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Abstract

In this paper, we study the existence of periodic solutions of the NDDE (neutral
differential difference equation):

(x(8) + ex(t — 1)) = = f(x(1), x(t - 7)) (*)

where 7 > 0 and c is a real number. We obtain a sufficient condition under which
(*) has at least k nonconstant oscillatory periodic solutions.

1. Introduction

In 1967, R. Brayton [1-2] considered the problem of lossless transmission
lines used to connect switching circuits and obtained the following NDDE
(neutral differential difference equation):

u(t) — ku(t - 2/s) = f(u(t), u(t —2/s)) (A)

where s = vVLC . In this paper, we study the existence of a periodic solution
of (A). For the case k = 0, several papers [5-6] have given sufficient condi-
tions for the existence of a periodic solution of (A). However, for the cases
k # 0, there are few papers dealing with the existence of a periodic solution
of (A). Now, we consider a class of NDDEs which is more general than (A):

(x() + ex(t — 7)) = —f(x(2), x(t — 7)) (1)

where 7 > 0, c¢ is a real number, and f(x, y) is a continuous function.
Since the solutions of (1) may not be differentiable, (1) is more general than

(A).
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[2} Existence of periodic solutions of NDDE 509

Throughout this paper we assume that there exists a continuous function
g(x, y) such that

f(x,y)=8(x,y)—cg(y, x). (2)
Usually a function g(x, y) which satisfies (2) is easily obtained. For example
if ¢ # %1, then, from (2), we have

Sy, x)=g,x)-cg(x,y). (3)
By (2), (3) we obtain

g(x, ) = lczf<x,y)+ S0, ).

1- 1-

2. The main result

Consider the ordinary differential system:

dx _ dy
E——g(x,y), H—g(y,X)- (4)

We suppose that

(I) g(x, y) is continuous on R

(1) ('gﬁx ;")')) satisfies the local Lipschitz condition on R”.

It is easy to see that, under the conditions (I} and (II), (4) has a unique
solution which satisfies the initial conditions x(¢,) = x,, ¥({) = y, and

through any point (x,, y,) (4) has a unique orbit [3].

LEMMA. Suppose that

(a) g(x, -y)=—-g(x,y), g(-x,y)=g(x,y), yg(x,y)>0 (y#0);
(b) there exists some b > 0 such that

8, x)/g(x,y) < Ax)B(y) (x>0, y>b>0),

where A(x) is continuous on [0, +o00), B(y) is continuous on [b, +oc0),
B(y)>0 (y2b) and [*(1/B(y))dy = +oo;

(©)
lim X200 xg +yf(x, _p
xtry?—0* x‘+y
. X , X) + X,
lim XY 3 yf( M _ g
x4yl —too X" +y

(d) there is some T > 0 such that p <2n/T < q < +oo0 or g <2n/T <
D < +oo. Then (4) has a periodic solution with period of T .
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Proor. Since yg(x,y)>0 (y #0), (0, 0) is the unique singular point of
(4). By (I) and (II), through any point (x,, y,), (4) has a unique orbit [6].
Assume that, through the point (x;, y,), the orbit of (4)is L, where x, >0,
Yo 20, (x5,¥,) #(0,0). If x, =0, then it is easy to see that L intersects
the positive y-axis. If x;, > 0, then we claim that L intersects the positive
y-axis. Otherwise, by dy/dx = —g(y, x)/g(x,y)<0 (x>0, y>0), L
has an asymptotic line x =a>0. Let L be y =y(x) (a < x < x;). Then,
by lim, _, +y(x) = +oo, there is x,;:a < x; < X, such that y(x,) > b.
Noting that y(x) is decreasing, we have y(x) > y(x;) > b (a<x <Xx,).
Hence, by the condition (b), we obtain

dy(x) __gly(x), x)

> —A(x)B(y(x))

dx = g(x,y(x))
and 5 dy(s)
1 y(s _ X1
A o R AL
or y(x) dy X,
_/y(x.) F()’_)2_/)5 Ads - (a<xsx).

As x — a*, the above inequality and the condition [**°(1/B(y))dy = +oo
produce the desired contradiction and establish the claim that L intersects
the positive y-axis. By the condition (b) and (4), for y >0 and x> 5 >0,
we have
dx __gx,y)
dy  g(y,x)
Similarly, we can prove that L intersects the positive x-axis. Then, any
orbit which passes through the point (x,, y,) intersects the positive x-axis
and the positive y-axis, where x, > 0, y, > 0, (x,,y,) # (0,0). By
(4) and the condition (a), we have dy/dx = —g(y, x)/g(x,y), dx/dy =
—g(x,y)/g(y, x) and g(x,-y) =—g(x,»), g(—x,y) = g(x, y). Hence,
the orbit of (4) is symmetric for the x-axis, y-axis, origin and the lines
y = +x. Then, noting that L intersects the positive x-axis and the positive
y-axis, we know that every orbit of (4) is a simple closed curve which is sym-
metric for the x-axis, y-axis, origin and the lines y = +x. Let (x_(¢), y.(2))
be the solution of (4) which satisfies x,(0) = ¢, y.(0) =c (c > 0). Since
the orbit of (4) is closed, the solution (x,(Z), y.(¢)) is bounded. Because
g(x, y) satisfies the conditions (I) and (II), the solution (x,(Z), y.(?)) exists
on (—oo, +o0) [3].
Suppose that through the point (c, ¢) the orbit of (4) is L,. Since L, is
closed, the solution (x,(f), y,(t)) is a periodic solution of (4). Let the period
of (x.(1), y.(t)) be w(c). Because the solutions continuously depend on the

> —A(y)B(x).
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initial conditions, it is easy to show that w(c) is a continuous function.
Noting that L is symmetric for the x-axis, y-axis and

dy __80:X) 4 (x>0, y>0),

dx — g(x,¥)
we have
x| >c or |y|>c, ¥Y(x,y)€L,.
Then , ,
X" +y Zcz, Vix,y)eL,. (5)
Let

m(c) = inf{x>(t) + y2(1), 0<t<w(c)},
M(c) = sup{xf(t) +yf), 0<t<w(c)}.
Then m(c) >0 M(c) > 0. By (5), we obtain
cll.IPoom(C) = +400. (6)
Since, under the conditions (I) and (II), the orbits of (4) are mutually disjoint
[3), M(c) is an increasing function and lim__ . M(c) exists. Noting that
M(c) > 0, we have lim__ . M(c) > 0. We claim that
lim M(c)=0. (7
c—0*

Otherwise, we have lim__ . M(c) =d > 0. Consider the orbit L, which
passes through the point A4(v/d/2,0). Since L 4 1s a simple closed curve
which is symmetric for the lines y = +x, L, intersects the positive y-axis
and the intersection point is (0, vd/2). Noting that L 4 is symmetric for
the x-axis, the y-axis and dy/dx >0 on x>0, y >0, we have

x| <Vd/2, |y|<Vd/2, Y(x,y)eL,,
and
4y < (VA (VA =d)2,  Yx,y)eL,.

Let the intersection point of L, and y = x be (a, a). Then, we have
M(a) < d/2 which contradicts the fact that lim__, + M(c) = d > 0 and
establishes the claim that (7) holds.

Let H(t) = arctany (£)/x(t) . Then

B 2n _ w(c) B w(c) y:_(t)xc(t) —_ xé(t)y:(t)
27:—/; dH_/0 H'(t)dt—/o 2010 dt

- / v x(08(1), X, (1)) + v (Ng(x(), y.(£))
o x2(t) + y2(2)

dt.
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Since (7) holds, xcz(t) + yf (¢) uniformly tends to zero as ¢ — 0% . Then, by
(7), (8) and the conditions (c), (d), we have

21 = p lim w(c). 9

c—0*
Similarly, by (6), (8) and the conditions (c), (d), we have
2n = qckgloow(c). (10)

Noting that p < 2n/T < q or q <2n/T > p and (9), (10) hold, we obtain

lm w(c) > T, lim w(c)< T
c—0% c=—++00

or
lim w(c)< T, lim w(c)>T.
c—0* c—+00

Hence, there exists ¢* € (0, +0c0) such that w(c*) = T and the solution
(x*(t), ¥*(£)) which satisfies the initial conditions x*(0) = ¢*, y*(0) =¢" is
a nonconstant periodic solution with period of T . The proof of the lemma
is now complete.

THEOREM 1. Suppose that there is a function g(x,y) such that

f(x,y)=g(x,y)—cg(y,x) (11)

where g(x,y) satisfies the conditions (I), (I1). If the conditions (a), (b), (c)
of the lemma and
<m<q or <w<p (n=m,n+1,...,m+k-1)
27 27 ,
(d)
hold, then (1) has at least k nonconstant oscillatory solutions, where m is
some nonnegative integer and k is some positive integer.

p

Proor. By the lemma, (4) has a periodic solution with period of T, =
47/(1 + 4m). Since n = m,m+1,...,m+ k — 1, we obtain k non-
constant solutions (x,(t), y,(?)) of (4), where (x,(¢), y,(?)) satisfies the
initial conditions x,(0) = ¢,, ¥,(0) = ¢, and the period of (x,(1), y,(?))
is w(c,) = 4t/(1 + 4n). Assume that, through the point (c,, c,), the or-
bit of (4) is L,. By the proof of the lemma, we know that L, is a sim-
ple closed curve which is symmetric for the x-axis, y-axis, origin and the
lines y = +x. Since L, is symmetric for the origin, it is easy to show
that the point (—x,(t), —y,(t)) € L, for any ¢ € (—oc0, +c0) and that
(=x,(8), —y,(1)) is a solution of (4). Then the solution (x,(¢), y,(s)) wil
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meet the solution (—x,(¢), —y,(?)) after a translation of time 7, i.e. there

is some 7, € (0, l+4n) such that

x,(f) = —x,(t+71))=x,(t+27),

(12)
V() = —y,(t+1)=y,(t+21)).
Noting that x,(¢) has period of 47/(1 + 4n), by (12), we have
47 2t
2=k T O hThe T
where A, is some positive integer. By 7, € (0, 1+4n) and t, =h,- l+4" (h,

is positive integer), we have 4, = 1 and t, = 27/(2 + 4n). Then by (12),

we have
21 21
==X\t ) =%\~ 15 )

)= - ‘4 2t _ ‘e 2t
ViD= =In\" "1 an )= T+an/ "

On the other hand, since the closed curve L, is symmetric for the x-axis,
y-axis and the lines y = £x , it is easy to show that the point (—y, (), x,(¢)) €
Ifn (t € (—o0, +00)) 'and (=y,(0), xngt)) is a solution of (4). Then the sqlu-
tion (x,(f), y,(t)) will meet the solution (—y,(¢), x,(f)) after a translation

(13)

of time 7,, i.e. there is some 7, € (0, 3 +4n) such that
—y,(0) =x,(t+1,), x, () =y, (t+1,). (14)
By (14), we have
x, (1) =y, (t+1,) =—x,(t +21,). (15)

y (13) and (15), we have

2t
x, (t— 1+4n) =x,(t+21,).

Then

2t 4t 47 h, 1
2 —_— = ¢ — _ ———— . ._2.__
i o Tra O 2T Tvan (2 4) (16)

where h, is some positive integer. By 7, € (0, ; +4n) and (16), it is easy to
see hy =1 or 2. Then 7, = 74 or 7, = ,34n. We choose ¢, such that
the point (x,(%,), y,(f,)) belongs to the first quadrant. Then x,(z,) > O,
¥,(t,) > 0. Hence the point (-y,(f,), x,(¢;)) should belong to the second
quadrant and the point (-x,(¢,), —¥,(Z,)) should belong to the third quad-
rant.
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By (13), and (14), we have

2t 27
X, |+ T+an )’ Yallp+ Tvan)) = (x,(t5) > =¥, (t))
(x,,(to + 72) ’ yn(to + Tz)) = (_yn(to) s xn(to)) .
Then (x,(¢, + 7,),,(t, + 7,)) belongs to the second quadrant and
(x,(ty + %) » Yollg + 1iﬁ)) belongs to the third quadrant. Hence 1, #
T2 (hy #2) and 1, = 5% (B, =1).
By (14) and 7, = 3%; , We obtain

x, () =y,(t+1,) =—x,(t+21,) = —y,(t + 31,) = x,(t + 41)

=y,(t+57)=---=y,(t+(1+4n)1,) =y, (1 + 7).
Then
x,(t—1)=y,(). (17)
By (4) and (17), we have

d

)th(t) = —g(x,(8), y,(2)) = —g(x,(8), x,(t — 1)), (18)
d - d

""E,‘, 2 }:;',(t) =g(,(1), x,(2)) = g(x,(t — 1), x,(2)). (19)

By (18), (19) and (11), we have

L0+ X2 D) g, (1), 3,00 = 1) + cax,(t = 1), %,(0)

= — f(x,(0), x,(t - 7).

Hence x,(¢) is a periodic solution of (1). By the proof of the lemma, x,(f)
is nonconstant oscillatory and has period of I:—fm. Since n = m, m+
1,...,m+ k —1 we obtain k nonconstant oscillatory periodic solutions.

The proof of Theorem 1 is now complete.

REMARK 1. By Theorem 1, if p < +00, ¢ = 400 Or p = +o0, q < 400,
then (1) has an infinite number of periodic solutions.

In the case ¢ = 0, f(x,y) = F(y), we can choose g(x,y) = F(y).
Then, by Theorem 1, we have the following corollary:

COROLLARY 1. Suppose that
(a) F(y) is a continuous odd function, yF(y) > 0 (y # 0) and
JP*F(y)dy = +oo;
(b) lim,_, F(y)/y=p, lim,_ _F(y)/y=gq and
(1+4n)zm (1+4n)n
< ———21_ < or q< 27 <p,
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where n=m, m+1,..., m+k —1 and m is some nonnegative integer,
k is some positive integer. Then the equation
X(t)=-F(x(t-1) (t1>0) (20)

has at least k nonconstant oscillatory periodic solutions. Specifically, if p <
+00, ¢ = +00 Or p = +00, q < +o0o, then (20) has an infinite number of
periodic solutions.

REMARK 2. Corollary 1 generalises the result of Kaplan and Yorke [5].

3. Some examples

ExamMpLE 1. Consider
(x() +x(t - 1)) = —a(x’(t - 1) = X* (1) (21)

where a >0, 7> 0, s > 1 and s is a ratio of two positive odd numbers.
Then ¢ =1, f(x,y) =a(’ —x°). We choose g(x,y) =ay’. It is easy
to show that g(x, y) satisfies the conditions of Theorem 1 and p =0, ¢ =
+o0o. By Theorem 1 and Remark 1, (21) has an infinite number of periodic
solutions.

ExAMPLE 2. Consider
(x(t) = x(t — 1)) = —(x(8) + x(¢ — 7)) exp(—x"(t) - x*(t - 1)),  (22)

where 7 > ﬁ—”—"(?m and k is some positive integer. Then ¢ = —1 and

f(x,y) = (x +y)exp(-x* — y*). We choose g(x,y) = yexp(~x* - y7).
Hence, we have

2 2
g(yax)=XCXp( xz—y2)=x_l (x>0, y>b>0)
g(x,y)  yexp(-x*-y? y

nd 0. %) +y8(x, )

xg(y,x)+yg(x, 2 2
gy ) y_f V) _ exp(—x* - %)
X +y
It is easy to show that g(x, y) satisfies the conditions of Theorem 1 and
4
q=0<g+zr—n)n<l=p, n=0,1,...,k-1.

Then, by Theorem 1, (22) has at least k periodic solutions.

ExaMPLE 3. Consider
(x(t) + cx(t = 1)) = —a(l + xX2() + x2(t = D)) (x(t = 1) —ex(t))  (23)
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where a>0, >0 and c is a constant. Then, f(x,y) = a(1+x2+y2)(y —cx).
We choose g(x, y) = a(l +x? +y2)y . Then we have

1 2, .2
gy, x) _ a( +%+x;x=x“1 (x>0, y>b>0)
g(x,¥)  a(l+x*+yy y

and
xg(y, x)+ygu'y)
x +y
It is easy to show that g(x, y) satisfies the conditions of Theorem 1 and
p=a, q=+oo. By Theorem 1 and Remark 1, (23) has an infinite number
of periodic solutions. Indeed, it is easy to show that

(U +4mm N (1 +4am)mt
"n(‘)‘( 2art ! ST

are the periodic solutions of (23), where m = [2"‘ £1a=1] 4 1, This is the same
conclusion as we obtain by Theorem 1 and Remark 1.

a(l+x> +y%).

n=m,m+1,
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