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Abstract

The theme of the paper is a Mobius inversion principle for infinite sums. We deal with the origins and
unprincipled use of this idea in the nineteenth century, its rigorous justification under minimal hypotheses
and some applications to a problem in numerical integration.

1980 Mathematics subject classification (Amer. Math. Soc.): 10 A 20, 65 D 30.

Introduction

1. The Mobius function

1 if n = 1,

(—1)* if n =PiP2 — Pk with Pi,P2'—'Pk distinct primes,

^ 0 if n is divisible by the square of a prime

occurs implicitly in Euler (1748), paragraph 269, in the reciprocal formulae

(1) C(s)= £ i = I

However, its arithmetical significance was first realized by Mobius (1832) with the
discovery of a number of inversion formulae. Among these is the classical Mobius
inversion formula

(2) g(n) = Z f(d) «->/(«) = T n{d) g(n/d)

(although this simple formulation was given first by Dedekind (1857), page 21, and
Liouville (1857)). The formula (2) exemplifies the combinatorial aspect of the
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Mobius function. In this direction, Rota (1964) and his co-workers have developed a
general theory of Mobius functions on partially ordered sets which includes the
principles of inclusion-exclusion and Mobius inversion as special cases. This work
has found many applications in enumeration problems. On the other hand, the
inversion problems considered by Mobius have a different and considerably more
subtle character. The present work is concerned with the analytic questions
provoked by Mobius' formulae and some of their applications.

Our investigations began with the following question in numerical integration : Is
it possible to characterize the functions which are integrated exactly by a given rule
of approximate integration? For certain common integration rules, this problem can
be attacked by Mobius inversion. However, this depends rather delicately on the
nature of the integration rule being considered. For this reason, we have arranged
the analysis in three sections relating respectively to the trapezoidal rule, the mid-
point rule and Simpson's rule.

2. Mobius (1832) raised the following question : Given an 'arbitrary' function F(z)
and a function G(z) of the shape

(3) G(z)= YanF(z"),
n = 1

express F(z) in terms of the functions G{z"\ say

(3 bis) F(z)= ibnG(z").
n= 1

IfF(z)isa power series, say F(z) = clz + c2 z
2 + ..., we can treat this as a question in

formal power series and it is easily seen that the coefficients bn are obtained from the
given coefficients an by the formulae

0 i f » > l .
For given an with al # 0, this determines the bn uniquely. Equivalently, and more
enlighteningly, (4) can be written in terms of formal Dirichlet series

that is, the an and the bn form Dirichlet-inverse sequences. In particular, if an = 1 for
all n, then bn = n(n) by (1) and we have, at least formally,

G(z)= £ F(zn)~F(z)= £ n(n)G(z").

Further specialization gives the equations
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The following are also easy deductions from the inversion principle embodied in (3)
and (3 bis):

and

,7) arctanz = £ * • £ , z = £ ,

where e(n) is the nonprincipal character modulo 4, that is

( 1 if n = 1 (mod 4),

- 1 if n = — 1 (mod 4),

0 if n is even.

Mobius makes highly ingenious and unprincipled use of these results. Of course,
despite the thunderings of Cauchy and Abel, these arguments are very much in the
spirit of the time. Thus, in (5), he writes z = 1 — w and 1 — z" = nw, that is w is an
'infinitesimal', and so obtains

„= i n w

After multiplying through by w, this yields

(8) £ M = 0.
n= 1 n

Euler (1748), paragraph 277, had already obtained this result by taking s = 1 in (1),
but (8) is loosely speaking equivalent to the prime number theorem and so a rigorous
proof had to await the discoveries of Hadamard and de la Vallee Poussin. Treating
(6) in the same way Mobius obtained

By (8), the product of the powers of w on the right is 1, so he has the beautiful formula

e — 21/2 31/3 5 i / 5 6 -1 /6 -71 /7 iQ-mo j 11/11 j31/13 J 4 -1 / 1 4 15-1/15 _

or more prosaically,

(8 bis) £

Again, this is intimately connected with the prime number theorem. (The relations
between the prime number theorem and (8) and (8 bis) were first made clear by
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Landau (1899).) Finally he sets z = 1 in (7) to give

4 S«Wi«(«) = n/ r
1_5(rt\

n " . t - i n ~ p \ ' p /

Euler (1748), paragraph 285, obtained this by formal manipulation of Dirichlet
series.

The equations (3) and (3 bis) take a more convenient form if we set F(ez) =/(z) and
G(ez) — g(z); formally

(9) g(z) = £ anf(nz)~f(z) = £ bng(nz).
n= 1 n= 1

The particular case

(10) g(z)= £ /(nz)«-»/(z)= £

has a curious history and a number of rediscoverers.
Tchebychef (1851) derived several special cases of (9), including Mobius' formulae

(5), (6) and (7). His argument is still formal; essentially, he assumes an inversion
theorem of the shape (9) and deduces the relation (4) between the coefficients an and
bn by taking/(z) = z"s. Given this, he is careful to follow higher standards of rigour
and his conclusions are less scintillating than Mobius' work described above. This
paper dates from the period in which Tchebychef worked on problems concerning
the distribution of prime numbers and the idea of Mobius inversion plays an
important role in his memoir of 1852. If

T(x)= Y. logn, ^(x)= £ logp,

as usual, then Tchebychef s basic identity is

T(x) = £ iP(x/n).
n— 1

Applying Mobius inversion gives

iP(x)= £ n(n)T(x/n).
n = 1

Although accurate estimates are available for T(x), this formula cannot be used to
estimate \j/(x) because of the erratic behaviour of the coefficients n(n). Tchebychef
succeeded in obtaining bounds for ij/(x) by using an approximate Mobius inversion
formula. This was later refined by Selberg in his elementary proof of the prime
number theorem. It is interesting to note that Riemann (1859) also derives his
approximation

K(X) = l i x - i l i x 1 / 2 -
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for the number of primes not exceeding x from a variant of the Mobius inversion
formula, namely

11=1 n n=i n

Bachman (1894), pp. 310 to 311, also was apparently unaware of Mobius' paper.
His argument for the inversion formula (10) runs as follows : If

0(z) = £ Rnz)
n = l

then

£ fi(n)g(n) = £ /in) £ f(mn) = £ f(k)Yfi{n) =/(l),
n = 1 n = 1 m = 1 fc= 1 np"

where we have used (4) with an = 1 and bn = fi(n) for the last step. Possible difficulties
involved with changing the order of summation of the double series here are not
considered. Bachman goes on to apply this particular inversion theorem to obtain a
number of formulae for the arithmetic functions of elementary number theory. In
fact, convergence questions are irrelevant in this work and in the applications to
prime numbers since the series always degenerate to finite sums. Bachman's
derivation of the inversion theorem is justified if the double series which occurs
above is absolutely convergent. The general case can be handled in the same way,
giving the result recorded below. Surprisingly, the first rigorous treatment of these
matters appears to be the papers of Hille and Szasz (1936) and Hille (1937).

THEOREM 1. If an and bn are related by (4),

<?(«)= £ < " . / M ( n = 1,2,3,...),
m = l

and the double series 1£,kymakbmf(kmn) is absolutely convergent, then

/ (»)= £ bmg(mn).
m = l

The theorem leads easily to the following symmetrical version of (10).

COROLLARY. The following two assertions are equivalent:

(i) g{n)= Y. f(mn) forn = 1,2,3,...,

and
X

£ nc | f(ri) | < oo for some e > 0;
n = 1

oo

(ii) f(n) = *£ n(m)g(mn) for n = 1,2,3,...,
m = 1
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and
ac

£ nc | g(ri) | < oo for some £ > 0.
n= 1

Hille and Szasz (1936) also point out the need for caution here by giving a
counterexample to the truth of (10) for general functions/and g. \ig(n) = 1/M, then
/(") = Sm M"1) g(mn) is identically zero, as we have seen, so that g(n) # Xm /(win). In
the other direction, if /(n) = n(n)/n, then g(n) = £m /(rnn) is identically zero and
again (10) fails.

Inversion of the trapezoidal rule

3. Let/be a continuous function on the closed interval [0,1]. According to the
trapezoidal rule of quadrature, the integral of/over [0,1] is to be approximated by

How much information is contained in the sequence {Tn / } of approximate integrals
of/7

The Fourier expansion of/is

/ ( ' )= X /(n)e2"'*, with/(n) =
n=-oo Jo

the Fourier series being Cesaro summable to/(r) for 0 < t < 1 and to J{/(0)+/(l)}
at t — 0 and 1. Consequently, the approximate integrals Tn/can be expressed in
terms of the Fourier coefficients by

(11) TJ= £ f{mn) (C,l),
m = — ao

the series being Cesaro summable. If the Fourier series is convergent and not merely
Cesaro summable, then the sums (11) also converge. Under suitable conditions, the
Mobius inversion principle (10) can be used to invert (11) as follows :

(12) / ( B ) + / ( - « ) = I M » ) M where An/=Tn/- f(t)dt.
m= 1 JO

Lyness (1970) has developed this idea into a practical numerical procedure for
calculating Fourier coefficients.

It is easy to see that the trapezoidal rule is exact for linear functions and for
functions which are odd about £, that is An/= 0 for all n when/is a function of one of
these types. We used the above ideas to obtain a partial converse to these
observations (Loxton and Sanders (1980)). To state this, let us write

f{t) =/(0) + {/(D-/(0)} (t -
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where g is continuous and periodic. If the trapezoidal rule is exact for / and the
Fourier series of g is absolutely convergent, then g is odd about \. The proof depends
on justifying (12), at least for the special case in which all A n / a r e zero.

4. We shall discuss the Mobius inversion principle (9) subject to the restriction
that the coefficients an are completely multiplicative, that is amn = an an for all m and
n, and al = I. The Dirichlet-inverse sequence is then given by bn = n(n)an. This is
only slightly more general than the inversion problem arising from the trapezoidal
rule; indeed, if an / 0 for all n, then (9) reduces to (10) if we replace anf(ri) and ang(n)
by f(ri) and g(n) respectively. We aim to determine as precisely as possible the domain
of validity of the inversion principle (9). We begin with a positive result which
improves on the corollary to Theorem 1.

THEOREM 2. Suppose that an is completely multiplicative andax = 1 and that all the
series Y.mamf(mn) and ^.m

am9(mn) are absolutely convergent. Then

X> QC

0(")= T. amf(mn)<->f(n)= £ n(m)amg(mn).
m~1 m~1

PROOF. Consider first the implication from left to right. Let v(x) denote the least
common multiple of the positive integers not exceeding x and let 9){x) denote the set
of positive integers whose prime factors are all greater than x. We have

y n(m) am g(mn) = y n(m) am £ «i /(/""«) = J ^ <% / ( M Z M»»K

the rearrangement being justified because the sum over m is finite. The inner sum
here is zero unless (k,v(x)) = 1, so

y n(m)amg(mn)= Y, akf(kn).
mMx) kinr'(x)

Now let x tend to infinity. Since the intersection of all the 3>(x) is 1 and the series
involved are absolutely convergent, we obtain

00

£ n(m)amg(mn) =f(n).
m- 1

For the converse, let <?(x) be the set of positive integers k with the property that
any prime which divides both k and v(x) divides k to a higher power than it divides
v(x). Then proceeding as before,

QC CO /£

y amf{mn)= £ am X //(/)a,g(lmn) = £ c^gikn) £ d -
m\i(x) mMx) 1=1 * = 1 n|(lc,v(x)) '

kin/)(x)
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and, letting x tend to infinity,

5. We must now consider the extent to which Theorem 2 is best possible. For
simplicity, we discuss only the case am = 1; there is no essential loss of generality in
doing so.

First, suppose the/(n) are given and the series £ f(m) is absolutely convergent. If
g(n) is defined by g(n) = Xm /("">)> then the proof of Theorem 2 shows that the/(n)
may be recovered from the g(n), without any additional hypotheses, by

(13) f(n)= lim Y n(m)g(mn).
x->cc m\v(x)

The example at the end of Section 2 already shows that this conclusion cannot hold
in general. In fact, we can exhibit functions/(n) for which Y^ f(mn) = 0 for each n
and Y, | f(m) | diverges arbitrarily slowly and so the transformation taking thef(n) to
the g(n) cannot be inverted if the hypothesis of absolute convergence of Y, f(m) is
weakened.

The example depends on the following theorem of Wintner (1943). Wintner
actually proves more, but this special case can be proved more directly than he
suggests.

THEOREM 3. Let 9 be a set of primes with Y,pin ,(l/p) divergent. Let fi,,(n) be the
multiplicative function whose values at the prime powers are given by \i .̂ (p*) = — I for p
in 3P and k = 1 and ft ̂ p*) = 0 otherwise. Then Y, (fi ,(nMn) — 0.

PROOF. Let Jf be the set of positive integers generated by the primes not in £?, let
g(n) be the characteristic function of Jf and, for convenience, set h(n) = \i ,,(n). Note
that

(14) Y.h(d) = g(n).

Similarly, let 8Pm comprise the primes p in ^* with p ^ m, Jf m be the integers
generated by the primes not in 3Pm, gm(n) be the characteristic function of Jfm and
hm(n) be the Mobius function of &„. Clearly,

(15) gm(n) ^ 9m-i(n) a n d 9m(n) ~* 9(n) a s m ~~* °°-

By the sieve of Eratosthenes,

r

as n -* oo and this product tends to 0 as m -» oo. From this and the monotonic
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convergence in (15), we have

1 "
- Z flW -»0 as /i -» oo.

This states that the series whose nth partial sum is g(n) is Cesaro summable and
consequently Abel summable to 0, so we have

(1-r) Z g(n)r"->0 as r -> 1.
n = 1

On the other hand, from (14),

so the series £ (Hn)/n) is Lambert summable to 0. Now h(n) = O(l), so the standard
Tauberian theorem of Hardy (1949), Appendix 4, for Lambert summability applies
and we conclude that Z(M«)/n) is convergent with sum 0, as required.

Now we can give the example promised above. Let 9 be a set of primes with
Zpin Al/p) divergent. Take/(n) = (fi,,(n)/n), where //,,(«)is the Mobius function of 9,
as denned in Theorem 3. We assert that

(16) £ f(mn) = 0 (« = l,2,...).
m = 1

If n is divisible by the square of a prime or has a prime factor not in 9, then
fi,(mn) = 0 and (16) is clear. Otherwise, /i,(n) # 0 and we see, by checking values at
prime powers, that the multiplicative function n,(mn)/n,(n) is just fi,,(m) where 3. is
obtained from 3P by deleting the primes dividing n. Consequently, (16) follows from
the theorem applied to the set of primes St. Moreover, £ | f(m) | diverges like

and this rate of divergence can therefore be made arbitrarily slow. More precisely, if
9 is suitably regular, we have

(17) log £ | / ( n ) | ~ Z \ a s n - o o .
m=l pin ^,p^nP

To justify this, we note that

log I. ^ ^ = 1°gn(l+-rW)~ Z JTS ass-0.

Now, if ̂  is such that the sum on the right of (17) is regularly varying, then (17)
follows by means of the standard Tauberian theorem for the Mellin transform. (This
is a special case of Hardy (1949), Theorem 108.)
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6. The example of the previous section shows that our discussion of the transform
g(n) = £ m f(mn) must be restricted to functions/(n) for which £ /(w) is absolutely
convergent. The transform can then be inverted by (13), so that the series
£m fi(m) g(mn) is at least summable to f(n). We now consider its sum in the usual
straightforward sense.

First, the series Xm n(m) g(mn) need not converge, even when £ f(m) is absolutely
convergent. This reflects the fact that the summability method (13) is not regular in
the sense of Hardy (1949), Chapter 3. We shall give an example which achieves a little
more than the general theory.

Let {tj} be a sequence of positive integers with tj > 2'J ' and let Sj be the product of
the primes between \t-} and ty Define the function/(m)by f(sj) = —2~> and f(m) = 0
elsewhere. Thus £ f(m) is absolutely convergent. Now set g{n) = £ m f(mn) and

(18) KM)= £ H(m)g(m)= I. f(k) £
m = l * = 1 l=SmSM

m]ft

Consider h(tj). The term k = Sj on the right contributes

-f(sj) {n(tj) - lift)} ~ tp log t,;

the terms with k > Sj each contribute f(k), so their sum is O(l); and, since s, < r,
when i < j , the terms with k < Sj contribute

Z f^) Z l4m) = 0.

Thus the h(tj) are unbounded and Y.Km)d(m) does not converge. However, for
n > 1, the series ZmMw)^"1") converges to/(«). To see this, observe that

£ li(m)g(mn)= £ f(kn) £ fj{m)
m=l k=l limiAi

and the sum over k has at most one nonvanishing term, so the assertion reduces to a
finite Mobius inversion.

We can modify this example to give a function/(n) for which X f(m) is absolutely
convergent, but all the series £», Mw) 9(mn) a r e divergent. Begin by choosing the
sequence {tj} of positive integers with tj >j\2t}~' and let Sj be the product of the
primes between \tj and ty Define the function/?(m) byf^qlsj) = — 1/2J t;_ t for; ^ q
and fq(m) = 0 elsewhere. Set gq(n) = £ m fq(mn). By proceeding as before, we find that
if n\q\, then

where the implied constants are independent of n and g. If n \ q\, then Xm fAm) 9q(mn)
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converges to fq(n). Finally, let

f(m)= £ 2-"fq(m) and g(n) = £ f(mn).
q= 1 m = 1

The preceding remarks enable us to show that the partial sums

£ n(m)g(mn)
m= 1

are unbounded for every /;, that is none of the series Y.n fim) G(mn) converges.
Nevertheless, it seems likely that the summability method (13) is at least

consistent. More precisely, we conjecture that if Y.m f(m) is absolutely convergent,
g(n) = Y,m f(mn) a n d Sm M"1)^""1) is convergent, then the value of this last series is

/ ( « ) •

7. Now we consider some examples relating to the converse direction of Theorem
2. That is, we suppose that the/(n) are defined by/(n) = Y,m fJ.(m) g(mn) and we
investigate the validity of the inversion g(n) = £ m f(mn).

We show first that absolute convergence of the series Y.m /4"0 <7(wwi) is n o t enough
to give an inversion theorem. Take g(2j) = 1 for j ^ 0 and g(m) = 0 elsewhere. Then
f(n) = 0 for all n, so the inversion theorem fails. For this example, the series
Xm fi(m) g(mri) even reduces to a finite sum.

Next, let 3P be a set of primes with £ p i n ,,(l/p) divergent. Take g(m) = \jm if m is
divisible only by the primes in 0> and g(m) = 0 elsewhere. Then/(n) = 0 for all n, by
Theorem 3, and again the inversion theorem fails. In this case £ m g(m) is divergent,
but the rate of divergence can be made arbitrarily slow by a suitable choice of &.

So, as before, we must assume that £ m g(m) is absolutely convergent. The example
of the preceding section is easily modified to show that the series £ m f(mn) need not
converge. In fact, if g(m) = 0 whenever m is divisible by the square of a prime, then

I f(m) = £ g(k) I J~) = £ n(k)g(k) £ /i(m)
m = l k=\ I S m S M \ W l / k=l l « m « M

which is essentially the same as (18).

Inversion of the midpoint rule

8. Let/be a continuous function on the interval [0,1]. The approximations to the
integral of/ over this interval determined by the midpoint rule are
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The Mn/can be expressed in terms of the Fourier coefficients/of/by

(19) MHf= £ (-irf(mn) (C, 1),
m = — oc

where, in general, the series is only Cesaro summable. Now, the sequences

— n(n) for n odd,
— 2r~1 /i(s) for n = 2' s with r ^ 1 and s odd

are Dirichlet inverses, so formal Mobius inversion of (19) gives

f{n) + / ( - n) = Ybm Amn /, where Anf=MJ-\ f(t) dt.
m= 1 JO

This inversion no longer fits into the scheme of Theorem 2 and, in fact, its
justification requires more stringent conditions as we shall presently show.

The following simple example illustrates the additional problems. Suppose
f(n) = 0 when n is not a power of 2. Define g(n) by g(n) = Zm( — \f f(mn), so that
g(n) = 0 when n is not a power of 2 and

s= 1

From this,

Z bng(n) = -0 (1) - Z 2'"'</(2r) = / ( l ) - 2 * £ f(T),
n=\ r=1 r = \ + 1

so the inversion/(I) = zZnbng{n) is valid if and only if

In particular, if we take/(2r) = 2"rforr ^ Oand/(n) = 0 elsewhere, then g(n) = Ofor
all n and the postulated inversion fails.

9. We now see how much of an improvement can be made to Theorem 1 in the
present case.

THEOREM 4. Define the coefficients an and bn by

— fi(n) for n odd,
— 2r~1 fi(s) for n = 2' s with r ^ 1 and s odd.

Suppose that the series

An) and £ I T g(2r s)
r=Osodd
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are absolutely convergent and that

(20) 2e £ f(2r n) -» 0 as e - oo /or eacfc w.
r = e + 1

Z
m = 1

bmg(mn).

PROOF. Let v(x) denote the least common multiple of the odd positive integers not
exceeding x and let <3{x) denote the set of positive integers whose prime factors are
all greater than x. Then

, 1 bmg{mn)= Y bm £ at f(lmn) = £ f(kn) Z (-l)k/mbm.
m|2'v(x) m|2'v(x) 1 = 1 k= 1 m|(lt, 2"V(JC))

If we set k = 2r s and m = 2" v where s, t> are odd, then the inner sum is

If (s, v(x)) = 1 and r = 0, this is 1, while if (s, v(x)) = 1 and r > e, it is — 2e. In all other
cases, it is 0. We therefore have

I bmg(mn)= X j/(sn)-2* £ /(2rsn)l.

Now let e and then x tend to infinity. Our hypotheses imply that 2e Xr><, / (2 r sn) -»0
as e -»• oo and that the series £ s /(sn) and Ym bm g(mn) are absolutely convergent, so
we obtain

For the converse, let <?(x) be the set of odd positive integers k with the property
that any prime which divides both k and v(x) divides k to a higher power than it
divides v(x). Then, proceeding as before,

Z amf(mn)= £ g(kn) £ (-\Tbklm
m|2"v(x) k=\ m|(lk,2'v(x))

= Z
i

and, letting e and x tend to infinity, we get

Z am f(mn) = g(n).
m- 1

It will be seen from the above proof that each of the separate implications of
Theorem 4 is true under slightly weaker hypotheses than the ones we have made.
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However, nothing substantial is salvaged by this restatement. In fact, the necessity
for the surprising condition (20) is shown by the example at the end of the previous
section. Moreover, we can expect the appearance of the requirements of absolute
convergence in the theorem since it effectively includes Theorem 2. For example, if
f(n) and g(n) vanish for even integers n, the conclusion of the theorem is just

= £ fi(m) g(mn).
1

Remarks on some further integration rules

10. We consider first the higher order Newton-Cotes rules. Let/(f) be a function
denned on the interval [0,1]. For each positive integer h, Lagrange interpolation
yields a polynomial p(t) of the shape

and of degree h which satisfies p(k/h) =f(k/h) for k = 0, l,2,...,h. Its integral is

say, where the numbers whk are independent of the function/(r). The first few cases
are listed in Table 1 from Jordan (1960), p. 513.

TABLE 1

1
2
3
4
5
6

1/2
1/6
1/8
7/90

19/288
41/840

1/2
4/6
3/8

32/90
75/288

216/840

1/6
3/8

12/90
50/288
27/840

1/8
32/90
50/288

272/840

7/90
75/288
27/840

(Trapezoidal rule)
(Simpson's rule)

(Boole's formula)
19/288

Now, if we divide the interval [0,1] into n equal subintervals and use interpolation
of degree h on each subinterval, we get the sequence of approximate integrals
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where Sj; = 1 for 1 ̂  j ^ n — 1 and So = Sn = j . The previous discussion shows that
this integral is exact if/(t) is a polynomial of degree at most h. From the symmetry of
the situation, the integral is also exact if/(f) is odd about the mid-point of the interval
[0,1].

If/(t) is given by its Fourier series
fi

f(t)= I f(m)e2"iml, f(m)= f(t)e-
2«im< dt,

m=-x Jo
then the approximate integrals become

/ „ / = I amf(mn) with am = £ wk e
2'*"1"

m=-x k=O

The inversion problem can still be solved explicitly for the first few cases of these
rules, as we shall now see.

11. Let q be a prime. We consider sequences of coefficients an which are
completely multiplicative except at the prime q, that is

amn = "m«n whenever q \{m,n) and a, = 1.

Such a sequence is determined by giving the values ap at primes p # q and the values
av = Cj, say, at the powers of q. The Dirichlet inverse sequence bn is the multiplicative
function given by

bn = [i(m) am dj for n = q1m with q\m,

where
j forj = 0,

for}>0.

It will simplify the exposition if we assume that ap = 1 for primes p # q; as in Section
4, this is not really a restriction.

THEOREM 5. Let q be a prime and suppose sequences an and bn are given by

an = Cj and bn = n(m) dj for n = qJ m with q \ m,

where the c} and dj satisfy (21). Choose numbers p^ and p0 with 1 ^ p^ ^ p0 so that
the power series X, > 0

 cjz' 's regular in | z | < p~ 1 and nonzero in z < p$ '. Suppose
there is some z > 0 so that

+£) e | fW w) | -> 0 as e -> oo /or each m, and
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Then

g(n) = "£ am f(mn) <->/(n) = £ bm g(mn).
m=1 m = 1

PROOF. The idea is the same as in the proof of Theorem 4. For example, if v(x)
denotes the least common multiple of the positive integers not exceeding x and
prime to q and 3>(x) denotes the set of positive integers whose prime factors are all
greater than x, then we see that g(n) = £ m am f(mn) implies

X bmg(mn)= £ \f(sn)+ I f{q'sri) £ cr_jd\.

Now Cj <^ (px +e)J and dj 4 (p0 +g)J, so letting e and then x tend to infinity in the
above yields/(n) = Zmbmg(mn).

We note that here, in contrast to Theorem 2, the class of functions/for which the
inversion

g(n)= Z amf(mn)^f{n)= £ ^ ( m n )
m = 1 m = 1

is possible cannot be specified in terms of the size of the coefficients an alone. In fact,
the shape of the conditions imposed in Theorem 5 suggests that the simple Theorem
1 may be essentially the best possible inversion theorem for an unrestricted sequence
of coefficients an.

12. One example of Theorem 5 has already been discussed in Section 9. We shall
give three more examples taken from the integration rules described in Section 10.

(a) Take q = 2, c0 = 1 and c, = — 3 for/ ^ 1 in Theorem 5. Then di = 3Aj~l for
j ^ 1 and we can take px = 1 and p0 = 4. If/(t) is denned on the interval [0,1] and
has the Fourier coefficients/(n), then

f(t)dt = - \ £ am{h

with am defined as in Theorem 5, gives the errors for the approximate integrals of
Simpson's rule. We can tidy up the proof of Theorem 5 to obtain the following
typical result.

THEOREM 6. Suppose the function f(t) is continuous on the interval [0,1] and its
Fourier coefficients f(n) satisfy the conditions

(22) £ | / ( « ) | < oo and 4e £ \f{2Jn)\ - 0 as e -> oo for each n.
n j> e

If Simpson's rule integrates/exactly, that is Anf= Ofor all w, thenf(t) is odd about £.
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The function/(t) = '£.j^,04~iexp(2i+' nit) shows that the second hypothesis in
(22) cannot be dropped; it is integrated exactly by Simpson's rule, but is clearly not
odd.

(b) Take q = 3, c0 = 1 and cj•,= — 8 for; ^ 1 in Theorem 5. Then dj = 9* — 1 for
; > 1 and we can take p x = 1 and p0 = 9. With the same notation as before,

gives the errors for the approximate integrals obtained by cubic interpolation,
(c) Take q = 2, c0 = 1, cl = — 3 and Cj — 45 for j ^ 2 in Theorem 5. Then

dj = im{(2 + V - 4 4 ) ( l +7~44)/V44}

for; ^ 1 and we can take p x = 1 and p0 = 4^/3. In this case

{ }
"- 1 m = 1

gives the errors for the approximate integrals defined by Boole's formula.
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