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Abstract

In this paper we continue our previous studies and derive all possible expressions for a meromorphic
function and its differential polynomials when they share two finite distinct values at, 02 CM (counting
multiplicities) in majority.
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1. Introduction

Let / denote a nonconstant meromorphic function in the complex plane. We shall
use the standard notations in Nevanlinna's value distribution theory of meromorphic
functions such as the characteristic function T(r,f), the counting function of the
poles N(r, f ) , and the proximity function m(r,f) (see, for example, [3]). By S(r, f)
we denote any quantity satisfying S(r,f) = o(T(r,f)) as r -> 00 possibly outside a
set of r of finite linear measure. A meromorphic function a (^ 00) is called a small
function with respect to f provided that T(r, a) — S(r,f).

For a small function a with respect to two meromorphic functions / and g, we
say that / and g share a IM (CM) provided that / — a and g — a have the same
zeros ignoring (counting) multiplicities. Obviously, two meromorphic functions will
have more common properties if they share more values or small functions. In
fact, Nevanlinna [7] has proved the famous 5-value theorem which says that two
nonconstant meromorphic functions must be equal if they share five values IM. In
general, it is difficult to get relationship between two meromorphic functions when
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they just share four or less values IM. The number of shared values of two meromorphic
functions may be reduced if some additional conditions been added. For instance, it
was shown by Lee-Yang [8] that if/ is entire and shares two finite values CM with / ' ,
then / = / ' . Since then, the subject of sharing values between meromorphic or entire
functions and their derivatives or linear differential polynomials has been studied by
many mathematicians, see, for example, [2, 5, 6, 10]. In 1993, Riissmann [9] proved
the following result: Let / be a meromorphic function and

where k > 2 and the aj 's are polynomials. If/ and L(f) share two distinct values
in C counting multiplicities, then L(f) = / up to some exceptional cases which
were also given. Unfortunately this result is not published in any journal. Three
years later, Bernstein-Chang-Li [1] obtained a similar result for entire functions of
several complex variables. As a special case, they proved that any nonconstant entire
function/ and its linear differential polynomial L(f) (with all coefficients being small
meromorphic functions o f / ) must be equal if the two functions share two values CM.
In [4] the present authors generalized this result and proved the following

THEOREM A. Let f be a nonconstant entire function and

(1) L(f) := c_, + c0/ + c,/; + • • • + cn/
(">,

where c, (cn ^ 0), (i — —1,0, 1, . . . , n) are small meromorphic functions off.
Let a\ and a2 be two distinct values in C. If f and L(f) share a\ CM, and share
a2 IM, then f = L{f) or f and L(f) have the following expressions

f = a2 + {ax-a2){\-ea)\ L(f) = 2a2 - a, + (a, - a2)e\

where a is an entire function.

Recently, Wang [10] improved above result as follows:

THEOREM B. Let f be a nonconstant entire function and L(f)the linear differential
polynomial defined in (1). Iff and L(f) share two complex numbers a, and a2 IM,
andifx(a\) > (n + 2)/(n + 3), where n is the highest order of the derivative involved
in the L(f), then the conclusion in Theorem A still holds, where

f,L(f)) =
.. . N0(r, \ {f - a , ) ) -
hminf —, if N(r, l / ( / - a,)) £ 0;
<•-«> N(r,l/(f -fli))

1, otherwise
is the notation introduced by Mues in [5]. Here N0(r, l / ( / - a,)) denote the counting
function of those a\-points off and L(f) of the same multiplicities but counted only
once. Note that r (c) = 1 for a CM shared value c.
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It was shown in [4] that the result in Theorem B is not true if we remove the
condition r(a,) > (n + 2)/(n + 3). It is conjectured, [10], that this number can be
replaced by 1/2. When / and L(f) share two values IM, it has been a challenging
problem to find some more precise relationships between / and L(f). In the present
paper, we prove that the number (n + 2)/{n + 3) in Theorem B can be replaced by 2/3.
As an application, we give all the forms of entire functions / if / share two small
functions IM with c_t + cQf + C\f, where c_,, c0, and c, are small functions of/.

Before stating our results, we recall the definitions of sharing small functions in
the sense of IM* or CM*, which is a generalization of the definition in the sense of
IM or CM. Let / and g be two nonconstant meromorphic functions, and let a be a
small function with respect t o / and g. Denote by N(r,f = a = g) the reduced
counting function of the common a-points of/ and g ignoring the multiplicities, and
NE(r,f — a = g) the reduced counting function of the common a-points of/ and g
with the same multiplicities.

DEFINITION 1. The small function a is said to be shared b y / and g in the the sense
oflM*, if

and

r, ——) -N(r,f =a = g) = S(r, g).
g-aj

(r

Similarly, a is said to be shared by / and g in the sense of CM*, if

- NE(r,f =a = g) = S(r , / ) ,

NE{r,f = a = g) = S(r, g).

f -a
and

N (r, -!—) -

Using [4, Theorem 2] we can easily see that Theorem A remains to be valid when
/ is a nonconstant meromorphic function satisfying N(r,f) = S(r,f), and/, L(f)
share a small function a\ CM*, and share another small function a2 IM*. In fact,
Theorem 2 in [4] can be extended further as follows:

THEOREM C. Suppose that f is a nonconstant meromorphic function satisfying
N(r,f) = S(r,f), and L(f) is the linear differential polynomial defined in (1).
Let a\ and a2 be two distinct small functions off. Iff and L(f) share a\ CM* and
share a2 IM*, then f = L{f) or f and L(f) have the following expressions

f = a2 + (a, - a2)(l - h)\ L(f) = 2a2 - a, + (a, - a2)h,
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where ft is a meromorphicfunction satisfying N(r, ft) + N(r, 1/ft) = S(r,f).

REMARK. Here we would like to point out that the function ea in [4, Theorem 2]
should be replaced by ft as in Theorem C.

In this paper, by further counting the zeros and poles of the auxiliary functions
and using some of our earlier results (see [4]), we are able to improve Theorem C by
proving the following main result:

THEOREM 1.1. Suppose that f is a nonconstant meromorphic function satisfying
N(r,f) = S(r, f), and g = L(f) is the linear differential polynomial defined in (1).
Let a\ and a2 be two distinct complex numbers. Ifmax{x(a{), r(a2)} > 1/2, then f
and g assume one of the following cases:

(a) f=g.
(b) / = a2 + (#i ~ o2){l ~ h)2 and g = 2a2 — a\ + {a\ — a2)h, where h is a

meromorphic function satisfying N(r, h) + N(r, I/ft) = S(r,f).
(c) / = a\ + (a2 — a i ) ( l — ft)2 and g = 2a\ — a2 + (a2 — a\)h, where h is a

meromorphic function satisfying N(r, ft) + N(r, I/ft) = S(r,f).
(d) There exists an integer k > 3 such that ka = (p, where

(2) a =
f - g g-ax g-a2

f'if-g)
(f -<!,)(/• -a2)'

(3) <p =

If, furthermore, max{r(ai), t(a2)} > 2/3, then one of the first three cases above must
hold.

When the linear differential polynomial g in Theorem 1.1 is restricted to involve
only the first derivative of / , we have the following result:

THEOREM 1.2. Suppose that f is a nonconstant meromorphic function satisfying
N(r,f) = 5 ( r , / ) , and g = c_i + cof + C\f, where c_i,c0 and c\ are small
meromorphic functions off. Let a\ and a2 be two distinct small functions of f. If f
and g share a\ and a2 IM*. then one of the following cases holds

(a) f=g.
(b) / = a2 + (a, - a2)(l - ft)2, g = 2a2 - a, + (a, - a2)h\
(c) / = a, + (a2 - a,)(l - ft)2, g = 2a, - a2 + (a2 - a,)fc;
(d) / = (a, + a2)/2 + (a2 - a,)(ft + l/ft)/4, g = (a, + a2)/2 + (a2 - a,)ft/2,

where ft is a meromorphic function satisfying N(r, ft) + N (r, I/ft) = S(r,f).
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COROLLARY 1.3. If c_\, c0 and c\ are constants and c0 ^ I, C\ ̂  0, then for any
distinct rational functions a\(z) and a2(z), the equation

(4) (d / ' + Co/ + c_,)2 - 2/ (c,/ ' + c0/ + c_,) + (a, + a2)/ - a,a2 = 0

has no transcendental meromorphic solution.

2. Lemmas

L e t / be a meromorphic function, and a be a small function o f / . In the following,
N(k(r> l / ( / — a)) is defined to be the counting function of all zeros of / (z) — a(z)
with multiplicities greater than or equal to k, and any such zero is counted once only;
N[k](r, \/(f — a)) is defined similarly, but it counts the zeros of f (z) — a(z) with
multiplicities k.

LEMMA 2.1 ([4]). Suppose that f is a nonconstant meromorphic function satisfying
N\r, / ) = S(r, f), and g = L(f) is the linear differential polynomial defined in (1).
Furthermore, let a\ and a2 be two distinct small functions off. Iff and g share ax

and a2 IM*, and iff ^ g, then

(5) T{r,f) = N(r,^—\+N(r,-^
\ f ~a\) \ f -

(6) T(rJ)<2T(r,g) + S(r,f).

LEMMA 2.2 ([4]). Suppose that f is a nonconstant meromorphic function satisfying
N(r,f) = S(r,f), and g = L(f) is the linear differential polynomial defined in (1).
Furthermore, let a\ and a2 be two distinct complex numbers. If f and g share a\
and a2 IM*, and iff ^ g, then Yl"=o ci Pj — 0> where cpj is defined by the recurrence
formula

<Pj+i =<Pj +<P<Pj, <Po = l, 7 = 0, 1 , . . . , 7i - 1,

and <p is the function defined in (3).

LEMMA 2.3. Suppose that f is a nonconstant meromorphic function satisfying
N(r,f) = S(r, f), and g = L(f) is the linear differential polynomial defined in (1).
Furthermore, let ax and a2 be two distinct small functions off. Iff and g share a,
and a2 IM*, and if T(r, f ) = T(r, g) + S(r, f ), then f = g.

PROOF. With loss of generality, we assume that both a{ and b2 are complex numbers,
otherwise, do the following transformation

F -(f - ax)/(a2 - a , ) , G = (g - a , ) / ( a 2 - at).
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Since / and g share ax and a2 IM*, we see that F and G share 0, 1 IM*, and G is a
differential polynomial of F with all coefficients being small functions of F.

Let

(7) * = 8>{f~g) .
{g - a\){g - a2)

Since T{rJ) = T(r, g) + S(r,f), by the proof of Lemma 2.2 (see [4, page 353]),
we can get T(r, \jf) = S(r,/), and/ = g. D

LEMMA 2.4. Suppose that f is a nonconstant meromorphic function satisfying
N(r,f) = S(r, f), and g = L(f) is the linear differential polynomial defined in (1).
Furthermore, let a\ and a2 be two distinct small functions off. Iff and g share a\
and a2 IM*, and iff / g, then

(r, ~^—) + N{2 (r, —L-) = S(r,f).

PROOF. Without loss of generality, we assume that both a\ and a2 are complex
numbers. Let <p be the function defined in (3). Since / and g share au a2 IM*, and
/ ^ g, it is easily seen that <p ^ 0, and T(r, <p) = S(r, f ) . Rewrite (3) as

where w\ = / ' / ( / — ai)- Taking derivative and replacing/' by the right-hand side
of (8), we get

(9) / " = <p2(f - at) + w2(g - a2),

where <p2 = (p' + <p?, and

(10) w2 = w\+<pwi+w1g'/(g-a2).

Similarly, using (8), we get

(11) fU)=<Pj(f -a1) + wj(g-a2), j = 1 , 2

where (Pj and wj are defined by the following recurrence formulae

g'
(13) wJ+l - w] +wt(pj,+Wj , 7 = 1 , 2

g - a2

From (11) and by the definition of g, we get

g = c_, + coai + I ^ cj<pj \ if - a,
\j=o I
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By Lemma 2.2, we have Ylj=o cj <Pj = 0- Hence

(14) g = c_, + coax + I ̂  c, w7 I (g - a2).
\y=i /

Suppose that zo is an a2-p°int of g of multiplicity k > 2 as well as a simple a2-point
of/, and zo is not the pole or zero of any c;. Then we have

05, -ig + -Jt«__izi
i«iu) g u ) - a 2 z-zo

Equality (15) and (10) imply that z0 is a pole of w2 of multiplicity 2. By recurrence
formula (13), we can see that z0 is a pole of u>7- of multiplicity j . Therefore, from (14),
we get k > n. Hence the multiplicities of 'almost all' multiple a2-points of g are great
than or equal ton.

Suppose that Zi is an a2-point of g of multiplicity/: > n+l. It follows from (14) that
a2 = c_i(zi) + co(zi)ai. IfN(n+i(r, l/(g-a2)) ^ S(r,f),thenwegeta2 = c_, + coai.
Therefore, by (14), we get £" = 1 c7 io7 = 1. This is impossible because Z\ is a pole of
wj of multiplicity j . Hence A (̂n+1 (r, l/(g — a2)) = S(r, f ) , and thus

( r, — — ) = JV[(|] (r, — — ) + S(r,f).
8-a2J V g - j

On the other hand, the a2-points of g of multiplicity n are poles of wn+i(g — a2)- By
(11), these points must be poles of/(n+1) — <pn+i(f — a\)- Note that/ is a function
satisfying N(r,f) = S(r,f). We get

Hence Na(r, \/{g-a2)) = S(r,f). Similarly, we have Na{r, l/(g-at)) = S(r,f).
This completes the proof of Lemma 2.4. •

3. Proofs of the results

PROOF OF THEOREM 1.1. Let

(16) ft = - 1 — , j = 1, 2.
f -aj g - aj

By the lemma of the logarithmic derivative, we see that ft (j = 1 , 2 ) are meromorphic
functions satisfying m(r, /Sy) = S(r,f). S ince / and g share at and a2 IM*, we have
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Suppose that z\ is an ax -point of/ of multiplicity k as well as a simple a, -point
of g. By computation, we get

, / ( z i ) g ( z i ) ia ( s
= k = kp2(z\).

a\ -a2

If there exists a positive integer k such that <p — kfi2 = 0, then T(r, ft) = T(r, <p/k) =
S(r,f). Hence/ and g shares CM*. By Theorem C, Case (b) must hold. Similarly,
if there exists a positive integer k such that <p — kf}\ — 0, then Case (c) must hold.

In the following, we assume that cp — kfi\ / 0 and cp — kfi2 ^ 0 for any integer k.
Then we have

(18) Nw[r,- )<N[r, — < T(r, ft) + S(rJ), it = 1 , 2 , . . .

Similarly,

(19) Nlk](r,—LJ)<N(r, l-—) < T(r, ft) + S(r,f), k=l,2,...
\ j — a2) \ (p — kp\ J

By Lemma 2.4, we have N(2(r, \/(g — cij)) = S(r,f),j = 1, 2. Therefore,

(20) Nw (r, -z-^—) = NE(r,f = aj = g) + S(rJ), j = 1, 2.

Let io i -f'/if -a2). WehaveT(r, io,) =/V(r, l / ( / - a2)) + S(r,f). It is obvious
that any at -point of/ of multiplicity k is a zero of to, of multiplicity & — 1. Therefore,

<N(r, — )< T(r, io,) < N ( r, ) + S(rJ).
J ~ a2.

It follows that

(r, -r^
\ f-

+ \Nm (r, -r^—] + N(4 (r,3 \ f a j \, T ) + \Nm (r, r ] + N(4 (r,f-aj 3 \ f-aj \ f - ax

f -a2

From (17), (18) and the above inequality, we deduce that

(r, —i
V f ~

N (r, — i — ) - NE(r, f = ax = g)
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3 \ f -a2j

On the other hand, from (17)-(20), we get

NE(r, f =al=g) + NE(r,f = a2 = g)<N (r, y^—
V f -aj

r,f =a2 = g)<\N (r, —^
3 \ f -

(21) NE(r, f =al=g) + NE(r,f = a2 = g)<N (r, y ^ — ) + S(r, f)

for; = 1 , 2 . Hence

(r,f =a2 = g)<\N (r, —^—) + S(r, f ) ,

which implies that r (a2) < 2/3. The inequality x{a{) < 2/3 can be obtained similarly.
Therefore, the condition max{r(ai), r(a2)} > 2/3 implies that one of the first three
cases in Theorem 1.1 must hold.

Let a be the function defined in (2). From (3), we see that the zeros off—g must
be the zeros of cp as long as they are not the appoints or a2-points o f / . Furthermore,
the multiple zeros of/ — g must be the zeros of cp. Therefore, 'almost all' of the zeros
of / — g are simple. By Lemma 2.4, 'almost all' of the a, -points (J — 1, 2) of g are
also simple. Hence T(r, a) = S(r, / ) . By computation, we see that the equation

ka(z) - <p(z) = 0

holds for 'almost all' a;-points (j = 1 , 2 ) of/ of multiplicity k > 3. If

(r, —^Nl3 (r, —^—) ± S(r,f),, y ) + Nl3 (r,

then there exists an integer A: > 3 such that ka — <p — 0. Therefore, Case (d) in
Theorem 1.1 holds. If

then from (21), (20) and (19) we can deduce that

NE(r,f = a2 = g) + S(rJ)r,/ = a, = g) < N (r, —±—) -
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S(r,f)r, T ) + "o (r, T—f -a2j \ f -a2

<ff(r, —!—) - NE(r,f =ai=g) + S(r,f),

which implies 2NE(r,f = ax=g) <N(r, l / ( /"-a , ) ) + 5( r , / ) . Hence r(a,) < 1/2.
Similarly, we can get r(a2) < 1/2. Therefore, the condition ma\{r(ai), r(a2)} > 1/2
implies that one of the four cases in Theorem 1.1 must hold. This completes the proof
of Theorem 1.1. O

PROOF OF THEOREM 1.2. Suppose that/ ^ g. Then by Lemma 2.4 'almost all'
appoints (j = 1, 2) of g are simple. If N(2(r, l / ( / — aO) = 5(r , / ) , then / and g
share a\ CM*. By Theorem A, Case (b) holds. Similarly, Case (c) holds provided that
N(2(r,l/(f -a2)) = S(r,f).

In the following, we assume that N(2(r, l/(f - aj)) ^ S(r,f) for./ = 1, 2. Note
that aj (z) = c_i (z) + C0(Z)OJ (z) holds for 'almost all' a, -points of/ and g. We have

(22) aj = c_i + coaj, j = 1 , 2 .

Since a\ ^ a2. it follows from (22) that c0 = 1 and c_! = 0. Hence g = / + q / ' .
This and (3) lead to

(23) {f - g)2 = - c p t f - a,)</ - a2).

If — cî > ̂  1, then ^(g — 2/) = —C\<p(f — a\)(f — a2) — f1 is a polynomial i n /
of degree 2. Therefore,

(24) T(r, g(g - 2/)) = 27( r , / ) + S(r,f).

Note that g — If is linear differential polynomial in / , hence T(r, g — 2f) <
T(r,f) + S(r,f). Thus

(25) 7-(r, g(g - 2/) < T(r, «) + T(r,f) + S(r,f) < 2T(r,f) + S(r,f).

Hence T(r,f) = T(r, g) + S(r,f). It follows that / = £ by Lemma 2.3, which
contradicts the assumption.

If — Ci(p = 1, then (23) becomes (f — g)2 = (f — a\)(f — a2), which leads to

(26)
2 g - a x - a2

Note that/ is a function satisfying N(r,f) = S(r, f) and g = L(f). Equation (26)
implies
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where h = (2g — a\ — a2)/(a2 — ai). Obviously,/ and g can be expressed as follows

ax + a2 a2 — ax ( 1 \ ax + a2 a2 - ax

f + { h + ) + K

which completes the proof of Theorem 1.2. •

PROOF OF COROLLARY 1.3. If/ is a transcendental meromorphic solution of (4),
then

(27) (f - g)2 = (f - fl,)(/- - fl2),

where g = cj' + cof + c_i. From (27), we can see that / and g share both ai
and a2 IM*, and N(r, f) = S(r, f ) . By Theorem 1.2, we get

f ax + ai i °2 ~~ a

(29)

where /i is a meromorphic function satisfying ^(r, h) + N(r, 1/h) = S(r,f). Since
g = c i / ' + c0/ + c_,, it follows from (28) that

-a\ a2-axh'

(a'2-a'x a2 — a\h'

This and (29) lead to

co
a'2-

t

+ a2

2
a\ a

a\ a

a\ -
c ' :

2-a,

2-ai

Va'2 c

2
h'\ c

*i +a2

2
22-ax

From the last two equations, we get (1 — co)(a2 — a{) = c\ (a'2 — a\). Therefore, there
exist a nonzero constant A such that a2(z) — at(z) = Ae(i~'")zl'\ which is not any
rational function, and contradicts the assumption. This also completes the proof of
Corollary 1.3. D
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Concluding remarks

[12]

(i) It seems to be an interesting and challenging problem to find the least nonnega-
tive number d such that Theorem 1.1 remains to be valid when max(r(ai), r(a2)) > d.

(ii) We wonder whether Theorem 1.2 is true if g is replaced by an arbitrary linear
differential polynomial.
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