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Abstract

The recognition heuristic (RH) — which predicts non-compensatory reliance on recognition in comparative judg-
ments — has attracted much research and some disagreement, at times. Most studies have dealt with whether or under
which conditions the RH is truly used in paired-comparisons. However, even though the RH is a precise descriptive
model, there has been less attention concerning the precision of the methods applied to measure RH-use. In the current
work, I provide an overview of different measures of RH-use tailored to the paradigm of natural recognition which has
emerged as a preferred way of studying the RH. The measures are compared with respect to different criteria — with
particular emphasis on how well they uncover true use of the RH. To this end, both simulations and a re-analysis of em-
pirical data are presented. The results indicate that the adherence rate — which has been pervasively applied to measure
RH-use — is a severely biased measure. As an alternative, a recently developed formal measurement model emerges as
the recommended candidate for assessment of RH-use.

Keywords: recognition heuristic, methodology, simulation, adherence rate, signal detection theory, multinomial pro-
cessing tree model.

1 Introduction
In the past decade since it was baptized, the recognition
heuristic (RH; Goldstein & Gigerenzer, 1999, 2002) has
inspired much innovative research. It has been studied ex-
tensively from a normative and descriptive point of view
and provoked some controversial debate at times. Many
other interesting investigations notwithstanding, the ma-
jority of empirical studies has dealt with the descrip-
tive question of whether and to what extent the recog-
nition cue is considered in isolation — that is, how often
the RH is actually used. Whereas some have aimed to
show that this is rarely the case altogether (e.g., Bröder
& Eichler, 2006; Newell & Shanks, 2004; Oppenheimer,
2003; Richter & Späth, 2006), others have concentrated
on the bounding conditions or determinants of RH-use
(e.g., Hilbig, Scholl, & Pohl, 2010; Newell & Fernan-
dez, 2006; Pachur & Hertwig, 2006; Pohl, 2006), possi-
ble individual differences (Hilbig, 2008a; Pachur, Bröder,
& Marewski, 2008), and tests of alternative cognitive
process models (Glöckner & Bröder, in press; Hilbig &
Pohl, 2009; Marewski, Gaissmaier, Schooler, Goldstein,
& Gigerenzer, 2010).

Clearly, the RH is a precise model which makes ex-
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act predictions about choices and underlying processes.
However, to gain insight about whether and under which
conditions these predictions are actually correct, mea-
surement must also be precise. Although many agree that
it is a promising and fruitful research strategy to uncover
the situational and individual determinants of fast-and-
frugal heuristics (Bröder, in press), it is, as yet, much less
clear how to study and measure RH-use. What may, at
first glance, appear to be a rather trivial question, turns
out to represent a substantial challenge and, in my view,
source of much of the controversy surrounding the RH.

So far, emphasis has been put on which paradigms and
materials are appropriate for studying the RH. Indeed,
Pachur et al. (2008) provided an extensive discussion of
such questions. They suggested no less than eight critical
methodological necessities which an adequate investiga-
tion or test of the RH should, in their view, comprise.1

Also, they reviewed the extant literature and argued that
many previously published studies yield drawbacks with
respect to these eight points (Pachur et al., 2008, Table
1). However, even if their list of studies with problem-
atic features had not been somewhat incomplete,2 it does
bear the dilemma that the proposed necessities, if taken

1These necessities include using naturally recognized objects, not
providing any cues, excluding criterion knowledge, requiring inferences
from memory (not from given information), sufficiently high recogni-
tion validity, and not making cues available for unknown objects.

2For example, the problem of induced cue knowledge also pertains
to Goldstein and Gigerenzer (2002, Exp. 2); likewise, the caveat of low
recognition validity also applies to Pachur and Hertwig (2006).
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seriously, leave a rather small niche for empirical investi-
gations of the RH, and, worse yet, severe problems when
attempting to measure RH-use. I will sketch this problem
in what follows.

As a central point, Pachur et al. (2008) argue that the
RH is more likely to be used when objects are natu-
rally recognized and cues must be retrieved from mem-
ory. This is in line with the assumption that inferences
from memory are more often based on simple heuris-
tics, an assumption that has received support in the past
(Bröder & Newell, 2008). The central argument favoring
naturally recognized objects is that the RH hinges on de-
cision makers acquiring the recognition-criterion-relation
through experience and thus learning to trust on recogni-
tion when appropriate. Those who — like myself — buy
into such arguments, which rule out teaching participants
artificial objects or providing them with cues, are faced
with a severe obstacle: how to measure use of the RH
when there is no control over participants’ cue knowl-
edge?

Assume a participant is faced with the judgment which
of two cities is larger and recognizes one but not the other.
If she provides the judgment that the recognized object
has the higher criterion value, a choice in line with the
RH is produced. However, such cases of adherence can-
not imply that recognition was considered in isolation and
thus do not provide information about use of the RH.
More generally, a participant may have adhered to the
prediction of the cue in question by actually considering
some entirely different piece of information that points
in the same direction (Hilbig, in press). In the case of
comparing a recognized with an unrecognized city, for
example, a decision maker may have chosen the recog-
nized city based on the knowledge that this city has an
international airport, a large university, or the like. Thus,
so long as there is no control over participants’ further
knowledge in specific paired-comparisons, adherence to
the prediction of the RH is non-diagnostic. Or, as Bröder
and Schiffer (2003) put it, “. . . simple counting of choices
compatible with a model tells us almost nothing about the
underlying strategy” (p 197).

The best remedy for this caveat is, of course, to uncon-
found recognition and further knowledge: If participants
are taught certain objects and cue patterns — as is typ-
ically done when studying other fast-and-frugal heuris-
tics (e.g., Bröder & Schiffer, 2006) and alternative ap-
proaches (Glöckner & Betsch, 2008) — the experimenter
has full control and can investigate whether additional
cues alter the degree to which participants adhere to the
RH (Bröder & Eichler, 2006). Indeed, unconfounding
different cues is vital when considering the adherence to
simple one-cue strategies (Hilbig, 2008b). Moreover, full
experimental control over cue patterns allows for the ap-
plication of sophisticated methods for strategy classifica-

tion: Bröder and Schiffer (2003) proposed to bridge the
gap between theories of multi-attribute decision making
and empirically observed choices by means of a formal
measurement model. This Bayesian approach provides
information about the decision strategy that most likely
generated a data vector. Recently, this approach has been
extended to considering choice outcomes, response la-
tencies, and confidence ratings (Glöckner, 2009; Jekel,
Nicklisch, & Glöckner, 2010). However, both these ele-
gant approaches necessitate teaching or providing all cue
patterns for a set of artificial objects, so as to discriminate
between different strategies. Clearly, this is at odds with
the central methodological recommendations of Pachur et
al. (2008) who call for using naturally recognized objects
without teaching or providing any further information.

Overall, in the paradigm most favored by Pachur and
colleagues (see also Pachur & Hertwig, 2006), only three
pieces of information are available on which researchers
must base the assessment whether the RH was used: (i)
which objects were presented in a given trial (including
their true position on the criterion dimension), (ii) which
of these objects is recognized by the participant, and (iii)
which object is chosen, that is, which is judged to have
the higher criterion value. How, based on these pieces
of information, can we measure RH-use? So far, three
classes of measures have been applied, viz. the adherence
rate, enhanced measures based on adherence rates, and a
formal measurement model. In what follows, I will in-
troduce these measures, briefly discuss their theoretical
advantages and limitations, and present simulations and a
re-analysis of existing empirical data to evaluate them.

2 Measures of RH-use

In the quest for an optimal measure of RH-use, I will fo-
cus on three criteria. First, the measure must be applica-
ble to data generated in the paradigm of natural recogni-
tion outlined above. Unlike elegant maximum-likelihood
strategy-classification methods (Bröder & Schiffer, 2003;
Glöckner, 2009), it must not afford full experimental con-
trol over objects and cue patterns — since proponents of
the RH have called for natural recognition and knowledge
(Pachur et al., 2008). All measures described in what fol-
lows comply with this requirement. Second, measures
should provide a readily interpretable statistic that would
optimally denote the probability of using the RH and thus
also allow for direct interpretation of, say, differences be-
tween experimental conditions. This holds only for some
of the measures discussed below; however, the desired in-
formation can also be gained from those measures which
do not immediately provide it — at least if one is willing
to make some additional assumptions. Third, and most
importantly, an appropriate measure should of course be
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able to reliably uncover the true probability of RH use
(or proportion of RH-users in a sample) without strong
bias. At a minimum, a useful measure must provide es-
timates that are a monotonic function of the true prob-
ability of RH-use; otherwise one cannot even interpret
differences in estimated values conclusively as “more” or
“less”. This third point (unbiased estimation) will be the
central criterion against which the different measures are
appraised.

Before the different measures are described in more de-
tail, two important theoretical points should be stressed:
First, none of these measures specifies an alternative pro-
cess to the RH. That is, they do not entail any assump-
tions about what exactly decision makers are doing when
they do not use the RH. Consequently, these measures
cannot inform us about which alternative strategies deci-
sion makers rely on whenever they do not use the RH.
Plausible candidates may be different weighted additive
models, equal weights strategies, other heuristics, or mere
guessing (Bröder & Schiffer, 2003; Glöckner, 2009). On
the one hand, it is unfortunate that the available measures
are uninformative concerning alternative processes. On
the other hand, this can also be an advantage because
the results do not depend on which alternative strategies
are tested. For example, in comparing different mod-
els, Marewski et al. (2010) come to the conclusion that
no model outperforms the RH in explaining choice data,
whereas Glöckner and Bröder (2010) arrive at the exact
opposite; this apparent incompatibility is — at least in
part — driven by the fact that very different alternative
models were investigated in each of these works.

A second important point concerns recognition mem-
ory. Essentially, all measures rely on participants’ reports
of which objects they do or do not recognize. Like in the
RH theory, recognition is treated as “a binary, all-or-none
distinction” and does thus “not address comparisons be-
tween items in memory, but rather the difference between
items in and out of memory” (Goldstein & Gigeren-
zer, 2002, p. 77). The RH and the measures of RH-
use considered herein operate on recognition judgments
as the output of what is usually termed “recognition” in
memory research. Admittedly, considering recognition
to be binary is an oversimplification (Newell & Fernan-
dez, 2006). However, as yet, measures of RH-use that
explicitly model recognition memory processes are not
available — though promising starting points based on
threshold-models of recognition memory have recently
been developed (Erdfelder, Küpper-Tetzel, & Mattern,
2010).

2.1 Adherence rates

The vast majority of studies on the RH have trusted in the
adherence rate as a measure of RH-use. For each partic-

ipant, the number of cases in which the RH could be ap-
plied (cases in which exactly one object is recognized) is
computed. Then, the proportion of these cases in which
the participant followed the prediction of the RH is as-
sessed, thus representing the adherence (or accordance)
rate. As an advantage, the adherence rate can be under-
stood as a proportion, ranging from 0 to 1. Thus, both on
the individual and on the aggregate level (taking the mean
across all participants), the adherence rate can be inter-
preted as the probability of RH-use. As discussed above,
this also avails direct interpretability of differences be-
tween experimental conditions. On the individual level,
one could classify participants as RH-users if they have
an adherence rate of 1 — or close to 1 if one allows for
strategy execution errors. However, in the latter case, one
must select some value close to 1 arbitrarily, given that
the error probability is unknown.

More problematically, as hinted in the introduction, the
adherence rate will rarely provide an unbiased estimate of
RH-use. Indeed, a consistent non-user of the RH could
produce an adherence rate of 1, if she always considered
additional cues which point toward the recognized op-
tion. So, the central disadvantage of the adherence rate
is the confound between recognition and further knowl-
edge. As an effect, the adherence rate will mostly be bi-
ased towards the RH, that is, it will typically overestimate
the probability of RH-use. In fact, it will overestimate
the use of any one-cue heuristic if there is no control over
other cues and knowledge (Hilbig, in press). The simula-
tion reported below will shed further light on the severity
of this limitation.

2.2 Measures derived from Signal Detec-
tion Theory

To gain more insight about RH-use, Pachur and Hertwig
(2006) proposed to view the comparative judgment task
from the perspective of Signal Detection Theory (SDT;
for an introduction see Macmillan & Creelman, 2005).
Specifically, given that one object is recognized and the
other is not, choice of the recognized object can either
represent a correct or a false inference with respect to
the judgment criterion (see Pohl, 2006). Thus, follow-
ing recognition when this is correct would represent a hit
in terms of SDT. By contrast, if choice of the recognized
object implies a false inference, this would be denoted
a false alarm. Thus, the SDT parameters d′ and c can
be computed individually for each participant (Pachur,
Mata, & Schooler, 2009, Appendix A):

d′ = z(H)− z(FA) (1)

and

c = −z(H) + z(FA)
2

(2)
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where z(H) is the z-transformed hit rate (probability of
following the recognition cue, given that this is correct)
and z(FA) denotes the z-transformed false alarm rate
(probability of following the recognition cue, given that
this is false). The former, d′, denotes a participant’s abil-
ity to discriminate cases in which recognition yields a
correct versus false inference. The latter, c, is the re-
sponse bias or the tendency to follow the recognition cue
(independent of one’s ability).

Clearly, both d′ and c provide information beyond the
mere adherence rate. For example, a participant with a
large d′ cannot have considered recognition in isolation.
Unlike the adherence rate, however, neither d′ nor c can
readily be interpreted as the probability of RH-use. As d′

is the difference between the z-transformed hit and false
alarm rates, it allows for only one clear numerical pre-
diction: a true user of the RH cannot show any discrim-
ination (as she always follows recognition and ignores
all further information), that is, she must score d′ = 0
or close to zero if strategy execution errors are assumed.
However, the size of d′ is difficult to interpret: How much
more often did a participants use the RH if she scores
d′ = .50 versus d′ = 1.2? The same principally holds for
c.

So, to obtain an overall probability of RH-use from
these measures, one must make some assumptions which
value true users of the RH will achieve. Specifically, as
stated above, a true RH-user must score d′ = 0. Thus, one
can compute for how many participants this holds. How-
ever, with an unknown rate of strategy execution error, it
is hard to determine which interval around zero would be
appropriate to still classify a participant as a RH-user. For
c, the limitation is even greater: clearly, a RH-user must
have a tendency to follow recognition (and thus c < 0, us-
ing Formula 2). However, how strongly below zero must
c be for a user of the RH?

2.3 The discrimination index
A measure similar to Pachur and Hertwig’s (2006) d′ is
the discrimination index (DI), an individual proxy indi-
cating whether a participant may be a user of the RH
(Hilbig & Pohl, 2008). Formally, the DI is computed
as the difference in adherence rates in all cases in which
recognition implies a correct versus a false judgment,
given that it discriminates between choice options, that
is:

DI = (H)− (FA) (3)

where (H) is the hit rate and (FA) denotes the false alarm
rate in accordance with Pachur and Hertwig (see above).
As such, the basic logic is the same as for d′: Any true
user of the RH must score DI = 0, as she cannot dis-
criminate whether the RH yields a correct vs. false judg-
ment on a given trial. However, the DI differs in two

respects from d′ as proposed by Pachur and colleagues:
First, on a theoretical level, the DI does not refer to SDT.
As such, it is not based on any of the according theoret-
ical assumptions. For example, it remains unclear what
the underlying dimension or decision axis from SDT (i.e.,
signal strength) would be in the case of comparing pairs
of cities with respect to their population. Secondly, and
more practically, the DI and d′ differ in that the DI does
not comprise z-transformation of hit and false alarm rates.

Just like the measures derived from Signal Detection
Theory, the DI cannot be interpreted as the probability of
RH-use. Instead, as holds for d′, this probability must
be approximated by classifying those participants as RH-
users who score DI = 0 (or, again, close to zero when al-
lowing for strategy execution errors). So, in this respect,
the DI shares the disadvantages of d′ and c.

2.4 The r-model

In a recent attempt to overcome the limitations of exist-
ing measures of RH-use, we developed a formal mea-
surement model for comparative judgments (Hilbig, Erd-
felder, & Pohl, 2010). This multinomial processing
tree model (Batchelder & Riefer, 1999; Erdfelder et al.,
2009), named r-model, comprises a parameter which
specifically denotes the probability of RH-use without
suffering from the confound between recognition and
knowledge. As is displayed in Figure 1, the aggregate fre-
quencies of eight observable outcome categories are ex-
plained through four latent parameters representing pro-
cesses or states. The parameters a and b exactly mirror
what Goldstein and Gigerenzer (2002) call the recogni-
tion and knowledge validity, respectively: The former de-
notes the probability with which a recognized object has
a higher criterion value than an unrecognized object. The
latter denotes the probability of retrieving and consider-
ing valid knowledge. The parameter g merely denotes the
probability of guessing correctly. Most importantly, the
parameter r stands for the probability of using the RH,
that is, following recognition while ignoring all further
information and knowledge. By contrast, with probabil-
ity 1–r one’s judgment is not based on recognition alone
(though, as hinted above, the model does not make any
assumptions about which alternative process may be at
work).

As is typically the case for parameters in multinomial
models (Erdfelder et al., 2009), r denotes a probabil-
ity and thus represents a readily interpretable measure
of RH-use in much the same way as the adherence rate.
Additionally, and unlike any of the other measures in-
troduced above, the r-model allows for goodness-of-fit
tests. Specifically, since there are five free outcome cat-
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Figure 1: The r-model depicted as processing trees depending on whether both objects are recognized (topmost tree),
neither is recognized (middle tree), or exactly one is recognized (bottom tree). The parameter a represents the recogni-
tion validity (probability of the recognized object representing the correct choice), b stands for the knowledge validity
(probability of valid knowledge), g is the probability of a correct guess and, most importantly, r denotes the probability
of applying the RH (following the recognition cue while ignoring any knowledge beyond recognition).
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egories and four free parameters, the overall model fit
can be tested by means of the log-likelihood statistic G²
(χ²-goodness-of-fit test with df = 5 - 4 = 1). From a
practical perspective, researches are thus provided with
a test that, if significant (and given reasonable statistical
power), would imply not to interpret the parameters of
the r-model substantively. A first set of analyses (8 ex-
periments with 400 participants in total), revealed very
good fit of the r-model. In addition, experimental valida-
tion of the r parameter was obtained: Most importantly,
r was substantially larger in an experimental condition in
which participants were instructed to “use” the RH — as
compared to a control condition without any additional
instruction. The r parameter could thus be shown to re-
flect the judgment process it stands for, namely RH-use
(Hilbig et al., 2010).

3 Measure evaluation through sim-
ulation

How do these different measures perform? Apart from
the theoretical and practical advantages and limitations
outlined above, comparisons of the measures’ ability to
uncover the probability of RH-use (or the proportion of
RH users) seemed in order. Therefore, several simula-
tions were run to evaluate how well the measures perform
when the ground truth is known.

In the simulation, twenty objects (e.g., cities) were
used. For each object, the cue values of two cues, the
recognition cue and an additional knowledge cue, were
simulated. Specifically, the probability of a positive cue
value for both the recognition and the knowledge cue fol-
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Table 1: Mean absolute deviation, sum of squared differences, and maximally observed deviation from perfect estima-
tion for each of the measures and all four simulations. (AR = adherence rate.)

Measures

AR d’ c DI r

Simulation 1 Mean absolute deviation .30 .49 .13 .01 .02

(perfect conditions and
typical cue validities)

Sum of squared
differences 1.4 3.63 .42 < .01 < .01

Maximally observed
deviation .61 .97 .47 .03 .05

Simulation 2 Mean absolute deviation .29 .32 .20 .18 .05

(+ strategy execution
error)

Sum of squared
differences 1.31 1.87 .70 .56 .04

Maximally observed
deviation .58 .83 .48 .39 .11

Simulation 3 Mean absolute deviation .30 .34 .21 .27 .05

(+ extreme validities)
Sum of squared
differences 1.37 2.04 .75 1.19 .04

Maximally observed
deviation .59 .85 .48 .60 .11

Simulation 4 Mean absolute deviation .33 .34 .20 .19 .08

(forcing a positive
correlation between
recognition and
knowledge cue patterns)

Sum of squared
differences 1.65 2.06 .72 .55 .11

Maximally observed
deviation .65 .83 .48 .40 .18

lowed a sigmoid function3 (see also Schooler & Hertwig,
2005, Figure 5). Note that the values of the two cues were
drawn independently, thus allowing for any correlation
between the two cue patterns. Additionally, to manipulate
differences between cue patterns and between individu-
als, random noise was added: For each individual (and
separately for the two cues) the probability of random
noise was drawn from a normal distribution with given
mean and standard deviation (for the exact values see
simulations reported below). The cue value of each object
was then reversed with the probability of random noise.
Cue patterns with below-chance-level validity were dis-
carded.

Next, the twenty objects were exhaustively paired, re-
sulting in 190 comparative judgments (e.g., which city is
more populous?). For each single pair, it was determined
whether recognition was positive for neither, both, or ex-
actly one of the objects. If neither was recognized, one
of the objects was randomly chosen. If both were rec-

3The effective probabilities of a positive cue value were 0.97, 0.95,
0.93, 0.90, 0.86, 0.81, 0.75, 0.67, 0.59, 0.50, 0.41, 0.33, 0.25, 0.19,
0.14, 0.10, 0.07, 0.05, 0.04, and 0.03 for objects 1 to 20, respectively.

ognized, the object to which the knowledge cue pointed
was selected (if the knowledge cue did not discriminate
between the two objects, one of the two was randomly
chosen). The only difference between users and non-
users of the RH occurred whenever exactly one object
was recognized, i.e., a case in which the RH could be
applied: here, users followed the recognition cue in all
cases (always chose the recognized object). Non-users,
by contrast, followed the recognition cue if and only if
the knowledge cue was positive for the recognized ob-
ject, but chose the unrecognized object otherwise. The
value of the knowledge cue for an unrecognized object
was always ignored, implementing the assumption that
one cannot retrieve knowledge for an unknown object.

Eleven data sets were thus created, each with 1,000
simulated individuals and the following true proportions
of RH-users: .01, .10, .20, .30, .40, .50, .60, .70, .80, .90,
.99. Each of these data sets was analyzed with the meth-
ods described above. The mean adherence rate across
participants was computed as a measure of the overall
probability of RH-use. Likewise, the r-model was applied
to the aggregated outcome frequencies and the estimate of
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r was obtained for each data set — again indicating the
overall probability of RH-use. As described above, d′, c,
and DI could not be used to estimate the overall probabil-
ity of RH-use. Instead, the proportion of RH-users was
estimated from these measures: for d′ and the DI, a value
of zero was sufficient to be classified as a RH-user. For c,
any value smaller than zero was sufficient.

3.1 Simulation 1: optimal conditions and
typical cue validities

The first simulation was run implementing optimal con-
ditions for identification of RH-use versus non-use. First,
in this simulation, there was no strategy execution error;
thus, the overall probability of RH-use and the propor-
tion of RH-users in the sample are equivalent. Therefore,
all measures can be compared against the same criterion,
viz. the true underlying proportion of RH-users in each
data set. Secondly, the random noise probabilities when
drawing the cue patterns were chosen to result in a mean
recognition validity of .75 and mean knowledge valid-
ity of .65 (thus mirroring typical data sets, Hilbig et al.,
2010); specifically, the individual probability of random
noise was drawn from a normal distribution with M = .10,
SD = .05, and M = .20, SD = .05 for the recognition and
the knowledge cue, respectively. In the following simula-
tions 2 to 4 these constraints will be manipulated to assess
the robustness of the measures investigated.

The results of this first simulation are shown in the top
left panel of Figure 2 which plots the estimated probabil-
ity of RH-use (proportion of RH-users) against the true
underlying proportion of users. Optimal estimates would
lie on the diagonal (dashed black line).

Table 1 additionally provides, for each measure, the
mean absolute deviation, sum of squared differences,
and maximally observed deviation from the true criterion
across the eleven simulated data sets. As can be seen,
the adherences rate substantially and consistently overes-
timated the probability of RH-use by up to .61 and with
a mean absolute deviation of .30. Thus, even under opti-
mal conditions, the adherence rate performed poorly and,
as Figure 2 clearly demonstrates, severely overestimated
use of the RH.

Surprisingly, the d′ measure also performed poorly, as
it practically predicted no RH-use at all. As the severe
underestimation provided by this measure (see Figure 2)
indicates, the criterion of classifying only those decision
makers as RH-user who score d′ = 0 is too strict. This
is especially interesting in light of the very satisfying per-
formance of the DI which used the same classification cri-
terion (DI = 0) and, as introduced above, is almost tanta-
mount to d′, except for the lack of z-transformation. The
DI, however, was almost perfectly related to the true crite-
rion (with a mean absolute deviation of .01), and actually

outperformed all other measures in the set (see Table 1).
The performance of c, by contrast, was relatively poor

as indicated by a maximally observed deviation of .47.
Interestingly, for true criterion values between .40 and
.90, this measure performed very well and comparable
to the DI. However, especially in case of lower true pro-
portions of RH-users, c yielded severe overestimation of
RH-use. Worse yet, the proportion of estimated RH-users
obtained from c was not a monotonic function of the true
underlying proportion of RH-users (see Figure 2). So,
conclusive interpretation of differences in c as more ver-
sus less RH-use is not warranted — even under optimal
conditions.

Finally, the r parameter estimated with the r-model
showed very good performance (mean absolute deviation
of .02) which was highly comparable to the DI. Indeed,
the very small differences between the two should not
be overemphasized. Rather, under the perfect conditions
and typical cue validities implemented in this simulation,
both measures provided very accurate estimation of RH-
use or the proportion of RH-users.

3.2 Simulation 2: Strategy execution error
The assumptions implemented in the above reported sim-
ulation are, admittedly, not entirely realistic. Most im-
portantly, simulated participants’ strategy execution was
perfect, that is, no errors occurred. In real empirical data,
however, it is unlikely that this would hold (e.g., Glöck-
ner, 2009; Rieskamp, 2008). Therefore, in the next sim-
ulation, an individual error probability was set for each
participant, randomly drawn from a normal distribution
with M = .10 and SD = .05. On each trial, after the choice
had been determined, this choice was switched with the
probability of an error. As a consequence, even a true
RH-user would now, on some trials, choose the unrecog-
nized object.

Note that under these conditions the true underlying
proportion of RH-users and the overall probability of RH-
use are no longer the same. Therefore, the adherence rate
and the r parameter were evaluated against the actually
resulting overall probability of RH-use (solid black line
in Figure 2), whereas d′, c, and the DI were again com-
pared to the underlying proportion of RH-users (dashed
black line). Additionally, because the classification crite-
rion of d′ and the DI is unrealistic when strategy execu-
tion errors must be expected, both were allowed a more
lenient criterion. For the DI, any simulated participant
scoring within −.05 ≤ DI ≤ .05 was classified as a RH-
user. While the DI has a possible range from −1 to 1, d′

can practically take values anywhere between −3 and 3.
Thus, the classification criterion was three times as large
as for the DI, specifically −.15 ≤ d′ ≤ .15.4 The results

4Note that, when using the same classification criterion both for the
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Figure 2: Simulation results under optimal conditions and typical cue validities (top left), adding strategy execution
errors (top right), adding extremely high recognition and low knowledge validity (bottom left), and forcing the recog-
nition and knowledge cue patterns to correlate positively (bottom, right). The adherence rate (yellow) and r parameter
(red) are compared against the overall probability of RH use (solid black line). The DI (dashed green), d′ (dashed
blue) and c (dashed purple) are compared against the proportion of RH-users in each sample (dashed black line).
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of this simulation are provided in Table 1 and displayed
in the top right panel of Figure 2. As could be expected,
most measures suffered from the addition of strategy exe-
cution errors. However, they were affected differentially:
The adherence rate did not perform notably worse, but
merely maintained its consistent and severe overestima-
tion of RH-use. The d′ measure, though again perform-
ing worst of all, actually improved. Obviously, this is due
to the more lenient classification criterion implemented.
However, the estimated proportion of RH-users derived
from d′ was non-monotonically related to the underly-
ing true proportion (see Figure 2) which severely limits
the interpretability of this measure. In any case, d′ was

DI and d′, the latter performed much more poorly.

clearly outperformed by all other measures — even the
simple adherence rate.

All other measures were now negatively affected. Both
c and the DI performed notably worse, with estimates di-
verging from the true proportion of RH-users by as much
as .48 and .39, respectively. Under the current conditions,
the fit statistics provided only weak evidence for the su-
periority of the DI over c. However, Figure 2 (top, right)
does indicate that c was again a non-monotonic function
of the true underlying proportion of RH-users. As is the
case for d′, this is a drawback which strongly limits in-
terpretability of c. While the DI also performed notably
worse than under optimal conditions, it did at least retain
its monotonic relation to the true to-be-estimated crite-
rion.
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The r parameter estimated from the r-model, too, no
longer performed optimally. Indeed, it now produced es-
timates diverging from the true probability of RH-use by
as much as .11. On the other hand, the fit statistics un-
equivocally indicated that r was now the best-performing
measure in the set (see Table 1). Its mean absolute devia-
tion of .05 is less than a third of the according statistic for
the second-best measure, the DI.

3.3 Simulation 3: Extreme validities
So far, the cue validities implemented in the simulations
were intermediate in size and reflected the typically ob-
served difference between the recognition and knowledge
validity. However, it may occur that the recognition valid-
ity is much larger than the knowledge validity and quite
extreme in absolute terms (Hilbig & Richter, in press). As
a result, there will be much fewer cases in which the RH
actually yields a false prediction. This fact in turn should
affect measures placing particular emphasis on such cases
(especially the DI). To manipulate the cue validities, the
random noise probabilities were changed: For the recog-
nition cue, there was no longer any random noise; for the
knowledge cue, the random noise probability was drawn
from a normal distribution with M = .25 and SD = .05.
Consequently, the mean recognition validity increased to
.90, while the mean knowledge validity dropped to .55.
Otherwise this simulation was exactly the same as the
previous one (including strategy execution errors).

The results are shown in the lower left panel of Fig-
ure 2 and fit statistics are again found in Table 1. As
could be expected, the resulting decrease in performance
was most obvious for the DI, which now actually per-
formed worse than the c measure in terms of fit statistics.
Clearly, the extremely large recognition validity led to in-
creasingly severe underestimation of the true underlying
proportion of RH-users by the DI. The performance of
d′ and c, by contrast, was not as strongly affected but
merely remained generally poor. Also, both were again
non-linearly related to the underlying criterion, thus ham-
pering interpretability. On a more positive note, the r pa-
rameter was not affected by the extreme validities. In fact,
it performed exactly as in the previous simulation with a
very satisfying mean absolute deviation of .05.

3.4 Simulation 4: Cue inter-correlation
In a final simulation, another potential caveat for strategy
classification other than extreme validities was sought.
Specifically, the recognition and knowledge cue patterns
were now forced to correlate positively (r ≥ .3). To im-
plement this restriction, a naïve method was used which
simply computed the correlation of the two cue patterns
and redrew cue values if the condition of r ≥ .3 was not

fulfilled. However, as a consequence, the cue validities
were also affected. Therefore, the random noise prob-
abilities were adjusted to render the current simulation
comparable to the first two: The probabilities were drawn
from normal distributions with M = .30, SD = .05 and M =
.05, SD = .05 for the recognition and knowledge cue, re-
spectively, resulting in a mean recognition validity of .75
and mean knowledge validity of .64. This simulation was
thus exactly the same as Simulation 2 (including strat-
egy execution errors), apart from the addition of positive
cue-pattern correlations which will again render strategy
identification more difficult because less diagnostic cases
occur when cues are correlated (Glöckner, 2009). In other
words, the knowledge cue was substantially less likely to
argue against a recognized object.

The results are depicted in the lower right panel of Fig-
ure 2 (see also Table 1). Whereas the performance of
most measures only worsened slightly compared to Sim-
ulation 2, the r parameter now showed less satisfactory
fit statistics. The effect of introducing cue-pattern cor-
relations on the r estimate is clearly visible by compar-
ing the upper and lower right panels of Figure 2: The r
parameter now tended to overestimate RH-use when the
true underlying proportion of RH-users was small. This
is plausible given that the positive cue-pattern correlation
will increase the probability of a RH-non-user following
the recognition cue — simply because the knowledge cue
is less likely to argue against it. However, these find-
ings notwithstanding, the r parameter was still the best-
performing measure in the set and its mean absolute de-
viation of .08 can still be considered satisfactory.

3.5 Summary and discussion of simulation
results

Several measures for assessing the probability of RH-use
or, alternatively, the proportion of RH-users in a sam-
ple were compared in a set of simulations. As a start-
ing point, optimal conditions for strategy identification
were implemented, namely no strategy execution errors,
typical cue validities, and independently drawn cue pat-
terns. The results of this simulation revealed that both
the adherences rate and Pachur and Hertwig’s (2006) d′

performed poorly. That is, even assuming optimal con-
ditions, these measures should not be applied to assess
RH-use. By contrast, c performed more acceptably in
terms of fit and especially for larger underlying propor-
tions of RH-users. However, at lower levels, c showed
a varying tendency to overestimate RH-use and, worse
yet, was a non-monotonic function of the to-be-estimated
criterion which is a severe drawback. Neither of these
problems were apparent for the DI (Hilbig & Pohl, 2008)
which provided highly accurate estimates of the propor-
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tion on RH-users in the simulated samples. Likewise, the
r parameter as estimated from the multinomial process-
ing tree model proposed by Hilbig, Erdfelder, and Pohl
(2010) showed almost perfect performance.

In the following simulations, the implemented con-
straints ensuring optimal conditions for strategy identi-
fication were relaxed. Specifically, strategy execution
errors were introduced, extreme validities were imple-
mented, and positive cue-pattern correlations were en-
forced. Overall, those measures originally performing
well (DI and r) did suffer from these obstacles. In particu-
lar, the DI strongly underestimated higher proportions of
RH-users in a sample when an extremely large recogni-
tion validity (.90) and very low knowledge validity (.55)
were implemented. The r parameter, by contrast, pro-
vided adequate estimates under these circumstances but
performed less well when positive cue-pattern correla-
tions were enforced. On the whole, however, the r pa-
rameter provided the best estimates of RH-use which held
even under conditions clearly hampering optimal strategy
classification.

4 Measure evaluation through em-
pirical data

Simulations bear advantages and limitations. One of
the latter is that the behavior of actual decision makers
can, at best, only be approximated. In a second step,
I thus sought to evaluate the different measures of RH-
use through empirical data. However, as outlined in the
introduction, the paradigm of natural recognition (with-
out any control over participants’ cue knowledge) cannot
provide any useful comparison against which to evaluate
these measures. Instead, it is much more informative to
apply these measures to data in which the cue patterns are
known and RH-use can be assessed using the strategy-
classification method of Bröder and Schiffer (2003). The
combination of this method with diagnostic tasks yields
vastly more control and allows for more conclusive clas-
sification of participants to strategies.

Specifically, the data of Glöckner and Bröder (in
press) were analyzed because the authors implemented a
paradigm in which participants were provided with addi-
tional information beyond recognition: Participants were
shown recognized and unrecognized US-cities and were
additionally given information about these, namely three
additional cues. Based on the artificially created cue pat-
terns, participants’ choice data were analyzed with the
Bröder/Schiffer-method. As reported by Glöckner and
Bröder (in press, Figure 1), a proportion of up to 36.25%
of their sample were accordingly classified as users of
non-compensatory strategies such as the RH.

The question then was how the measures of RH-use
investigated herein would perform as compared to the
Bröder/Schiffer-method. Importantly, all these measures
ignore information about the cue patters in specific tri-
als. So, from Glöckner and Bröder’s data, I kept only the
three pieces of information necessary for computing the
measures of RH-use: (i) which objects were compared
on each trial, (ii) which objects participants reported to
recognize, and (iii) actual choices. For those measures
which afford some fixed criterion to classify participants
as RH-users, the following were used: A participant with
a DI within the 95%-confidence-interval of zero (± .11)
was classified as a RH-user (cf. Hilbig & Pohl, 2008).
The same criterion (± .07) was used for d′. For c, partic-
ipants with values smaller than the upper bound of the
95%-confidence-interval of zero (.11) were considered
RH-users. The remaining measures, viz. the adherence
rate and the r parameter, again estimated the overall prob-
ability of RH-use.

Results were mostly consistent with what might be ex-
pected from the simulations reported above. The mean
adherences rate in the sample was .71 (SD = .14), thereby
severely overestimating RH-use as compared to the re-
sults of the Bröder/Schiffer-method. Also, d’ showed the
same strong underestimation which was already visible
in the simulations, proposing that only 6% of participants
were RH-users. Overall, c and the DI yielded more accu-
rate estimates, implying proportions of RH-users in the
sample of .52 and .59, respectively. Clearly, both per-
formed better than the adherence rate and d′, but nei-
ther provided an estimate which was satisfyingly close to
what was expected from the maximum-likelihood strat-
egy classification. Finally, the r-model (which fit the em-
pirical data well, G²(1) = .12, p = .74) estimated the over-
all probability of RH-use to be r = .40 (SE = .01) which is
close to the conclusion drawn from the Bröder/Schiffer-
method, namely that about 36% of participants were most
likely to have used the RH.

In sum, once more, the r-model provided the best es-
timate of RH-use — though, unlike in the simulations,
“best” here does not refer to the known underlying truth
but rather to the results obtained from a well-established
and widely-used method for strategy classification. How-
ever, one may argue that this method need not uncover the
actual judgment processes — especially if only choices
are considered (Glöckner, 2009). Therefore, from the
current analysis, it might be more adequate to conclude
that the r-model provides the estimate of RH-use clos-
est to what is implied by Bröder and Schiffer’s (2003)
maximum-likelihood strategy-classification method (and
no more). Importantly, though, the r-model achieves this
without considering any information about cue patterns
in the different trials.
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Table 2: Results concerning desirable criteria for measurement tools of RH-use.

Measures

AR d’ c DI r

Directly interpretable estimate of RH-use yes no no no yes
Adequate estimate of RH-use (under optimal conditions) no no no yes yes
Adequately robust (under non-optimal conditions) ∗ ∗ ∗ yes∗∗ yes∗∗∗

Estimate monotonically related to RH-use yes no no yes yes
Parallel results to maximum-likelihood strategy classification
in empirical data

no no yes no yes

Goodness-of-fit tests no no no no yes
∗ It makes little sense to interpret the robustness of measures which performed poorly even under optimal conditions.
∗∗ The DI is least robust if the recognition validity is extremely high and much larger than the knowledge validity.
∗∗∗ The r-estimate is least robust if recognition and knowledge cue patterns correlate positively.

5 Discussion

Concerning the recognition heuristic (RH; Goldstein &
Gigerenzer, 2002), most of the recent investigations have
concluded that it neither represents a general description
of comparative judgments nor appears to be refutable al-
together (Hilbig, in press) — very much like the take-the-
best heuristic (Bröder & Newell, 2008). Consequently, it
is an important quest to uncover the conditions and in-
dividual differences which foster or hamper application
of simple one-cue strategies, such as the RH. However,
mutual progress in this domain would necessitate some
consensus as to the paradigms and measures appropri-
ate for investigating use of this strategy. So far, there
has been some work concerning suitable paradigms and it
is my impression that using naturally recognized objects
without teaching (or providing) any further cue knowl-
edge or information has emerged as one preferred method
(Pachur et al., 2008) — especially given that the potential
dangers of participants possessing criterion knowledge
need not be too severe (Hilbig, Pohl, & Bröder, 2009).

However, such a paradigm in which there is no control
over participants’ knowledge beyond recognition renders
measurement of RH-use very difficult. Clearly, choices in
line with a single-cue strategy provide little information
about its actual use, if other cues (the values of which are
unknown) may imply the same choice (Bröder & Eichler,
2006; Bröder & Schiffer, 2003; Hilbig, 2008b, in press).
In this article, I have therefore considered different mea-
sures and evaluated them with respect to their ability of
uncovering true use of the RH. Specifically, apart from
the adherence rate (proportion of choices in line with the
RH), Pachur and Hertwig’s (2006) d′ and c (Pachur et
al., 2009), the discrimination index (DI; Hilbig & Pohl,

2008), and the parameter r from the r-model (Hilbig et
al., 2010) were compared.

Table 2 summarizes the main results with respect to
several desirable criteria. Firstly, only the adherence rate
and r-model provide a directly interpretable estimate of
RH-use; d′, c and DI, by contrast, necessitate further as-
sumptions as to the values RH-users would show (as a
necessary but not sufficient condition, cf. Hilbig & Pohl,
2008). Secondly, DI and r provide adequate estimates of
RH-use under optimal conditions, whereas c, the adher-
ence rate, and d′ perform less convincingly: While the
adherences rate consistently and severely overestimated
RH-use, the exact opposite was the case for d′. Further-
more, d′ and c were mostly non-monotonically related to
the true proportion of RH-users which hampers the inter-
pretability of differences in these measures. Overall, only
r was satisfactorily robust against less optimal conditions
for strategy identification — though situations bearing a
substantial positive correlation between recognition and
knowledge cue patterns do pose difficulties for this mea-
sure, too.

Additionally, I asked which measures would pro-
duce results similar to choice-based maximum-likelihood
strategy-classification (Bröder & Schiffer, 2003; Glöck-
ner, 2009) in Glöckner and Bröder’s (in press) empiri-
cal data. The most comparable estimates were provided
by c and, even more so, the r parameter. Finally, as an
additional benefit, the r-model allows for goodness-of-fit
tests and comprises many of the other advantageous fea-
tures of multinomial processing tree models (Erdfelder et
al., 2009) — including, for example, model comparisons
with respect to goodness-of-fit and complexity (Myung,
2000). Also, in light of recently developed free and
platform-independent software for analysis of multino-
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mial models (Moshagen, 2010), the r-model is no more
difficult to apply than any of the other measures.

In sum, for those studying comparative judgments be-
tween naturally recognized objects (without teaching or
providing further cues), the r-model will yield the best
measure of RH-use currently available. However, there
are also situations in which this measurement tool will
not be helpful and I consider it important to point to these
cases: Firstly, the r-model cannot be applied to preferen-
tial choice, that is, situations in which there is no con-
clusive criterion which choice option represents a correct
versus false judgment. In fact, this limitation applies to
all measures discussed herein except for the adherence
rate. Secondly, the r-model is designed for exhaustive
paired-comparisons as it affords cases in which both ob-
jects are recognized and cases in which only one is recog-
nized. At least, a representative sample of each of these
sets of cases is necessary. This limitation does not hold
for any of the other measures, each of which can be ap-
plied to only those cases in which exactly one object is
recognized. On the other hand, I am aware of few em-
pirical investigations which actually were limited to such
cases.

Beyond some recommendations for measuring RH-
use, what methodological conclusions can be drawn?
As the extremely poor performance of the adherence
rate (which is the measure most often applied so far)
indicates, more careful consideration of our measure-
ment tools seems advisable. Precisely formulated process
models of judgment and decision making deserve precise
(and process-pure) measures. So long as measurement is
vague, exact description on the theoretical level will not
avail us. With good reason, Gigerenzer and colleagues
have called for precise theories (Gigerenzer, 1996, 2009;
Gigerenzer, Krauss, & Vitouch, 2004). However, it does
not suffice — though it is necessary — to build precise
theories. If we do not add a call for using the most precise
measurement tools available, we may too often fall prey
to premature conclusions. For the recognition heuristic
theory, I hope to have provided some insight which mea-
sures are more or less likely to enhance our understand-
ing.
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