G,∀ f ∈ Fs. Now let δ =

mins
rank qs

sizeB
j
m1

· ε. Let the unital homomorphism M j satisfy that

∆s
△
=

∥∥AffT{φn2,∞} j ◦ AffT M j(AffT Is( f ))

− (ξee j ,ef j )−1 ◦ AffT{ψm1,∞} j(AffT Is( f ))
∥∥ < δ, ∀ f ∈ Fs;
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and notice that if AffT is a covariant functor, then the following diagrams are all

commutative:

AffT B
j
m1

Aff T M j

// AffT{An2
} j

AffT{Bm1
}s, j

OO

Aff T Ms, j

// AffT{An2
}s, j

OO
(5.1)

AffT B
j
m1

Aff T{ψm1 ,∞} j

// AffT f̃ jB f̃ j

AffT{Bm1
}s, j

OO

Aff T{ψm1 ,∞}s, j

// AffT f̃s, jB f̃s, j

OO
(5.2)

AffT{An2
} j

Aff T{φn2 ,∞} j

// AffT ẽ jAẽ j

AffT{An2
}s, j

OO

Aff T{φn2 ,∞}s, j

// AffT(ẽs, jAẽs, j).

OO
(5.3)

By the compatibility of AffT eAe and AffT e ′Ae ′ (e ′ < e) (Theorem 5.1(ii)), the

diagram

(5.4) AffT ẽ jAẽ j

ξ
ee j ,

ef j

// AffT f̃ jB f̃ j

AffT(ẽs, jAẽs, j)

OO

ξ
ees, j ,

efs, j

// AffT( f̃s, jB f̃s, j)

OO

is also commutative.

For simplicity, we still use Is to denote the following imbedding maps:

I1
s : {An2

}s, j → {An2
} j , I2

s : f̃s, jB f̃s, j → f̃ jB f̃ j , I3
s : ẽs, jAẽs, j → ẽ jAẽ j .

Since both diagrams (5.1) and (5.2) are commutative, we have

∆s = ‖AffT({φn2,∞} j ◦ Is ◦ Ms, j)( f ) − (ξee j ,ef j )−1 ◦ AffT(Is ◦ {ψm1,∞}s, j)( f )‖ < δ.

Since both diagrams (5.3) and (5.4) are also commutative, we have

∆s =
∥∥AffT Is

(
AffT{φn2,∞}s, j ◦ AffT Ms, j( f )

− (ξees, j ,efs, j )−1 ◦ AffT{ψm1,∞}s, j( f )
)∥∥ < δ.
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By Remark 1.10, we have

‖AffT Is( f ′)‖ =
rank qs

sizeB
j
m1

‖ f ′‖, ∀ f ′ ∈ AffT ẽs, jAẽs, j .

Since δ = mins(
rank qs

sizeB
j
m1

) · ε, then we have

‖AffT{φn2,∞}s, j ◦ AffT Ms, j( f ) − (ξees, j ,efs, j )−1 ◦ AffT{ψm1,∞}s, j( f )‖ < ε,

for any f ∈ Fs. This completes the proof.

Lemma 5.4 Let A = limn→∞(An, φn,m) and B = limn→∞(Bn, ψn,m) be AI algebras

with the ideal property and satisfying the conditions of Theorem 5.1, where An =
⊕

i Ai
n

and Bm =
⊕

j B
j
m. For fixed An1

(n1 > 0), let Fi ⊂ AffT Ai
n1

be a finite set, i =

1, 2, . . . , kn1
, and ε > 0, then there exist homomorphisms Λ

i
1 : Ai

n1
→ [Bm1

]i with

following properties:

(i) K0Λ
i
1 = K0[ψn1,m1

]i ◦ αi
n1

, and

(ii) ‖AffT[ψm1,∞]i ◦ AffT Λ
i
1( f ) − ξei , fi ◦ AffT[φn1,∞]i( f )‖ < ε

4
, ∀ f ∈ Fi .

And let Λ1 :
⊕

i Ai
n1
→

⊕
j B

j
m1 be defined by Λ1 =

⊕
i Λ

i
1.

Proof For Ai
n1

and the unital inductive limits

eiAei = lim
k→∞

([An1+k]i , [φn1+k,n1+l]i), fiB fi = lim
k→∞

([Bn1+k]i , [ψn1+k,n1+l]i),

applying the existence theorem, we can find unital homomorphisms Λ
i

1 : Ai
n1

→

[BKi
]i

△
= Λ

i

1(1Ai
n1

)BKi
Λ

i

1(1Ai
n1

) such that

‖AffT[ψKi ,∞]i ◦ AffT Λ
i

1( f ) − ξei , fi ◦ AffT[φn1,∞]i( f )‖ <
ε

4
, ∀ f ∈ F,

and K0(Λ
i

1) = K0[ψn1,Ki
]i◦α

i
n1

. Let m1 = max{K1, K2, . . . , Kkn1
}, Λi

1 = [ψKi ,m1
]i◦Λ

i

1,

then

‖AffT[ψm1,∞]i ◦ AffT Λ
i
1( f ) − ξei , fi ◦ AffT[φn1,∞]i( f )‖

= ‖AffT[ψm1,∞]i ◦ AffT([ψKi ,m1
]i ◦ Λ

i

1)( f ) − ξei , fi ◦ AffT[φn1,∞]i( f )‖

= ‖AffT[ψKi ,∞]i ◦ AffT Λ
i

1( f ) − ξei , fi ◦ AffT[φn1,∞]i( f )‖ <
ε

4
.

And K0Λ
i
1 = K0[ψn1,m1

]i ◦ αi
n1

.

Remark 5.5 Similarly with the proof of Lemma 5.4, we can prove the following

statement. Let A = limn→∞(An, φn,m) and B = limn→∞(Bn, ψn,m) be AI algebras

with the ideal property mentioned in Lemma 5.4, where An =
⊕

i Ai
n and Bm =⊕

j B
j
m. For any fixed Bm1

, let G j ⊂ AffT B
j
m1 be a finite set, j = 1, 2, . . . lm1

, and

δ > 0, then there exist homomorphisms M
j
1 : B

j
m1 → {An ′

2
} j with the following

properties:
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(i) K0M
j
1 = K0{ψm1+1,n2

} j ◦ β
j
m1 , and

(ii) ‖AffT{φn ′

2 ,∞} j ◦ AffT M
j
1(g) − (ξee j ,ef j )−1 ◦ AffT{ψm1,∞} j(g)‖ < δ,∀g ∈ G j .

Lemma 5.6 Let A = limn→∞(An, φn,m) and B = limn→∞(Bn, ψn,m) be AI algebras

with the ideal property mentioned in Lemma 5.4. Let Fi ⊂ AffT Ai
n1

be a finite set,

ε > 0, and let Λ
i
1 : Ai

n1
→ [Bm1

]i i = 1, 2, . . . kn1
be the homomorphisms described in

Lemma 5.4, then there exist finite sets G j ⊂ AffT B
j
m1 , δ > 0, j = 1, 2, . . . lm1

such that

the following statements hold.

If the homomorphism M
j
1 : B

j
m1 → {An2

} j satisfies the properties described in Re-

mark 5.5, then there exists n2 > 0 such that the homomorphism M1 := [φn2,n ′

2
]i ◦⊕

j M
j
1 satisfies the following conditions:

(i) K0[M1 ◦ Λ1]i = K0[φn1,n2
]i , and

(ii) ‖AffT[φn1,n2
]i( f ) − AffT[M1 ◦ Λ1]i( f )‖ < ε, ∀ f ∈ Fi , where

[M1 ◦ Λ1]i : Ai
n1
→ (M1 ◦ Λ1)(1Ai

n1
)An2

(M1 ◦ Λ1)(1Ai
n1

)

is unital.

Proof Let Λ
i
1 and Λ1 be the homomorphisms we mentioned in Lemma 5.4, and let

Λ
i, j
1 : Ai

n1
→ Λ

i, j
1 (1Ai

n1
)B

j
m1Λ

i, j
1 (1Ai

n1
) be the partial map of Λ

i
1.

For

ẽ jAẽ j = lim
k→∞

({Am1+k} j , {φm1+k,m1+l} j), f̃ jB f̃ j = lim
k→∞

({Bm1+k} j , {ψm1+k,m1+l} j),

δ > 0 and the finite subset Gi, j := AffT Ii, j(AffT Λ
i, j
1 (F)) , G j =

⋃
i Gi, j , by the state-

ment of Remark 5.5, we can obtain a unital homomorphism M
j
1 : B

j
m1 → {An ′

2
} j ,

such that

‖AffT{φn ′

2 ,∞} j ◦ AffT M
j
1(g) − (ξee j ,ef j )−1 ◦ AffT{ψm1,∞} j(g)‖ < δ,∀g ∈ G j ,

where

δ
△
= min

i, j

{
rank Λ

i, j
1

(
1Ai

n1

)

sizeB
j
m1

}
·
ε

4
, (and rank Λ

i, j
1 (1Ai

n1
) 6= 0)

as that of chosen in Lemma 5.3 for ε
4
, and Ii, j is the imbedding map from

Λ
i, j
1 (1Ai

n1
)B

j
m1Λ

i, j
1 (1Ai

n1
) to B

j
m1 .

By Lemma 5.3, if

M
i, j
1 : Λ

i, j
1 (1Ai

n1
)B j

m1
Λ

i, j
1 (1Ai

n1
) → M

i, j
1 ◦ Λ

i, j
1 (1Ai

n1
)An ′

2
M

i, j
1 ◦ Λ

i, j
1 (1Ai

n1
)

is the unital homomorphism induced by M
j
1, where projections {Λ

i, j
1 (1Ai

n1
)}•i=1 =

{qs}
•
s=1 (see qs in Remark 5.2 or Lemma 5.3, here let i=s). Then by Lemma 5.3, we

have

‖AffT{φn ′

2 ,∞}i, j ◦ AffT M
i, j
1 (g) − (ξeei, j ,efi, j )−1 ◦ AffT{ψm1,∞}i, j(g)‖ <

ε

4
,

∀g ∈ AffT Λ
i, j
1 (F).
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Let Ii j be the imbedding map from Λ
i, j
1 (1Ai

n1
)B

j
m1Λ

i, j
1 (1Ai

n1
) to Λ

i
1(1Ai

n1
)Bm1

Λ
i
1(1Ai

n1
) =

⊕
j Λ

i, j
1 (1Ai

n1
)B

j
m1Λ

i, j
1 (1Ai

n1
). Then

AffT Ii, j( f ) = 0 ⊕ 0 ⊕ · · · 0 ⊕ f︸ ︷︷ ︸
j

⊕0 · · · ⊕ 0.

Let M ′i be the restriction of M1
△
=

⊕
j M

j
1 on Λ

i
1(1Ai

n1
)Bm1

Λ
i
1(1Ai

n1
). Then

M ′i
=

⊕
j M

i, j
1 .

Completely similar to the proof of Lemma 5.3, we have

‖AffT Ii, j

(
AffT{φn ′

2 ,∞}i, j ◦AffT M
i, j
1 (g)− (ξeei, j ,efi, j )−1 ◦AffT{ψm1,∞}i, j(g)

)
‖ <

ε

4
,

for any g ∈ AffT(Λ
i, j
1 (F)). And for any f ∈ Fi , we have

‖AffT([φn ′

2 ,∞]i ◦ M
′i ◦ Λ

i
1)( f ) − (ξei , fi )−1 ◦ AffT([ψm1,∞]i ◦ Λ

i
1)( f )‖

= ‖AffT([φn ′

2 ,∞]i ◦ M
′i)(

⊕
j

AffT Λ
i, j
1 ( f ))

− (ξei , fi )−1 ◦ AffT[ψm1,∞]i(
⊕

j

AffT Λ
i, j
1 ( f ))‖

≤ max
j

‖AffT[φn ′

2 ,∞]i ◦ AffT M
′i(AffT Ii, j(AffT Λ

i, j
1 ( f )))

− (ξei , fi )−1 ◦ AffT[ψm1,∞]i(AffT Ii, j(AffT Λ
i, j
1 ( f )))‖

≤ max
j

‖AffT{φn ′

2 ,∞}i, j ◦ AffT M
i, j
1 (AffT Λ

i, j
1 ( f ))

− (ξeei, j ,efi, j )−1 ◦ AffT{ψm1,∞}i, j(AffT Λ
i, j
1 ( f ))‖ ≤

ε

4
.

Then

‖ξei , fi (AffT([φn ′

2 ,∞]i ◦ M
′i ◦ Λ

i
1))( f ) − AffT([ψm1,∞]i ◦ Λ

i
1)( f ))‖ <

ε

4
,

and for each i,

‖AffT[ψm1,∞]i ◦ AffT Λ
i
1( f ) − ξei , fi ◦ AffT[φn1,∞]i( f )‖ <

ε

4
,

so we have

‖AffT[φn ′

2 ,∞]i ◦ AffT(M′i ◦ Λ
i
1)( f ) − AffT[φn1,∞]i( f )‖ <

ε

2
.

Since M ′i ◦ Λ
i
1 = M1 ◦ Λ

i
1 : Ai

n1
→ M1 ◦ Λ

i
1(1Ai

n1
)An2

M1 ◦ Λ
i
1(1Ai

n1
), then

AffT(M ′i ◦ Λ
i
1)( f ) = AffT(M1 ◦ Λ

i
1)( f ).
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That is

‖AffT[φn ′

2 ,∞]i ◦ AffT(M1 ◦ Λ
i
1)( f ) − AffT[φn1,∞]i( f )‖ <

ε

2
.

By the definition of inductive limit, there exists n2 > 0 such that

‖AffT[φn ′

2 ,n2
]i ◦ AffT(M1 ◦ Λ

i
1)( f ) − AffT[φn1,n2

]i( f )‖ < ε.

So we only need to let M1 = [φn ′

2 ,n2
]i ◦M1.

Then we have

‖AffT[φn1,n2
]i( f ) − AffT([M1 ◦ Λ1]i)( f )‖ < ε.

By Lemma 5.4 and the statement of Remark 5.5, we naturally have K0([M1 ◦
Λ1]i) = K0[φn1,n2

]i , and the proof is completed.

Proof of the main theorem Let there be given AI algebras with the ideal property,

A = limn→∞(An, φn,m) and B = limn→∞(Bn, ψn,m), and an scaled ordered group

isomorphism α : K0(A) → K0(B). There exist scaled ordered group maps

αi : K0Ai → K0Bi , βi : K0Bi → K0Ai+1

making following the diagram commutative:

K0A1

α1

²²

// K0A2

α2

²²

// K0A3

α3

²²

// · · · // K0A

α

²²
K0B1

β1xxxx

;;xxxx

// K0B2

β2xxxx

;;xxxx

// K0B3

β3
zzz

==zzzz

// · · · // K0B.

To prove the classification theorem, we need to construct an approximate intertwin-

ing of the two sequences of C∗-algebras.

In this process, we will pass to subsequences several times. Let ε1, ε2, . . . be posi-

tive numbers with
∑∞

i=1 εi < ∞. We choose the subsequences of {An}
∞
n=1, {Bm}

∞
m=1:

An1
−→ An2

−→ · · · −→ A

Bn1
−→ Bn2

−→ · · · −→ B

and maps Λi : Ani
→ Bmi

,Mi : Bmi
→ Ani+1

, satisfying certain conditions so that the

diagram

An1

Λ1

²²

// An2

Λ2

²²

// An3

Λ3

²²

// · · · // A

Bm1

M1
|||

==
|||

// Bm2

M2
|||

==
|||

// Bm3

M3
|||

>>
||||

// · · · // B
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is an approximate intertwining, i.e., homomorphisms Λi ,Mi , and the finite generat-

ing subsets Fni
⊂ Ani

, Gmi
⊂ Bmi

satisfy that

‖Λi ◦ Mi−1( f ) − ψmi−1,mi
( f )‖ < εi , ∀ f ∈ Gmi−1

,

‖Mi ◦ Λi( f ) − φmi ,mi+1
( f )‖ < εi , ∀ f ∈ Fni

,

and Fni
⊇ Mni−1

(Gni−1
)
⋃

φni−1,ni
(Fni−1

), Gmi
⊇ Λni

(Fni
)
⋃

ψmi−1,mi
(Gmi−1

). Then,

by [12, Theorem 2.1], it follows that A, B are isomorphic.

Now let Fi ⊂ Ai , Gi ⊂ Bi be finite sets such that

F1 ⊂ F2 ⊂ · · · ⊂
∞⋃
i

Fi = A, G1 ⊂ G2 ⊂ · · · ⊂
∞⋃
i

Gi = B.

Choose k1 = 1. For ε1 > 0 and F1 ⊂ A1, we can find η, δ > 0 (to be defined later) in

the uniqueness theorem and the finite set H(η, δ, X), X = [0, 1].

For the given η, δ (see η, δ in Theorem 4.2), by the dichotomy theorem, there

exists n1 such that φ1,n1
: A1 → An1

factors as

φ1,n1
: A1

π
→ B̃ =

⊕
i

⊕
j

M[1,i](C(Y s
i ))

φ=⊕sφs
→ An1

=
⊕
i ′

Ai ′

n1
,

where φs has the property sdp(η, δ), and each partial map of φn,m ◦ φ also has the

property sdp(η, δ) (∀m > n1). Notice that

φs = φi ′,s
i : M[1,i](C(Y

i ′,s
i )) → Ai ′

n1
.

Now let An1
=

⊕
i ′ Ai ′

n1
. For each fixed Ai ′

n1
, by Remark 5.2, we can find AI algebras

with the ideal property,

ei ′Aei ′ , fi ′B fi ′(ei ′ = φn1,∞(1Ai ′
n1

), fi ′ = ψn,∞(Λ̃i ′(1Ai ′
n1

)),

and an isomorphism ξei ′ , fi ′ between them. Naturally, ei ′Aei ′ , fi ′B fi ′ still satisfy the

conditions of the existence theorem.

So for Fs
i ′

△
= AffT(φs ◦ πs)(H(η, δ, X)), Fi ′ =

⊕
s Fs

i ′ , and δ > 0, applying Lem-

mas 5.4 and 5.6 and Remark 5.5, we can obtain homomorphisms

Λ
i ′

1 : Ai ′

n1
→ Bm1

=
⊕

j

B j
m1

, M1 : Bm1
→ An2

such that

‖AffT[φn1,n2
]i ′( f ) − AffT[M1 ◦ Λ1]i ′( f )‖ < δ, ∀ f ∈ Fi ′ ,

where Λ1
△
=

⊕
i ′ Λ

i ′

1 is just the homomorphism Λ1 of Lemma 5.6, and

[M1 ◦ Λ1]i ′ : Ai ′

n1
→ M1 ◦ Λ1(1Ai ′

n1

)An2
M1 ◦ Λ1(1Ai ′

n1

)
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is unital.

By simple calculation, for any f ∈ πs(H(η, δ, X)), we have

‖AffT([φn1,n2
]s ◦ φs)( f ) − AffT[M1 ◦ Λ1]s ◦ AffT φs( f )‖ < δ =

‖AffT([φn1,n2
]i ′ ◦ φs)( f ) − AffT[M1 ◦ Λ1]i ′ ◦ AffT φs( f )‖ < δ,

where

[φn1,n2
]s : φs(1)Ai ′

n1
φs(1) → [φn1.n2

]i ′(φs(1))An2
[φn1.n2

]i ′(φs(1))

and

[M1 ◦ Λ1]s : φs(1)Ai ′

n1
φs(1) → [M1 ◦ Λ1]i ′(φs(1))An2

[M1 ◦ Λ1]i ′(φs(1))

are both unital. So “[ · ]s” is induced by the projection φs(1) similar to the notation

defined in Remark 5.2. (Here we use the fact K0[φn1,n2
]s = K0[M1 ◦ Λ1]s.)

By Theorem 4.2, we know that φs has the property sdp(η, δ), and the partial maps

of [φn1,n2
]i ◦ φs also have the property sdp(η, δ). Thus, we only need to choose ap-

propriate η and δ and apply the uniqueness theorem (Theorem 3.5) to find unitary

Us ∈ An2
such that

‖[φn1,n2
]i ′ ◦ φs( f ) −Us([M1 ◦ Λ1]i ′ ◦ φs)( f ))U ∗

s ‖ < ε1, ∀ f ∈ πs(F).

Notice that φs = φi ′,s
i : M[n,i](C(Y

i ′,s
i )) → Ai ′

n1
, φ1,n1

=
⊕

s(φs ◦ πs) = φ ◦ π.

Setting Λ1 = (
⊕

i ′ Λi ′) ◦ φ1,n1
, (

⊕
s Us)M1(

⊕
s Us)

∗
= M1, then for each f ∈ F1,

we have

‖φ1,n2
( f ) − M1 ◦ Λ1( f )‖ ≤

max
s

‖[φn1,n2
]i ′ ◦ φs ◦ πs( f ) −Us(M1 ◦ Λi ′ ◦ φs)(πs( f ))U ∗

s ‖ < ε1.

Similarly, we can construct Λi ,Mi such that

‖Λi+1 ◦ Mi( f ) − ψmi ,mi+1
( f )‖ < εi ,∀ f ∈ G̃mi

,

‖Mi ◦ Λi( f ) − φni ,ni+1
( f )‖ < εi ,∀ f ∈ F̃ni

,

where G̃mi
= Gmi

∪ Λi(F̃i) ∪ ψmi−1,mi
(G̃mi−1

), F̃ni
= Fni

∪ Mi(Gmi
) ∪ φni−1,ni

(F̃ni−1
).

Then

Ak1

Λ1

²²

// Ak2

Λ2

²²

// Ak3

Λ3

²²

// · · · // A

Bm1

M1
|||

==
|||

// Bm2

M2yyy

<<yyy

// Bm3

M3vvvv

::vvvv

// · · · // B

is an approximate intertwining. Hence A and B are isomorphic, and conclusions (i)

and (ii) also hold by the proof above.
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