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Abstract

Introduction:More than 5 million children in the United States experience food insecurity (FI),
yet little guidance exists regarding screening for FI. A prediction model of FI could be useful for
healthcare systems and practices working to identify and address childrenwith FI. Our objective
was to predict FI using demographic, geographic, medical, and historic unmet health-related
social needs data available within most electronic health records. Methods: This was a
retrospective longitudinal cohort study of children evaluated in an academic pediatric primary
care clinic and screened at least once for FI between January 2017 and August 2021. American
Community SurveyData provided additional insight into neighborhood-level information such
as home ownership and poverty level. Household FI was screened using two validated
questions. Various combinations of predictor variables and modeling approaches, including
logistic regression, random forest, and gradient-boosted machine, were used to build and
validate prediction models. Results: A total of 25,214 encounters from 8521 unique patients
were included, with FI present in 3820 (15%) encounters. Logistic regression with a 12-month
look-back using census block group neighborhood variables showed the best performance in
the test set (C-statistic 0.70, positive predictive value 0.92), had superior C-statistics to both
random forest (0.65, p< 0.01) and gradient boosted machine (0.68, p= 0.01), and showed the
best calibration. Results were nearly unchanged when coding missing data as a category.
Conclusions: Although our models could predict FI, further work is needed to develop a more
robust prediction model for pediatric FI.

Introduction

More than 13.5 million households and 33 million people experience food insecurity (FI),
including more than 5 million children in the United States [1]. Notably, FI, or the reduced
quality, variety, desirability of diet, or reduced food intake, disproportionately affects
households with children under the age of 6 years, headed by Black and Hispanic persons,
and headed by a single woman [1]. FI is associated with prematurity; chronic illnesses including
asthma, depression, and obesity; missed routine medical care including immunizations; and
higher emergency department utilization and hospitalizations [2–4]. Additionally, FI is
associated with 20% greater health care expenditures among families with FI compared to
families without FI [5].

Given the prevalence and association with poor outcomes, an increasing number of health
systems and health insurers are investing in strategies to identify and address FI to improve
patient care and population health. Although many healthcare systems are screening for FI, it is
not yet universal and little guidance exists regarding the optimal frequency or clinical
department, so predicting FI could be useful for healthcare systems and practices that are not yet
screening. Additionally, if practices are only screening at well visits, given the transient nature of
FI [6], FI may be missed at acute visits, especially among families that are not attending well
visits. Furthermore, families may choose not to disclose FI for many reasons, including
screening fatigue, shame or stigma, fear of consequences for reporting FI, or perception of need
[6–9], so predicting who is at risk of FI and offering resources rather than screening may be
useful.

Although there is increasing ability to leverage machine learning techniques using the
electronic health record (EHR) to earlier identify diseases and to prevent adverse outcomes
[10,11], it is unknown how to best utilize such models to predict which patients are at highest
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risk of FI to offer resources and interventions. Studies show it is
possible to routinely screen for FI during routine clinical care in
emergency room, primary care, and subspecialty care settings
[12,13]. Given the rich data contained within EHR, including
demographics, medical histories, and historic patient-reported
information, including unmet health-related social needs, these
data could be valuable resources to predict FI. However, such
prediction models are not yet validated or integrated into the EHR
to guide clinical decision support and patient care.

This study aims to develop a machine learning algorithm to
predict families that will report FI using demographic, geographic,
medical, and unmet health-related social needs data that are
typically available within most EHRs.

Materials and methods

Setting

We conducted a retrospective longitudinal cohort study conducted
at Atrium Health Wake Forest Baptist between January 2017 and
June 2021. This study was approved by theWake Forest University
Health Sciences Institutional Review Board (IRB00071608).

Study population

We included all patients in one academic pediatric primary care
clinic with patients who were screened at least once for FI between
January 2017 and August 2021. Encounters were included if FI was
screened for and documented in the EHR (N= 25,214) and were
excluded if FI was not screened for or documented in the EHR
(N= 3,296). The clinic is in an urban neighborhood and serves a
predominantly racial and ethnic minority population of which
more than 90% are covered by Medicaid insurance. The medical
system is also part of a tertiary care hospital, has multiple board-
certified pediatric subspecialties, a pediatric emergency depart-
ment, and serves the majority of children across western North
Carolina.

Measurement of FI

The clinic screens all patients for FI during routine clinical care,
including well-child and acute visits. This screening occurs on
paper in English or Spanish and is verbally asked through a
certified interpreter if the parent/caregiver speaks another
language or is unable to read. Household FI is screened using
two validated questions, “In the past year, did you worry that your
food would run out before you got money or Food Stamps to buy
more?” and “In the past year, did the food you bought just not last
and you didn’t have money to get more?” with dichotomous
response options (yes or no) [14]. An affirmative response to either
question is considered a positive screen. These questions are
recommended by the American Academy of Pediatrics [15]. At the
time of a clinic visit, the provider discusses the screening results
with the family and enters the results into discrete data fields
within the EHR. When a patient has a positive screen, the provider
asks the family if they would like a bag of food from the clinic’s food
pharmacy, referral to a food navigator, connection with federal
nutrition programs, and/or a list of community resources.

Demographics

Patient’s age, sex, race, and ethnicity at the time of the visit were
extracted from the EHR. Race and ethnicity, which were self-
reported by parents/caregivers and recorded in the EHR, were

combined into one variable and categorized as non-Hispanic
White, non-Hispanic Black, Hispanic, or other (includes American
Indian, Alaska Native, Asian, Native Hawaiian, Other Pacific
Islander, Other, Patient Refused, Unknown).

Other Unmet Health-Related Social Needs Screening

As part of routine clinical care, the clinic also screens for other
unmet health-related social needs over the prior 12 months
including intimate partner violence, risk of homelessness, trans-
portation difficulties, legal needs, caregiver coping concerns, and
caregiver substance use. These needs are screened alongside FI. All
screening results and resources provided are documented within
the EHR (Supplementary Table 1).

Chronic conditions and healthcare Utilization

All problem lists and encounter diagnoses from visits occurring at
the primary care clinic and any department across the medical
center since 2012, when our EHR was adopted, were included.
Diagnoses data included in the problem list or encounter diagnoses
based on the respective International Classification of Diseases
10th Revision (ICD-10), were extracted, including attention-deficit
hyperactivity disorder (ADHD), failure to gain weight, hyper-
tension, asthma, eczema, prematurity, depression, and anxiety.
Emergency department visits and hospitalizations were also
extracted.

Anthropometrics

Children’s height and weight are recorded as standard of care at
each clinic visit, and body mass index (BMI) percentiles were
calculated from the encounter at which FI was measured.
Underweight was defined as BMI of <5th percentile. Healthy
weight was defined as BMI between ≥ 5 to<85th percentile.
Overweight and obesity were defined as BMI of ≥ 85 to <95th,
and≥ 95th percentile, respectively.

Neighborhood information

We used the US Census Bureau’s 2010 American Community
Survey (ACS) 5-year estimates to identify neighborhood informa-
tion. The ACS includes neighborhood-level information at both
the zip code level and the census block level including income,
poverty, employment, and home ownership estimates [16]. Zip
code predictors included total population count, number of
housing units, median age, percentage 25 and older who had a high
school education or less, median income, percentage of households
with incomes under 100 percent of the federal poverty level in last
12months, percentage of households where the person who lives in
the household owns the house, percentage 16 years of age and older
who work and commute 60 minutes or more to work in an area,
percentage 16 years of age and older who are unemployed, percent
minority, percentage of the area considered to be urban, and
percentage of the area considered to be rural. Census block
predictors included the same variables as zip code but measured at
the smaller geographic level of census block. The home address of
all patients in the health system is automatically geocoded by an
automated system through the Wake Forest Clinical and
Translational Science Institute’s Translational Data Warehouse.
We merged geocode data from the EHR with zip code level and
census block level data from the ACS.
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Table 1. Demographic predictor variables in model training and test data sets

Training Test Total

n= 20,233 n= 4981 n= 25,214

Age (years) 5.2 (±5.1) 5.2 (±5.0) 5.2 (±5.1)

Gender

Female 9,619 (47.5%) 2,478 (49.7%) 12,097 (48.0%)

Male 10,614 (52.5%) 2,503 (50.3%) 13,117 (52.0%)

Race/ethnicity

Black 4,495 (22.2%) 1,147 (23.0%) 5,642 (22.4%)

White 921 (4.6%) 198 (4.0%) 1,119 (4.4%)

Other 2,310 (11.4%) 514 (10.3%) 2,824 (11.2%)

Hispanic 12,507 (61.8%) 3,122 (62.7%) 15,629 (62.0%)

BMI percentile 67.7 (±28.9) 69.5 (±27.6) 68.0 (±28.7)

Missing 93 (0.5%) 25 (0.5%) 118 (0.5%)

Total population block group 1585.0 (±719.3) 1582.9 (±728.7) 1584.6 (±721.2)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

Total population ZIP 40,108.8 (±11337.8) 39,882.3 (±11136.7) 40,064.0 (±11298.5)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

Housing units block group 671.3 (±260.0) 659.8 (±254.4) 669.0 (±258.9)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

Housing units ZIP 17,571.7 (±4511.9) 17,481.9 (±4431.5) 17,554.0 (±4496.2)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

Median age block group 35.4 (±9.6) 35.4 (±9.4) 35.4 (±9.6)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

Median age ZIP 37.4 (±3.0) 37.3 (±3.0) 37.4 (±3.0)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

% >25yo with HS degree block group 46.3 (±15.3) 46.2 (±15.8) 46.2 (±15.4)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

% >25yo with HS degree ZIP 38.7 (±9.5) 38.7 (±9.6) 38.7 (±9.5)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

Median income block group 40,677.7 (±18623.7) 41,355.4 (±20400.1) 40,811.6 (±18989.2)

Missing 3,274 (16.2%) 806 (16.2%) 4,080 (16.2%)

Median income ZIP 46,114.0 (±10492.6) 46,023.6 (±10716.5) 46,096.1 (±10537.1)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

% below poverty line block group 26.2 (±16.3) 26.4 (±16.8) 26.2 (±16.4)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

% below poverty line ZIP 19.1 (±6.4) 19.2 (±6.4) 19.1 (±6.4)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

% home ownership block group 46.9 (±26.7) 47.4 (±27.4) 47.0 (±26.9)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

% home ownership ZIP 58.8 (±12.3) 58.4 (±12.4) 58.7 (±12.3)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

% >16yo commuting 60 mins block group 5.0 (±6.8) 5.2 (±7.2) 5.0 (±6.9)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

(Continued)
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Statistical analysis

The analysis cohort was created by merging the above data sources
(demographics, anthropometrics, social needs, chronic conditions,
and neighborhood information) by encounter number. The
analysis cohort was randomly split at the patient level into 80%
training set and 20% testing/validation set. Each patient could
contribute more than one record to the analysis cohort. Various
combinations of predictor variables and modeling approaches
were used to train and validate prediction models. Demographic
predictor variables included age in years, female sex, Black race,
Hispanic ethnicity, other race and ethnicity (defined as non-black,
non-Hispanic, and/or nonwhite), and BMI percentile. Twelve-month
“look back” indicator variables included previous FI, intimate partner
violence, risk of homelessness, transportation difficulties, legal needs,
caregiver coping concerns, caregiver substance use, overweight/
obesity, ADHD, failure to gain weight, hypertension, asthma, eczema,
prematurity, depression, anxiety, hospitalizations, and emergency
department visits. The look-back variables were initially coded as
absent and were recoded as present if they appeared within the look-
back window. The look-back window was expanded for the same set
of variables to 18 and 24 months. Six different iterations of each
logistic regression, random forest, and gradient-boosted model,
respectively, were developed. The modeling approaches were defined
by ACS census block variables with a 12, 18, or 24-month clinical data
look-back period, orACS zip code variables using 12, 18, or 24-month
clinical data look-back period. All models included demographics.

Modeling approaches included logistic regression, random
forest, and gradient-boosted machine. Default values of hyper-
parameters were used for random forest (500 trees, number of
variables to split at each node equal to the rounded down square

root of the number of predictors, minimum node size of 1) and
gradient boosted machine (learning rate of 0.3, maximum tree
depth of 6) [17–20]. No variable selection was performed, as all
variables considered are readily available in the EHR. All models
were built on the training set using 10-fold cross-validation to
estimate out-of-sample performance for the metrics of accuracy,
area under the curve (C-statistic), precision-recall area under the
curve, sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). In the 10-fold cross-validation,
each patient’s observations were uniquely mapped to only one of
the folds to prevent overly optimistic estimates of performance.
Final models from the training set were then evaluated on the test
set. Test set evaluations included measures of discrimination and
calibration. Model discrimination was measured using the C-
statistic and compared between models using DeLong’s test
[21,22]. Model calibration was measured using the Hosmer–
Lemeshow slope statistic [23]. The Hosmer–Lemeshow statistic
breaks the data into deciles of predicted FI and examines the
relationship by decile between average predicted FI and observed
rate of FI. A slope of 1 for a line connecting the deciles indicates a
well-calibrated model.

Missing data were addressed in two ways. First, a single
imputation was employed to fill in all missing data, using multiple
imputations by chained equations [24]. As a sensitivity analysis,
missing data were coded as a category [25]. Continuous variables
were summarized using tertiles, with a fourth level added to reflect
missing data. Categorical variables included an extra level to reflect
missing, e.g., sex was coded as male, female, or missing. Additional
sensitivity analyses included using only data from before the onset
of the COVID-19 pandemic (visits occurring before 3/11/2020)
and removing previous FI as a predictor from the model.

Table 1. (Continued )

Training Test Total

% >16yo commuting 60 mins ZIP 4.3 (±1.2) 4.3 (±1.2) 4.3 (±1.2)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

% >16yo unemployed block group 3.6 (±3.3) 3.5 (±3.2) 3.6 (±3.3)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

% >16yo unemployed ZIP 3.6 (±1.2) 3.7 (±1.2) 3.6 (±1.2)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

% minority block group 55.8 (±24.8) 57.4 (±24.8) 56.1 (±24.8)

Missing 1,525 (7.5%) 331 (6.6%) 1,856 (7.4%)

% minority ZIP 45.1 (±16.5) 45.6 (±16.5) 45.2 (±16.5)

Missing 56 (0.3%) 13 (0.3%) 69 (0.3%)

% area urban block group 91.0 (±15.6) 91.6 (±14.9) 91.1 (±15.5)

Missing 48 (0.2%) 11 (0.2%) 59 (0.2%)

% area urban ZIP 91.9 (±14.1) 92.6 (±13.0) 92.0 (±13.9)

Missing 55 (0.3%) 13 (0.3%) 68 (0.3%)

% area rural block group 9.0 (±15.6) 8.4 (±14.9) 8.9 (±15.5)

Missing 48 (0.2%) 11 (0.2%) 59 (0.2%)

% area rural block ZIP 8.1 (±14.1) 7.4 (±13.0) 8.0 (±13.9)

Missing 55 (0.3%) 13 (0.3%) 68 (0.3%)

Legend: N (%) or mean (SD) are reported. BMI= body mass index. HS= high school. Mins = minutes. SD= standard deviation. ZIP= zip code. yo = year old.
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Table 2. Social determinants of health predictor variables in model training and test data sets

Training Test Total

n= 20,233 n= 4981 n = 25,214

FI last 12 months

No 6,213 (30.7%) 1,489 (29.9%) 7,702 (30.5%)

Yes 1,174 (5.8%) 258 (5.2%) 1,432 (5.7%)

Missing 12,846 (63.5%) 3,234 (64.9%) 16,080 (63.8%)

FI last 18 months

No 8,802 (43.5%) 2,158 (43.3%) 10,960 (43.5%)

Yes 1,625 (8.0%) 389 (7.8%) 2,014 (8.0%)

Missing 9,806 (48.5%) 2,434 (48.9%) 12,240 (48.5%)

FI last 24 months

No 9,493 (46.9%) 2,322 (46.6%) 11,815 (46.9%)

Yes 1,824 (9.0%) 443 (8.9%) 2,267 (9.0%)

Missing 8,916 (44.1%) 2,216 (44.5%) 11,132 (44.2%)

Intimate partner violence last 12 months

No 7,341 (36.3%) 1,734 (34.8%) 9,075 (36.0%)

Yes 46 (0.2%) 13 (0.3%) 59 (0.2%)

Missing 12,846 (63.5%) 3,234 (64.9%) 16,080 (63.8%)

Intimate partner violence last 18 months

No 10,357 (51.2%) 2,532 (50.8%) 12,889 (51.1%)

Yes 70 (0.3%) 15 (0.3%) 85 (0.3%)

Missing 9,806 (48.5%) 2,434 (48.9%) 12,240 (48.5%)

Intimate partner violence last 24 months

No 11,235 (55.5%) 2,747 (55.1%) 13,982 (55.5%)

Yes 82 (0.4%) 18 (0.4%) 100 (0.4%)

Missing 8,916 (44.1%) 2,216 (44.5%) 11,132 (44.2%)

Homeless last 12 months

No 7,266 (35.9%) 1,713 (34.4%) 8,979 (35.6%)

Yes 121 (0.6%) 34 (0.7%) 155 (0.6%)

Missing 12,846 (63.5%) 3,234 (64.9%) 16,080 (63.8%)

Homeless last 18 months

No 10,248 (50.6%) 2,484 (49.9%) 12,732 (50.5%)

Yes 179 (0.9%) 63 (1.3%) 242 (1.0%)

Missing 9,806 (48.5%) 2,434 (48.9%) 12,240 (48.5%)

Homeless last 24 months

No 11,126 (55.0%) 2,702 (54.2%) 13,828 (54.8%)

Yes 191 (0.9%) 63 (1.3%) 254 (1.0%)

Missing 8,916 (44.1%) 2,216 (44.5%) 11,132 (44.2%)

Transportation difficulties last 12 months

No 6,924 (34.2%) 1,663 (33.4%) 8,587 (34.1%)

Yes 463 (2.3%) 84 (1.7%) 547 (2.2%)

Missing 12,846 (63.5%) 3,234 (64.9%) 16,080 (63.8%)

Transportation difficulties last 18 months

No 9,803 (48.5%) 2,432 (48.8%) 12,235 (48.5%)

(Continued)
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All analyses were conducted using R version 4.3.2 [26]. Machine
learning prediction models were trained and validated using the R
package “mlr3” [27]. All models were built and described using the

principles outlined in the Transparent reporting of a multivariable
prediction model for individual prognosis or diagnosis (TRIPOD)
statement [28] (Supplementary Table 2).

Table 2. (Continued )

Training Test Total

Yes 624 (3.1%) 115 (2.3%) 739 (2.9%)

Missing 9,806 (48.5%) 2,434 (48.9%) 12,240 (48.5%)

Transportation difficulties last 24 months

No 10,621 (52.5%) 2,634 (52.9%) 13,255 (52.6%)

Yes 696 (3.4%) 131 (2.6%) 827 (3.3%)

Missing 8,916 (44.1%) 2,216 (44.5%) 11,132 (44.2%)

Legal issues last 12 months

No 7,284 (36.0%) 1,720 (34.5%) 9,004 (35.7%)

Yes 103 (0.5%) 27 (0.5%) 130 (0.5%)

Missing 12,846 (63.5%) 3,234 (64.9%) 16,080 (63.8%)

Legal issues last 18 months

No 10,253 (50.7%) 2,507 (50.3%) 12,760 (50.6%)

Yes 174 (0.9%) 40 (0.8%) 214 (0.8%)

Missing 9,806 (48.5%) 2,434 (48.9%) 12,240 (48.5%)

Legal issues last 24 months

No 11,129 (55.0%) 2,722 (54.6%) 13,851 (54.9%)

Yes 188 (0.9%) 43 (0.9%) 231 (0.9%)

Missing 8,916 (44.1%) 2,216 (44.5%) 11,132 (44.2%)

Caregiver coping concerns last 12 months

No 20,203 (99.9%) 4,978 (99.9%) 25,181 (99.9%)

Yes 30 (0.1%) 3 (0.1%) 33 (0.1%)

Caregiver coping concerns last 18 months

No 20,196 (99.8%) 4,978 (99.9%) 25,174 (99.8%)

Yes 37 (0.2%) 3 (0.1%) 40 (0.2%)

Caregiver coping concerns last 24 months

No 20,194 (99.8%) 4,977 (99.9%) 25,171 (99.8%)

Yes 39 (0.2%) 4 (0.1%) 43 (0.2%)

Caregiver substance use last 12 months

No 6,392 (31.6%) 1,544 (31.0%) 7,936 (31.5%)

Yes 995 (4.9%) 203 (4.1%) 1,198 (4.8%)

Missing 12,846 (63.5%) 3,234 (64.9%) 16,080 (63.8%)

Caregiver substance use last 18 months

No 9,057 (44.8%) 2,265 (45.5%) 11,322 (44.9%)

Yes 1,370 (6.8%) 282 (5.7%) 1,652 (6.6%)

Missing 9,806 (48.5%) 2,434 (48.9%) 12,240 (48.5%)

Caregiver substance use last 24 months

No 9,771 (48.3%) 2,447 (49.1%) 12,218 (48.5%)

Yes 1,546 (7.6%) 318 (6.4%) 1,864 (7.4%)

Missing 8,916 (44.1%) 2,216 (44.5%) 11,132 (44.2%)

Legend: FI= food insecurity.
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Table 3. ICD-10 predictor variables in model training and test data sets

Training Test Total

n = 20,233 n = 4981 n= 25,214

ADHD last 12 months

No 19,917 (98.4%) 4,898 (98.3%) 24,815 (98.4%)

Yes 316 (1.6%) 83 (1.7%) 399 (1.6%)

ADHD last 18 months

No 19,839 (98.1%) 4,882 (98.0%) 24,721 (98.0%)

Yes 394 (1.9%) 99 (2.0%) 493 (2.0%)

ADHD last 24 months

No 19,782 (97.8%) 4,868 (97.7%) 24,650 (97.8%)

Yes 451 (2.2%) 113 (2.3%) 564 (2.2%)

Overweight/obesity last 12 months

No 17,652 (87.2%) 4,324 (86.8%) 21,976 (87.2%)

Yes 2,581 (12.8%) 657 (13.2%) 3,238 (12.8%)

Overweight/obesity last 18 months

No 17,226 (85.1%) 4,199 (84.3%) 21,425 (85.0%)

Yes 3,007 (14.9%) 782 (15.7%) 3,789 (15.0%)

Overweight/obesity last 24 months

No 17,034 (84.2%) 4,140 (83.1%) 21,174 (84.0%)

Yes 3,199 (15.8%) 841 (16.9%) 4,040 (16.0%)

Failure to gain weight last 12 months

No 19,629 (97.0%) 4,869 (97.8%) 24,498 (97.2%)

Yes 604 (3.0%) 112 (2.2%) 716 (2.8%)

Failure to gain weight last 18 months

No 19,488 (96.3%) 4,830 (97.0%) 24,318 (96.4%)

Yes 745 (3.7%) 151 (3.0%) 896 (3.6%)

Failure to gain weight last 24 months

No 19,369 (95.7%) 4,809 (96.5%) 24,178 (95.9%)

Yes 864 (4.3%) 172 (3.5%) 1,036 (4.1%)

Hypertension last 12 months

No 20,157 (99.6%) 4,962 (99.6%) 25,119 (99.6%)

Yes 76 (0.4%) 19 (0.4%) 95 (0.4%)

Hypertension last 18 months

No 20,127 (99.5%) 4,957 (99.5%) 25,084 (99.5%)

Yes 106 (0.5%) 24 (0.5%) 130 (0.5%)

Hypertension last 24 months

No 20,112 (99.4%) 4,954 (99.5%) 25,066 (99.4%)

Yes 121 (0.6%) 27 (0.5%) 148 (0.6%)

Asthma last 12 months

No 19,599 (96.9%) 4,828 (96.9%) 24,427 (96.9%)

Yes 634 (3.1%) 153 (3.1%) 787 (3.1%)

Asthma last 18 months

No 19,504 (96.4%) 4,798 (96.3%) 24,302 (96.4%)

Yes 729 (3.6%) 183 (3.7%) 912 (3.6%)

(Continued)
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Table 3. (Continued )

Training Test Total

Asthma last 24 months

No 19,435 (96.1%) 4,781 (96.0%) 24,216 (96.0%)

Yes 798 (3.9%) 200 (4.0%) 998 (4.0%)

Eczema last 12 months

No 19,293 (95.4%) 4,759 (95.5%) 24,052 (95.4%)

Yes 940 (4.6%) 222 (4.5%) 1,162 (4.6%)

Eczema last 18 months

No 18,956 (93.7%) 4,687 (94.1%) 23,643 (93.8%)

Yes 1,277 (6.3%) 294 (5.9%) 1,571 (6.2%)

Eczema last 24 months

No 18,712 (92.5%) 4,627 (92.9%) 23,339 (92.6%)

Yes 1,521 (7.5%) 354 (7.1%) 1,875 (7.4%)

Prematurity last 12 months

No 19,480 (96.3%) 4,838 (97.1%) 24,318 (96.4%)

Yes 753 (3.7%) 143 (2.9%) 896 (3.6%)

Prematurity last 18 months

No 19,323 (95.5%) 4,811 (96.6%) 24,134 (95.7%)

Yes 910 (4.5%) 170 (3.4%) 1,080 (4.3%)

Prematurity last 24 months

No 19,241 (95.1%) 4,799 (96.3%) 24,040 (95.3%)

Yes 992 (4.9%) 182 (3.7%) 1,174 (4.7%)

Anxiety last 12 months

No 20,001 (98.9%) 4,925 (98.9%) 24,926 (98.9%)

Yes 232 (1.1%) 56 (1.1%) 288 (1.1%)

Anxiety last 18 months

No 19,934 (98.5%) 4,908 (98.5%) 24,842 (98.5%)

Yes 299 (1.5%) 73 (1.5%) 372 (1.5%)

Anxiety last 24 months

No 19,893 (98.3%) 4,900 (98.4%) 24,793 (98.3%)

Yes 340 (1.7%) 81 (1.6%) 421 (1.7%)

Hospitalization last 12 months

No 19,918 (98.4%) 4,944 (99.3%) 24,862 (98.6%)

Yes 315 (1.6%) 37 (0.7%) 352 (1.4%)

Hospitalization last 18 months

No 19,792 (97.8%) 4,919 (98.8%) 24,711 (98.0%)

Yes 441 (2.2%) 62 (1.2%) 503 (2.0%)

Hospitalization last 24 months

No 19,699 (97.4%) 4,901 (98.4%) 24,600 (97.6%)

Yes 534 (2.6%) 80 (1.6%) 614 (2.4%)

Emergency department visit last 12 months

No 19,700 (97.4%) 4,859 (97.6%) 24,559 (97.4%)

Yes 533 (2.6%) 122 (2.4%) 655 (2.6%)

(Continued)
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Results

A total of 25,214 encounters from 8521 unique patients collected
from 1/3/2017 to 8/2/2021met inclusion criteria for this study. The
number of encounters per patient ranged from 1–12 with a median
of 2 (IQR: 1, 4). Patients were partitioned into 80% training
(N= 6816 patients with 20,171 encounters) and 20% test/
validation (N= 1705 patients with 5043 encounters). The median
age was 3.17 years (IQR: 0.75, 9.17), and the sample was 52% male,
22.4% Black, and 62.0% Hispanic. The median BMI percentile was

76 (IQR 47.15, 93.77), and 26.2% of the sample was under 100% of
the federal poverty level in last 12 months. Training and test sets
showed similar demographics (Tables 1–3). Overall, 3820 (15.2%)
encounters reported FI, with similar proportions of FI in the
training (N= 3054, 15.1%) and test (N= 766, 15.4%) sets.

Logistic regression with a 12-month look-back using census
block group neighborhood variables showed the best performance
in the training set (Table 4). This approach had a C-statistic of 0.68
and an accuracy of 0.85. The most important variables in this
model (Supplementary Table 3) included previous FI (odds ratio

Table 3. (Continued )

Training Test Total

Emergency department visit last 18 months

No 19,235 (95.1%) 4,725 (94.9%) 23,960 (95.0%)

Yes 998 (4.9%) 256 (5.1%) 1,254 (5.0%)

Emergency department visit last 24 months

No 18,642 (92.1%) 4,589 (92.1%) 23,231 (92.1%)

Yes 1,591 (7.9%) 392 (7.9%) 1,983 (7.9%)

Legend: ADHD= attention deficit and hyperactivity disorder.

Table 4. Results from 10-fold cross-validation on training set, by geographic level (census block vs. zip code) and look-back time (12, 18, and 24 months)

Census block ZIP code

12 18 24 12 18 24

Accuracy LR 0.8483 0.8505 0.8490 0.8501 0.8512 0.8504

RF 0.8438 0.8426 0.8423 0.8495 0.8497 0.8495

GBM 0.8435 0.8430 0.8405 0.8492 0.8498 0.8466

AUC LR 0.6814 0.6714 0.6795 0.6771 0.6665 0.6762

RF 0.6616 0.6580 0.6565 0.6599 0.6515 0.6599

GBM 0.6563 0.6591 0.6628 0.6687 0.6643 0.6636

PR-AUC LR 0.3076 0.3031 0.3066 0.3083 0.3036 0.3078

RF 0.2620 0.2527 0.2542 0.2903 0.2784 0.2862

GBM 0.2805 0.2713 0.2664 0.2870 0.2903 0.2783

Sensitivity LR 0.0425 0.0399 0.0293 0.0439 0.0371 0.0313

RF 0.0539 0.0421 0.0451 0.0513 0.0442 0.0442

GBM 0.0636 0.0750 0.0622 0.0583 0.0617 0.0535

Specificity LR 0.9917 0.9948 0.9949 0.9937 0.9962 0.9964

RF 0.9851 0.9857 0.9848 0.9917 0.9932 0.9929

GBM 0.9831 0.9799 0.9797 0.9900 0.9901 0.9879

PPV LR 0.4658 0.5749 0.5168 0.5662 0.6425 0.6171

RF 0.3940 0.3309 0.3227 0.5307 0.5413 0.5312

GBM 0.3987 0.4101 0.3494 0.5205 0.5364 0.4438

NPV LR 0.8533 0.8533 0.8519 0.8536 0.8530 0.8523

RF 0.8536 0.8522 0.8524 0.8544 0.8536 0.8536

GBM 0.8546 0.8560 0.8541 0.8550 0.8555 0.8541

Legend: AUC= area under the cure. PR-AUC= precision recall- area under the curve. PPV= positive predictive value. NPV= negative predictive value. LR= logistic regression. RF= random
forest. GBM= gradient boosted model.
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4.09; p-value< .0001), domestic violence (odds ratio 0.24;
p-value< .0001), failure to gain weight (odds ratio 1.43; p-value
0.0007), and prematurity (odds ratio 1.24; p-value 0.0264). BMI
percentile, age, and income had the highest variable importance in
the random forest model, whereas domestic violence, previous FI,
and age had the highest variable importance values in the gradient
boosting model.

Logistic regression with 12-month lookback using census block
group neighborhood variables performed similarly in the test set
(C-statistic 0.70 and accuracy 0.84) and had superior C-statistics to
both random forest (0.65, p= 0.01) and gradient boosted machine
(0.68, p< 0.01) (Table 5, Figure 1). Furthermore, this approach
showed the best calibration (Figure 2), with a predicted versus true
intercept of 0 and 95% CI (-0.02, 0.03) that includes 0, reflecting
good calibration, and slope of 1.03 and 95% CI (0.88, 1.18) that
includes 1, also reflecting good calibration. Sensitivity and
specificity were maximized when predicting FI for all encounters
with probability of 0.13 or higher (Supplementary Tables 4 and 5).
Notably, at the optimal cutpoint of 0.13, PPV was equal to 0.92.

Model Performance was similar when treating missing data as a
category rather than imputing (Supplementary Tables 6 and 7).
With missing data coded as a category, the logistic regression with

a 24-month look back using census block group posted a C-statistic
of 0.70 and an accuracy of 0.85, showing nearly identical
performance to handling missing data using a single imputation.

Two additional sensitivity analyses were performed. First, only
data from before the onset of the COVID-19 pandemic (before 3/
11/2020) were included in model training and testing. In this
analysis, there were 14,712 encounters from 6180 patients in the
training set and 3573 encounters from 1538 patients in the test set.
Again using 12-month lookback data with census block group
neighborhood variables, logistic regression had a C-statistic of 0.69
in the test set, indicating similar performance to the model built on
the full data set. A second sensitivity analysis removed previous FI
as a predictor from the model. Doing so had a large impact on the
predictive ability of the model, reducing the C-statistic in the test
set to 0.63.

Discussion

This is one of the first studies to utilize machine learning to predict
pediatric FI. Our study shows logistic regression modeling with a
12-month look-back using census block group neighborhood
variables, demographics, unmet health-related social needs, and
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Figure 1. Discrimination statistics (C-statistics) for logistic regression, random forest, and gradient boosted models in test set to predict food insecurity. Legend: C-stat =
C-statistic.
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clinical data from the EHR showed the best performance in both
the training and validation sets to predict FI with a C-statistic of
0.70. Interestingly, when missing data were encoded as a
categorical variable rather than imputed, the model exhibited
similar performance, with a C-statistic of 0.70.

Notably, despite evaluating more than 80 variables, leveraging
historical longitudinal data, routine health-related social screening
at well and acute visits, and including a 12-month look-back
period, our most robust model did not perform as well as expected
with a C-statistic of only 0.70. This is particularly noteworthy in a
pediatric population, when we first start evaluating patients at
birth, and provide routine well-child visits every 2–3 months for
the first two years. It is possible that prediction modeling of FI in
families that have infants and toddlers is less accurate. Similarly,
given that our clinic serves a racial and ethnic minority population,
it is also possible that families in our clinic under-report FI due to
fear of consequences, or perception of need [6–9]. Comparable
clinics have a wide positive FI screening rates ranging from 10% to
more than 70% [29–31]. This study also highlights that despite
advanced modeling, there are unmeasured variables, and screening
for FI remains important given the lack of effective predictive
models. This is in accordance with recent guidance from regulatory
agencies for screening health-related social needs, including FI, to
reduce disparities [32–34].

Given our model’s performance, it is also possible that
expanded FI screening to other departments outside of our clinic
may create a more robust model. Patients and families with unmet
health-related social needs seek acute medical care more frequently
than those without unmet needs [35,36], so it is possible families

are not seeing their primary care provider, which was necessary to
be included in our study. Likewise, our clinic has access to federal
and community-based nutrition supports, such as the Special
Supplemental Nutrition Program for Women, Infants and
Children, Supplemental Nutrition Assistance Programs, food
pantries, and other hunger relief programs embedded within our
clinic and clinical workflows, it is possible that some FI needs were
being partially addressed. Similarly, although there are brief,
validated surveys for FI that could be used universally, this simply
adds to the large amount of screening recommended but not being
done, including depression, anxiety, homelessness, domestic
violence, etc. Rather than add one more screen that may supplant
another, we propose targeting the highest-risk patients to address
FI using a statistical model that runs in the background and does
not require doctor-patient interaction unless patients meet a
threshold of likely FI.

Strengths of this study include that it leverages the EHR and
community data, which are rich data sources containing
demographic, unmet health-related social needs, and health
information. This study is an example of the real-world
applicability of integrating social determinants of health and the
electronic health record to enable predictive models for social
needs screening and intervention. We also had a large sample size
in an urban pediatric health center, which is an ideal location to
screen for FI and assist with addressing unmet health-related
social needs.

A limitation of the study is that we did not address potential
correlation between multiple encounters within the same person.
Potential approaches could include longitudinal modeling [37,38]
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Figure 2. Calibration statistics for logistic regression, random forest, and gradient boosted model in test set to predict food insecurity. Legend: FI= food insecurity.

Journal of Clinical and Translational Science 11

https://doi.org/10.1017/cts.2024.645 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2024.645


or creating a number of encounter variables and including them in
the model [39]. Similarly, other models to predict FI include
variables on education and school performance, patient substance
use, and family relationships; we attempted to address these by
including parental substance use screening but did not have access
to school or family data outside of the ACS data. It is also possible
ACS survey has nonresponse bias; however, the US Bureau takes
steps in sampling and weights to account for nonresponse bias and
to improve the quality of data. Our data are retrospective; there
could be selection bias in who was screened for FI, but we
standardized clinic procedures to collect these data [40]. Lastly, FI
is commonly measured at the family level; however, we were
unable to accurately identify sibling and family linkages, and
whether or not children were split between households at different
encounters.

Conclusion

This is one of the first pediatric studies leveraging machine
learning to predict FI. Although suchmodels can be integrated into
the EHR to predict FI, guide clinical decision support, and
streamline workflows to address FI in a pediatric population,
further work is needed to develop a more robust prediction model.
Future considerations include more widespread integration of FI
screening to assist with model development.
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