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Transcendental Solutions of a Class of
Minimal Functional Equations

Michael Coons

Abstract. 'We prove a result concerning power series f(z) € C[[z] satisfying a functional equation of

the form
n

dy _ Ak(z) k
fzh ;Bk(z) f@k,

where Ag(z), By(z) € C[z]. In particular, we show that if f(z) satisfies a minimal functional equation
of the above form with n > 2, then f(z) is necessarily transcendental. Towards a more complete
classification, the case n = 1 is also considered.

1 Introduction

We are concerned with the algebraic character of power series f(z) € C[[z]] that
satisfy a functional equation of the form

LA
i fh = 3 2 pay
“~ Bi(2)

where A (z), Bx(z) € C[z]. Functional equations of this type were studied by Mahler
[8—11], and as such are sometimes called Mahler-type functional equations. Mahler
proved that under certain conditions, if f(z) € C[[z]] is transcendental over C(z), then
for a € Q within the radius of convergence of f(z), we have that f(«) is transcendental
over Q).

Nishioka [12] subsequently proved the following.

Theorem 1.1 A power series f(z) € C[[z]] satisfying (1.1) is either rational or tran-
scendental over C(z).

Towards a classification of this rational-transcendental dichotomy, we proved the
following result [3].

Theorem 1.2 If f(z) is a power series in C[[z]] satisfying

dy _ Alz)
f(z%) = f(2) + B’

whered > 2, A(z), B(z) € C[z] with A(z) # 0 and deg A(z), degB(z) < d, then f(z)
is transcendental over C(z).
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We applied Theorem 1.2 in [3] to yield quick transcendence results regarding the
values of the series

K K"

Yir o e

n=0 n=0

when k > 2. These series were studied previously by Golomb [7] and Schwarz [13].
In this paper, we focus on a different, more general, class of functions satisfying
(1.1); specifically, we wish to classify power series f(z) € C[[z]] satisfying a functional

equation of the form
n

Ai(2) k
() = (2)%,
f ; By(2) f
where Ax(z), Bx(z) € Clz] and d > 2.
Examples of such functions are readily available. If one takes d = 2, n = 1,
Ai(z) = 1,and B;(z) = 1 — z, then the function f(z) € C[[z]] satistying

= () f@

is the generating function of a version of the Thue—Morse sequence. That is, f(z) =
2@0 t,z" where t, = 1 — 2a, and (a,),>0 = 0110100110010110. .. is the Thue—
Morse sequence defined by

ay=0, ay=a, aunm=1—a, (n=1).

The transcendence of the generating function of the Thue—Morse sequence was given
by Dekking [4].

Another example of such a function is the generating function of the Stern se-
quence (sometimes called Stern’s diatomic sequence). The Stern sequence (s(#)),>0
is given by s(0) = 0, s(1) = 1, and when n > 1, by

s2n) =s(n) and s2n+1) =s(n)+s(n+1).

Properties of this sequence have been studied by many authors; for references see [5].
If A(z) is the generating function of the Stern sequence, then

AZP) = ( A2).

Z2+z+1 )
In [2], we proved the transcendence of the function A(z), as well as the transcendence
of the generating functions of some special subsequences of (s(1)),>o which were
conjectured by Dilcher and Stolarsky [6] (similar results were given independently
by Adamczewski [1]).

Using a generalization of the methods in [2—4], we prove that under the condition
that a functional equation like (1.1) is minimal with respect to n, if f(z) is the power
series expansion of a rational function, then n = 1.
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2 Zero Constant-Term Functional Equations

Definition 2.1 Suppose that for d > 2 the power series f(z) € C[[z]] satisfies

@) e = S22 pay
— Bi(2)

where Ay(z), Bk(z) € C[z]. We call the functional equation (2.1) for f(z) minimal
provided  is the smallest positive integer so that f(z) satisfies (2.1).

Note that the functional equation (2.1) has no k = 0 term; this is the reason
behind the title of this section. Our main result is the following.

Theorem 2.2 Letd > 2 and suppose that f(z) € C[[z]] is the power series expansion
of a rational function satisfying the minimal functional equation

dy @ Ai(2) k
feh = ; 5o @

where Ax(z), Bk(z) € Clz] and gcd(Ax(2), Bi(z)) = 1. Thenn = 1.

Proof Suppose that f(z) € C[[z]] is a rational function satisfying the minimal func-
tional equation

dy “ Ai(2) k
fleh) = ; 5 @

where Ax(z), Bx(z) € C[z] and d > 2. Since f(z) is rational, there exist polynomials
qo(2),q1(z) € C[z] such that f(z) satisfies q:(z) f(z) + qo(z) = 0. Then for any
rational functions D(z), C(z) € C(z), we have that both

n

(22) 0=C@@Ef(@)+q(2)" =C(2)) (Z) 0(2)" (2 (2,

k=0

(23) 0= (D(z) — D(q(z") f(z) + go(z"))

= D) Y 5D F + DEan(z) — (&) + o).
k=1

Subtracting (2.2) from (2.3) and rearranging slightly we have

Au(2)

dy _
f(z) = B.2)

D@5 S — C@aE"] [

( 4)

A
o (zd)Z[ (2 (2") "EZ; C(Z)<Z)qo(2)”kq1(2)k f@*

d n
+ M[D(Z)qo(z ) — C(2)q0(2)"].
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Set D(z) = ¢i(2)" and C(z) = qi(z*) 443 Then

An(2)
B, (z)

An(2)
B,(z)

An(2)
B, (z)

D(2)q1(z%) —CRQ (2" = q1(2)"q1(2") —qu (2 q(2)" =0,

so that we can write

n—1

(2.4) f) = H2)f(2)F,

k=0

where for 1 < k < n — 1 we have

i@ =@ 5 - 28 mraer

01(2)"q0(2")  Au(2)
q1 (Zd) Bn(z)

Hy(2) = qo(2)".

Since n was minimal and f(z) satisfies (2.4), we have that Hx(z) = 0 for all k =
0,1,...,n— 1. Thusfor 1 < k < n — 1, we have

01(2)"*Ar(2)B,(2) = A,(2)Bi(2) <Z> q(2)" 7k,

and for k = 0, we have q,(2)"qo(z%)B,,(2) = A, (2)q (zd)qo(z)". These two equations

give both
Ar(z)  (n\ Au(2) [ qo(2)\ "k
(2.5) Bi(z) <k> B, (2) (q1(2)) ’
An(z) [ qi(2)\ "qo(2z)
(2.6) B,(z) (qo(z)) qi(z?)

Substituting (2.6) into (2.5) gives for each k that

Az) (1 [ @1(2)\ kqo(z)
@7 Bz <k>(%(z)) 0 @)

But q;(2) f(2) + qo(2) = 0, so that

qa(z) -1 qa) -1
0@ @ ™ W@ T @

Thus (2.7) becomes
(—DF Al2)

(k) Bil2)

for each k satisfying 1 < k < n. Since # is minimal, we have that n = 1. |

feh) =

f2)F
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In view of Nishioka’s theorem (see the Introduction), we have the following im-
mediate corollary of Theorem 2.2.

Corollary 2.3 Letd > 2 and suppose that n > 2 and f(z) € C[z]] satisfies the
minimal functional equation

n

dy Ai(2) k
fleh = ; 5o @

where Ax(z), Br(z) € Clz] and gcd(Ax(z), Bk(z)) = 1. Then f(z) is transcendental
over C(z).

3 The Linear (n = 1) Case

Towards a further classification of the rational-transcendental dichotomy of power
series satisfying (2.1), we note that the results of Section 2 allow us to focus on the
case n = 1 of (2.1). Recall that this is the case into which the generating functions
of both the Thue—Morse sequence and the Stern sequence fall. To formalize, in this
section we consider power series f(z) € C[[z]] that satisfy

(3.1) fzty = %f(z),

where d > 2 and A(z), B(z) € C[[z]]. We do not assume Nishioka’s theorem for the
proofs in this section.

Theorem 3.1 If f(z) is a power series in C[[z]] satisfying

_ A(z)

d
f(Z)—%

(2),

where d > 2, A(z),B(z) € Clz], and gcd(A(z),B(z)) = 1. If degB(z) — degA(z) is
not a multiple of d — 1, then f(z) is transcendental over C(z).

Proof Towards a contradiction, suppose that f(z) is algebraic and satisfies, say,

(D) f2)" + quor(2) f(2)" "+ + qol(2) = 0,

where g;(z) € C[z], ged(gn(2), gn—1(2), .. .,q0(z)) = 1, and n is chosen minimally.
Using this algebraic property, we have

n n

0= Y ae e = Y a0 (5)

k=0 k=0 B(Z)

and upon multiplying by B(z)", we obtain

0="> a(z")B(2)" *A2)* f(2)".
k=0
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Thus

(32)  0=A@"9) Y a@f@ — 1) Y aZ)B@)" AR f(2)
k=0 k=0

= [0 a@AR)" — qu(2)qu(z)B(2)"*A)}] f(2).

k=0
The coefficient of f(z)" in (3.2) is 40299, (2)A(2)" — q,(2)qn(z")A(2)" = 0, so that

1

0="> [a:(Z)%(2AR@)" — gu(2)qx(z)B(2)"*A(2)"] f(2)".
0

2
|

o~
Il

The minimality of n gives
(3.3) 4z (DAR2)" = q.(2)qr(z)B(2)"FA(2)F

fork=0,1,...,n—1.
The equality in (3.3) gives the degree relationship

(3.4) (d — 1)(degqn(2) — degqi(2z)) = (n — k)(deg B(z) — deg A(2)),
fork=0,1,...,n— 1. In particular, setting k = n — 1 gives
(d — 1)(degqu(z) — deggn—1(z)) = deg B(z) — deg A(z).

Thus d — 1 divides deg B(z) — deg A(2). [ |

Continuing this line of reasoning, for algebraic f(z) satisfying the functional equa-
tion (3.1), set
deg B(z) — deg A(z)
W= .
d—1
Then again using (3.4), we have degqx(z) = degq,(z) — w(n — k), which gives the
following result.

Proposition 3.2 Let f(z) € C[[z]] be a power series satisfying

dy — (A
f(Z) = f(Z)B(z)’
where d > 2, and A(z),B(z) € C[z] with gcd(A(2),B(2)) = 1. If f(2) is rational,

satisfying q1(z) f(z) + qo(z) = 0, where q1(2), qo(z) € C[z] and gcd(q1(2), q0(2)) = 1,

then
deg B(z) — degA(z)

d—1 ’

degqo(z) = degqi(z) —

fork=0,1,...,n.
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For the following theorem, it is convenient to define the following notation. For
p(z) € Clz] denote by ord, p(z) the multiplicity of the root z = a of p(z). Also write
Cm — eZm'/m.

Theorem 3.3 Let f(z) € C[[z]] be a power series satisfying

dy _ AR
f(Z)—f(Z)B(Z),

where d > 2, and A(z), B(z) € C[z] with gcd(A(z),B(z)) = 1. If f(z) is algebraic,
then for any j € 7 we have ordq B(z) = ordg,’A(z).

Proof We start with the terminology and statement of (3.3), that is,
(3.5) 302" qr(2)A(2)" ™ = g, (2)qi(z")B(2)"*

fork=0,1,...,n—1. , ,
Now forany k = 0,1,...,n— lifz — ¢}, | q(2), then 2% — (], | qx(z"). Since

—Jjyd i —ild+l=1) i i
(Cdﬂ) - Cal+1 — Sd+1 - <d+1 - Cd+1 - Cdﬂ =0,
we have z — Cd_ﬂ | g (z%). Conversely, if z — C{;r]; | q(z%), then since
deg qi(2)
w2 =a [] @ -y,
i=0
we have that there is a y; such that z — Cd_ﬁi | 2% — y;. Thus

_(p—iNd _ —j@d+1=1) _
Yi= (<d+1) — Sd+1 - Cd+1'

Hence z — Qgﬂ | gk (2). This gives ordd qk(z) = ord(j qk(zd). The relationship (3.5)
d+1 d+1
gives for k =0, 1,...,n — 1, the two identities

ordg+l qn(zd) + Ord@]}“ qr(2) + (n — k) ordgl-+l A(z)

=ord; qu(2) +ord gi(z?) + (n — k) ord,; B(2),

and

ordg{:{ qn(zd) + OrdCd:{ qr(z) + (n — k) OrdCd:f A(z)

= Ord((;{ qn(2) + ordcd:{ qk(zd) +(n—k) Ord@;f B(z).

https://doi.org/10.4153/CMB-2011-157-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-157-x

290 M. Coons

Since ordcj qi(z) = ord( i qr(z%), the substitution of the second identity into the
d+1 d+1
first gives

ord,; qn(z )+ ord qk(z) +(n—k)(ord,;, A(z) +ord A(z))

d+1 d+1

= ordg;{ qn(z) + OrdC,;{ qk(zd) +(n— k)(ord<d:{ B(z) + ord%1 B(z2)),

which reduces to ord A(z) + ord iA(z) = ord B(z) + ord B(2).
Since gcd(A(z), B(z)) = 1,if ord B(z) # 0 we have that ord A(z) = 0.
Thus we have ord i Az) = ord B(z) + ord B(z) Taking mto account that

gcd(A(z), B(z)) = 1 since ord, p( ) is a non—negatlve integer, it must be the case
that ord -~ B(z) = 0, and so ord ]A(z) = ord B(z) The case ord A(z) # 0

follows 51m11arly ]

Corollary 3.4 Let f(z) € Cl[z]] be a power series satisfying

A(z)
B(z)

where d =2, and A(z),B(z) € R[z] with gcd(A(z), B(z)) = 1. If thereisa j € 7 such
thatA(CjH) =0or B((éﬂ) = 0, then f(z) is transcendental over C(z).

f2) = 25 f(2),

Proof Note that if p(z) € R[z], then ord, p(z) = ordz p(z), where a is the complex
conjugate of a (for real a we have a = @). Suppose that f(z) is algebraic over C(z)
and satisfies the above assumptions. Applying the previous theorem, we have

(3.6) ordd Az) = ordcfjA(z) = ordg,- B(z).
d+1 d+1 d+1

Ifone of A(C],,) = 0or B(C),,) = 0, then (3.6) gives that ged(A(2), B(z)) # 1, which
is a contradiction. Thus f(z) is transcendental over C(z). [ |

We note that Corollary 3.4 implies that the generating functions of both the Thue—
Morse sequence and the Stern sequence are transcendental.
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