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ROBERT V. MOODY 

Introduction. Our aim in this paper is to study a certain class of Lie 
algebras which arose naturally in (4). In (4), we showed that beginning with 
an indecomposable symmetrizable generalized Cartan matrix (A tj) and a field 
<ï> of characteristic zero, we could construct a Lie algebra E{(Ai3)) over <ï> 
patterned on the finite-dimensional split simple Lie algebras. We were able 
to show that E{{Ai3)) is simple providing that (Ai3) does not fall in the list 
given in (4, Table). We did not prove the converse, however. 

The diagrams of the table of (4) appear in Table 2. Call the matrices that 
they represent Euclidean matrices and their corresponding algebras Euclidean 
Lie algebras. Our first objective is to show that Euclidean Lie algebras are 
not simple. This involves a close look at the root systems of Euclidean Lie 
algebras (§1) and the construction (§ 2) of a certain module endomorphism 
of E {E treated as an E-module in the customary way). Along the way we 
discover that the set of null roots Z is a group and the subgroup Z* of (4, § 6) 
is of index 1, 2, or 3. We call [Z:Z*] the tier number, f, of our Lie algebra. 

Our second objective is to describe certain simple epimorphic images of a 
Euclidean Lie algebra. By the results of (4, § 7), every proper ideal of E is of 
finite codimension. For each \x £ $ — {0} there is an ideal of minimal co-
dimension and the quotient, £(/*), of E by this ideal is a finite-dimensional 
central simple Lie algebra over <ï>. For the 1-tiered algebras we have: 

(i) £(/x) ~E(v) for all/x, v G $ - {0}, 
(ii) E ~ $(x) (x)$E(l), where <ï>(x) is the associative algebra of finite 

Laurent series in an indeterminate x over <$, and 
(iii) £(1) is split. 
In § 4 we show that (i), and hence (ii), cannot hold in general for 2-tiered 

algebras. Indeed the identity of the E(n)s when E is 2-tiered or 3-tiered is 
rather obscure and our efforts are concentrated in working out the type of 
each E(JJL). The procedure is essentially to calculate dimE(/x) (which is 
independent of /x) and, although this is not very sophisticated, it does involve 
securing some further results on the root systems which are bound to be 
important in any further investigations. Except for ^4,2, which does not lend 
itself to this procedure, we can say that for any /x, v Ç <£> — {0}, •£(/*) and E{y) 
are of the same type, this type being given in Table 2. 
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Notation and conventions. The notation used here agrees with that of (4) 
as closely as possible. In particular, we denote {1, . . . , /} by L, {0, 1, . . . , /} 
by L*, the integers by Z, and the rationals by 0- We will fix an arbitrary field $ 
of characteristic zero from the outset and all algebras will be assumed to be 
over $ unless explicitly stated otherwise. For each Euclidean matrix XUr we 
will assume that E(X hr) is a copy of the Euclidean Lie algebra associated with 
XitT fixed once and for all. Often we will simply write XUr for E(XitT). 

Remark. The use of the adjective "Euclidean" in the present context comes 
from the fact that the Weyl group of a Euclidean Lie algebra is isomorphic to 
the Coxeter group with corresponding diagram (see 1) which in turn is the 
group generated by the reflections in the sides of a Euclidean simplex. In this 
terminology, the classical simple Lie algebras would be called spherical Lie 
algebras. 

1. Root systems of Euclidean matrices. We recall a few definitions 
from (4). A generalized Cartan matrix is a square integral matrix (Ai3), 
i, j , G L, with the properties Au = 2 for all i Ç L, A tj ^ 0 if i 7e j , Atj = 0 
if and only if AH = 0. A Euclidean matrix is a singular generalized Cartan 
matrix with the property that removal of any rowr and the corresponding 
column leaves a (not necessarily indecomposable) Cartan matrix. 

Let {A ij), i, j Ç L*, be a Euclidean matrix. It is obvious from the diagrams 
(Table 2) that (A i3) is symmetrizable, i.e., there are non-zero rational numbers 
eo, €i, . . . , ei such that Ai jej = Aj^u hj G L*. Since the diagram is connected, 
the et are uniquely determined up to a scalar factor. Let us scale them so that 

(a) 2ez- is a positive integer for each i, 
(b) (2e0, . . . , 2ez) = 1. 

Put a,ij = Aij€j. Note that atj ^ 0 if i ^ j . We are going to show that (a^) 
is positive-semidefinite of rank /. 

We can suppose that the rows and columns of {A ij) are numbered so that 
(Aij), i,j > 0, is indecomposable. Then (Ai:j), i, j > 0, is an indecomposable 
Cartan matrix and (a^), i, j > 0, is connected in the sense that for any i G L 
there is a7 G L — {i} such that atj 9^ 0. 

We have 

(I) A — -ii — ̂ SLii- — ?!hi A n c T * 
K J ij ~ e ~~ A t ~ a • } jJ ^ ' 

(aij), ij j > 0) is, up to a scalar factor, the unique symmetric matrix satisfying 
equations (1), i, j Ç L. Now, since {Ai3), i, j > 0, is an indecomposable 
Cartan matrix, there is a fundamental system of roots /3i, . . . , fii for some 
simple Lie algebra B such that 

A , 2 ^ > ^) 

where k is the Killing form on B. Thus, k(au a3) = \iaih i,j Ç L, for some real 
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number fx, and since k(ai, af) and an are positive, JJL > 0. Thus (a^-), 2,7 > 0, 
is positive-definite. 

Let Ao = Qa0 © . . . © Q&i, where a0, . . . , ax are the fundamental roots of 
E = E((Aij)) (or L = L((Aif))), and 0 is identified with the prime subfield 
of 3>. Define a bilinear form o- on A 0 by a bilinear extension of c(a^ a ;) = aijy 

i,j Ç L* (see 4, Theorem 3). 04^-), and hence {atj), is singular and thus AQ 

has a radical JV0 ^ (0) with respect to a. Since a, restricted to 

0« i 0 . . - ®Q*u 

is positive-definite, a is positive semi-definite and dim N0 = 1. Thus (a if is 
positive semi-definite of rank /. We will often use ( , ) instead of a( , ). 

Each element of A0 induces a linear functional on the subalgebra H of E. 
In fact, if P = YsitL* ^iau then 

P(hj) = E M u for a l l i G L*. 

However, 

E X^4^ = —X X^iy = — a(p, OLJ). 
i €j i €j 

Thus P(hf = 0 if and only if a(P, a,) = 0, and /3 | JÏ = 0 (i.e., P is M / / on H) 
if and only if P G iV0. If /9 G ^40 and n is one of the fundamental reflections of 
the Weyl group, W, then Prt = P — PQi^ai. Thus /? is fixed by Wii and only if 
p is null on H. Note also that while every element of No is isotropic, it is 
conversely true that iîp G ^40 is isotropic, then p G iV0. 

Let J be a vector spanning iV0. £ = X ^ L * ^ « Z and clearly £0 ^ 0. We can 
suppose that £0 > 0. Following Coxeter (1, p. 175), we have 

0 = cr(£, £) = X) £i£^<* = X) &<i + S £*£>a<j ^ S &<* + 2 |£<ll£ik*i 

(since atj S 0 if i 9e j). Thus ]£|£ï|<*ï G iV0, whence YLi\ii\ai = HiZi&i a n d 
each £t ^ 0. A minor modification of (4, Lemma 10) yields £* > 0 for all 
^ G L*. Scale £ so that each ^ is a positive integer and (£o, . • . , £z) = 1. 
Summing up, we have the following result. 

LEMMA 1. If {A if) is a Euclidean matrix and {aif) = {A ijef), where the ey are 
defined as above, then: 

(i) {aif) is positive semi-definite of rank I; 
(ii) the bilinear form a defined on A0 = QaQ © . . . © Qai by a (ai, af) = atj 

possesses a 1-dimensional radical N0; 
(iii) for P G A0, the following are equivalent: 

(a) P G No, 
(b) P is null on II, 
(c) P is isotropic, 
(d) P is fixed by the Weyl group; 

(iv) No = Q£, where £ = ]L?;<EL* £*«* can oe chosen so that the £* are positive 
integers and (£0, . • • , £z) = L 
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In (4), A is carelessly used both as the root system for L and for E. We 
correct this by denoting the root system of L by T and that of E by A. Thus 
fi G A is in T if and only if L$ ^ (0) and fi G A if and only if the image of Lp 
in E is not zero. T is closed under the action of W, and hence the Weyl roots 
ATT = {«o, • • • , oil] W are contained in T. Let 

T^ = {fi G T | Lp Ç R = radical of L}. 

Since R6(w) = R for all w G W and Lpe(w) = L ^ for all 0 G T (4, Theorem 2), 
we have TBW = TR. Thus AW = (T - TB)W = A and A^ Ç A. 

In Table 2, the £s for the Euclidean matrices are given. Note particularly 
that with our choice of subscripts, £o = 1 (also (Atj), i, j > 0, is indecompos­
able). An immediate and important consequence of £0 = 1 is that the set Z 
of null roots of £ is a subset of Z£. 

PROPOSITION 1. (i) If fi = Y,ia.* ^i<*u ^i G 0 , and X* ^ 0 for all i, and if 
fi G No, then there is a j G L* such that fi(hf) > 0; 

(ii) A = Z U A|7 (disjoint union); 
(iii) dim Ep = 1 if fi G A - Z. 

Proof, (i) If fi(hj) S 0 for all j G L*, then a(fi, a3) ^ 0 for all j G L*. Thus 
v(fi, jS) ^ 0 and fi G iV0, contrary to hypothesis, (ii) Since W is a subgroup of 
the group of isometries of -4o relative to cr, and A^ = {a0, . . . , ai) W, we have 
Z H A^ = <j>. We see that A = Z + A^ as soon as we can show that every 
positive root is in Z + Aw. This is clear for the roots of height 1, (a0, . . . , ai). 
If fi is of height 5 (> 1) and fi € Z, then by (i) there is a j such that /3(fry) > 0. 
Thus fir j = fi — /3(hj)(Xj is a non-null root of height less than 5. If it were not 
positive, we would have fi G Zajf whence f3 = aj and ht fi = 1 < s. Thus fir j 
is positive. The proof is completed by using induction on the height, 
(iii) See (4, Theorem 2) for the proof. 

The argument of (ii) is equally valid for T. A special consequence is the 
following result. 

PROPOSITION 2. If L = L((Aij)) where (A if) is Euclidean, then the radical 
R of L coincides with the centre of L. 

Proof. By (4, Proposition 8 (ii)), the centre C of L is contained in R. Now 
let a G R be homogeneous. By (4, Proposition 8 (i)), a G L$ for some fi G Aw, 
i.e., for some null root fi. Since for i G L*, fi db at is not null, and since R is an 
ideal, we have [aet] = 0 = [aft], i G L*. Thus a G C. Since R is a homogeneous 
ideal, R^C. 

For i G L* let Kt be the 3-dimensional split simple algebra §et + <£&* + $/*. 

LEMMA 2. / / fi is a non-null root and a ( ^ 0) is in E$, then the Krmodule M 
generated by a is irreducible and there are non-negative numbers u, d such that: 

(i) fi(hi) = d — u, 
(ii) fi + ucLu fi + (u — \)oii, . . . , fi — ddi are roots. 
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Proof. If M is shown to be irreducible, then (i) and (ii) are well-known 
consequences. By Proposit ion 1, /3 G A ^ and dim Ep = 1. W i t h o u t loss of 
generality, /3 > 0. Let Ui be the universal enveloping algebra of K{ and let it 
ac t on E via the adjoint representat ion. Ui = BtU\~V\+, where Bu Ur, and 
Ui+ are the subalgebras of Ui generated by hu fu and ei} respectively. 
aBJJc S $fi + $hi+ S o < ^ h t p E(j), where E(j) is the subspace of elements 
of degree j in the coarse grading of E. T h u s dim aBiUf is finite. F rom the 
local nilpotency of ad et (4, Proposition 3) , we have dim aBtlJ

r~V\+ finite, i.e., 
M is of finite dimension. T h u s M = Z) |=i © Mj} where the Mj are irreducible 
i £ r m o d u l e s . a = ]Cf=i aj} where each aj G Mj. Since [ahi] = /3(hi)a, we see t h a t 
[djhi] = /3(hi)aj. However, M ÇZ Ylk°=-™ Ep+kai and hence the only non-zero 
elements b G M such t h a t [bhi] = &(hi)b are the elements of Ep. Since 
dim Ep = 1, we must have p = 1 and M" is irreducible. 

LEMMA 3. (i) If for some j G L* aw^ some k t Z we have ay + k£ G A, /feew 
<*y + Zfe£ Ç A. 

(ii) If ai -{- ki; £ A awd vertices i and j of the diagram are joined in any of the 
ways shown, then a3- + k£ G A. 

O-O 0 4 0 CSO C^O 
i j t j i j i j 

Proof, (i) «j• + k£ G A — Z and hence there is an i G L* and aw £ W such 
t h a t a / ^ = cey + k£. T h u s «i + &£ = ( —a* + &{)r* = —ajw~1ri G A and 
(«i + k£)w = ay + k£ + &£ = a y + 2k£ G A. Consequent ly, a3•, -\- k£ G A =» 
a;- + 2&£ G A. Apply this for j replaced by i and we have a* + 2k £ G A, so t h a t 
(at + 2k£)w = a j + 3&£ G A. In this fashion we see t h a t ay + N&£ C A. 
However, ay + ?z&£ G A => — ay — nk% Ç A=> (—ctj — nk£)ry = aj — nk£ G A. 
T h u s a j + ZkÇ C A. 

(ii) T h e hypotheses imply t h a t \A tj\ ^ \Ajt\ and also t h a t no t both A tj and 
Aji are — 2. T h u s Ajt = — 1. (a* + k^ihf) = ^4^ < 0 and by L e m m a 2, 
at + ay + &£ G A. On the other hand, (a* + a , + H)(ht) = 2 + AJt = 1 > 0 
and «Î + ccj + &£ g Z, hence by L e m m a 2 again, ctj + ^ ^ A. 

T h e weight of a root /3 is defined to be <r(/3,/3). F rom Ajt(r{au at) = 
A ij<r(aj, af) i t is easily seen t h a t if i and j are joined by s lines and an arrow­
head from i to j , then the weight of a* is 5 t imes the weight of ay. 

By inspecting the diagrams in Table 2 and using L e m m a 3 (ii), we see t h a t 
with the possible exceptions of Ctti and ^4i,i, if at + s£ is a root where at has 
maximal weight amongst the fundamental roots, then a y + s% is a root for all 
j G L* (and hence /? + s£ is a root whenever /3 is a root) . Actually, Cz.i and 
Ai,i are not exceptions, as can be seen directly from the symmet ry of their 
diagrams. T h e calculations (a) of Table 1 show t h a t if a t is a fundamental root 
of maximal weight for the Lie algebra Xhr, then at + r£ is also a root. Calcu­
lation (c) shows tha t , for the cases when r > 1, at + /£ is no t a root (1 ^ t < r) 
by deriving an evidently impossible root from the assumption t h a t it is. 
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Calculation (b) shows that there are some j G L* such that aj + £ is a root. 
Our choice of «o is characterized up to symmetries of the diagram by: 
(1) removal of vertex 0 does not disconnect the diagram, 
(2) £o = 1, 
(3) (if necessary) a0 + £ is a root. 

(3) is used only when (1) and (2) fail to characterize a fundamental root (up to 
symmetries of the diagram). 

TABLE 1 

i u (a) « i r 2 r 3 . . . rir0 = a0 + £ 

Bi.i (a) atf&z . . . rin-i . . . r37V0 = ao + ^ 

Cl,2 (a) 

(b) 

(c) 

ain_i . . . r^r^rorxrs . . . n = ai + 2Ç 

cx2rirz . . . riri_i . . . r^ifo = ao + £ 

(a 1 + g)riri-i . . . r2rir2 = aQ — a2 

Ci.i (a) airi-i . . . rir0 = a o + ^ 

Bl,2 (a) 

(b) 

(c) 

air0r2ra . . . riri-i . . . r2ri = « i + 2£ 

airi-iri-2 . . . fifo = ao + £ 

(a i + £)fi . . . fi = ao — ai 

BCi,2 (a) 

(b) 

(c) 

aori . . . nn-i . . . r0 = a 0 + 2£ 

«if0r2 . . . YÏÏI-\ . . . ri = a i + £ 

(a 0 + £)r0ri . . . fz-i = 2«z 

Di,i (a) «ir2r3 • . . r^/_2 . . . r2fo = a 0 + £ 

•Ee.i (a) air2r3r4rbr&r2rzrbr2rir0 = a 0 + £ 

-£7,1 (a) aif2f3 • • • r7rzr2rbrdr4r&rbr^r2riro = ceo + £ 

£ 8 . i (a) a 1^3 . . • rtftftf^rtftfzYirtftfnrtfzrtf'jtftftftfzWirss = = ao + £ 

* 4 , 1 (a) a i /Vs^r^^r i fo = a0 + £ 

Fi,2 (a) 

(b) 

(c) 

0LtfiY2r\rtfzr2r\Yir2Y?x± = a 4 + 2£ 

air2r3^4r2r3r2riro = a 0 + £ 

(«4 + QrirzWiro = «3 + a2 — 0:0 

Giti (a) CX1Y2Y1Y0 = a 0 + £ 

^2,3 (a) 
(b) 

(c) 

OL2Y1YQY2Y1Y2 = OL2 + 3 £ 

a i r 2 r i r 0 = a 0 + £ 

(«2 + £)7Vi = ao — « i 

(a2 + 2^)r2firo = «2 + a i — ao 

A1.1 (a) aiYo = ao + £ 

^41,2 (a) aonro = «0 + 2£ 
(b) aiY0Y! = ai + £ 

(c) (ao + £)fo = 2 a 0 
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Parts (ii) and (iii) of the following theorem have now been established. 

THEOREM 1. (i) Z = Z£. 

(ii) There is a positive integer r with the property that A + Zr£ = A. The 
minimum value for r is 1, 2, or 3. r is called the tier number. 

(iii) For some i G L*, at + Z£ £ A. 
(iv) The number of equivalence classes of A modulo Zr£ is finite. 

Proof, (i) We know that Z C Z£. By (iii), there exists a 7 such that 
OLJ + fe£ G A for all fe G Z. Since (o^ + &£) (fey) = 2, Lemma 2 shows that 
k£ G A. Thus Z£ C Z. 

(iv) It will be sufficient to show that there are only finitely many classes of 
A modulo Z£. Since A = Z U {a0, . • • , oci}W, each element of A has weight 
equal to 0, 1, 2, 3, or 4. Any two elements in the same class have the same 
weight and there is precisely one representative for each class of A in 
Zai © . . . © Zaj. Since a is positive-definite on the lattice Zai © . . . © Zah 

the number of elements of weight 0, 1, 2, 3, and 4 in the lattice is finite. Thus 
the number of classes is finite. 

2. Shift mappings. In (4) we have seen that if E = E((Atj)) is not simple, 
then the set Z of null roots of E is not trivial. Furthermore, there is a non-
trivial cyclic group Z* of roots in Z such that for each /3 G Z* there is a 
homogeneous bijective module endomorphism of degree /5 of E (E treated as an 
E-module in the customary way). This mapping is unique (for each /3) up to a 
scalar factor. Clearly a necessary condition for a root /3 to be in Z* is p + A = A. 

Consider E = E((Ai3)) when {Atj) is Euclidean. We have Z = Z£. How­
ever £ + A g£ A in general and the first candidate for an element of Z* amongst 
the positive roots is f = r£ (r is the tier number). Suppose that we can establish 
a bijective endomorphism ': E-+ E oî degree f such that [a&]' = [a'ô] for all 
a,b £ E. Then for a G £ and i G Z we define a™ by a<°> = a, a(i) = (a'*-»)' 
for i > 0, a(_1) = pre-image of a under ', a ( - î ) = (a (~ ï + 1 )) ( - 1 ) for i < — 1. 
E is not simple (for example the smallest ideal containing h0 + h0

f is proper) 
and hence the results of (4, §§ 6, 7) apply. We recall these results briefly: 
Z* = [f ] and the ideal structure of E can be described in terms of the associ­
ative algebra $(x) which is the algebra generated by the algebra of polynomials, 
$[x], in an indeterminate x, and x~1. Let £7 be the universal enveloping algebra 
of E. Each ideal of E has the form (a) = aU, where a G 5 = 2f=-oo ^ o ( i ) 

and a is unique to within scalar multiples. We make S into an associative 
algebra by identifying it with 3>(x) via X ^ ^ o ( 0 <-> Y,\iX\ If we let (a) denote 
the (associative) ideal in 5 generated by a, then (a) Pi S = (a) and the corre­
spondence (a) <-> (a) is an isomorphism between the lattices of E and S. 
Finally, every non-zero ideal of E is of finite codimension. 

Our construction of ' rests on a series of straightforward but tedious calcu­
lations. 
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Notation. For each i Ç L* we will choose, by a method described below, an 
element e / G Eai+ç. h/ will denote [e/ft] a n d / / will denote §[&//*]. 

Choose £0' to be any non-zero element of EaQ+ç. For convenience in notation 
suppose that AQi ^ 0. Then a0 + «i, and hence a0 + ai + f, is a root. If 
«o + OLX + f (? Z we have dim jE a o + a i + f = 1. If a0 + a i + f G Z, E is the Lie 
algebra ^4i,i and £ a o + a i + f is spanned by [[[e0ei]ei]e0]

 an<^ [[[^o î]^o] î] which are 
equal, thus again dim E a o + a i + r = 1. With this and Lemma 2, [Eao+ç, ei] = 
Eao+*i+ï = [Eai+t,e0], whence E«0+r = [|>0Eai+r]/i] = [eo[Eai+t,fi]]. Define e / 
to be the unique element of Eai+ç such that [eol^i'/i]] = oLo(hi)eof, i.e., 

M*i'] = fo/Ai]. 

It is now easily checked that [a'b] = [a&'] for a, b £ [eu huft \ i = 1, 2}. 
For example, [eo'ei] = t ^ i ' ] follows from [Ea o + a i + f , / i] = E a o + r and [[eo'ei]/i] = 
fa/Ai] = [«oil7] = [«o[«i'/i]] = [MUil 

The equation 

(*) [a'b] = [a&'] for a, b £ {et, hufi \ i = j , k} 

holds independently of the choice of e/ and ek' if j and k are unjoined vertices 
of the diagram. Thus, if the diagram has no loops, the procedure by which we 
obtained ei from e0' can be repeated until (*) holds for all j , k G L*. The case 
of A z,i must be considered separately. 

In this case, having chosen e0', non-zero, in Eao+$-, w e let the automorphism r 
of E defined by et —> ei+i, fi —»/i+i, A* —> A*+i (indices taken modulo I + 1) 
define e/. Namely e/ = £oV, i = 1, . . . , I. (*) will hold for all j and k if 
[eo'^i] = [^o^/]. To be specific, put e0' = [e0, ei, . . . , ez, e0].t £<>' ^ 0, for 
Lemma 2 shows that [ei, . . . , eh e0] 9^ 0 whence 

l>o'/o] = --410[eu . . . , eh e0] 5* 0. 

Now 

[e^ei] = [[e^ei], e2,. . . , e*, «0, 0i] — [«1, «2, • •. , Vu «0], «o, *i] 

— [̂ 1, e2f . . . , eh e0, [eie0]]. 

The first term on the right-hand side of this equation is [eo'^i]. Let b be the 
remaining pair of terms. We have b Ç Eao+ai+ç, and in order to show that 
b = 0, it suffices to show that b ad/o = 0. This is easily checked. 

e/, h/, / / , i 6 L*, are now defined in all cases so that (*) holds. The next 
step is the following result. 

LEMMA 4. ' can be extended to a linear mapping of E into E in such a way that if 
gn,... ,gis G {ei,ht,fi\i £ L*}, then [gtl,..., gt/,. . . , g j = [gil9..., gu]' = 
ten, • • • , giu\ • • • > gis] for any j,k G {1, . . . , / } . 

f[fli, . . . , at] denotes [[. . . [[aia2]a3] . . . ]a*]. 
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Proof, (i) Suppose that gilf . . . , gu € [et \ i Ç L*}. We establish 

1.0*1» • • • > eij J • • • i eis\ = iein ' • • i eik i • ' ' J &is\ 

by induction on s. If the result holds at 5 — 1 ( ^ 2 ) , then for each t Ç L* 
we have: 

[eUl . . . , et/, . . . , e*J ad/« = 5^ [e*lf . . . , [«*„/«], . • • , et/, . . . , £<J 

+ [etl, . . . , [e<//«], . . . , eis] + [eilf . . . , e,/ , . . . , [eikft], . . . , e j , 

and a similar expression results for [e iu . . . , eik', . . . , e*J ad/*. The summation 
terms are clearly equal by the induction hypothesis and a straightforward 
computation, together with the induction hypothesis, shows that 

Iein • • • J [eijjt\j ' • • j eisl = Iein • • • » l&ijjtli ' • - i eik i • ' ' > ^isl 

a n d [£*!, . . . , 6ij , . . . , [Cikjtli • • • » ^2sJ = lA'i» • • • > eiji • • • » [eikJt\> • • • > ^f«J-

The result follows by (4, Proposition 9). 
If each gip Ç {/* | i G L*}, we obtain the corresponding result by a similar 

computation. If each gip £ {ht \ i Ç L*}, the result is trivial. 
(ii) Define ' from E into itself by [gil} . . . , gu]' = [gfl, . . . , g,/ , . . . , gu] 

whenever the gs are all es, all As, or all/s, and by linear extension. This mapping 
is well-defined: Suppose that a — Z)^ù,...,is[gû> • • • » gu] — 0> where the gs 
in each product are all es, all hs, or all / s . We can suppose that each product in 
the sum is of the same type, for example, all es. Then for any k Ç L*, we have 
0 = [aek'] = E \ i ! i J K , . . . ,eu]ek'] = X > Û *.[[«*/,. • • ,eis]ek] = [a'ek\. 
By (4, Proposition 9), a' — 0, as required. The other cases are similar. 

(iii) We have: 

[[etl, . . . , eis]h/] = [ [ ^ n . . . , e j ' f t j ] = [[en, . . . , eis]hjY, 

[[en, . . . , e<„]//] = [ K , • . . , eu]'fj] = [[eilf . . . , e,,]/,] ' , 

and the corresponding equations hold when the es and / s are interchanged. 
(iv) TTze general case. We wish to show that [g^, . . . , g*/, . . . , gis] = 

kii» • • • » £*.]' = \giu • • • > &**', • • • , giX where each gip G {eif hitft \ i 6 L*}. 
This is true when 5 = 1 , 2 . Assume that it is true at 5 — 1 ^ 2. 

[gin • • . ,gi.-i] e £/3 

for some root /3. Suppose that /3 > 0. Then 

feu, • • • , g*—i] = X ^ ' 1 - - ^ ' 1 ' • • • » **»]» 

and 

= [( ]CX^ * *^» • • • ' ^«])» #*/]• 
The other cases are similar. 
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It is now easily checked that [ab]f = [a'b] = [abf] for all a, b G E. That ' is 
bijective follows from the fact that ' is homogeneous and that if M is the multi­
plication algebra of E and a G E is homogeneous and not zero, then aM = E. 
Thus £ ' = (e0M)' = eo'M = £ , and if a G £ is homogeneous and a1 = 0, 
then (0) = a'M = {aM)' and hence a must be zero. 

3. 1-tiered Euclidean Lie algebras. From the results of § 2 and (4, § 7), 
we know that the ideal lattice of a Euclidean Lie algebra E is isomorphic to 
that of the associative algebra 

$(x) = { X^ ^i%1 almost all A* = Or 

with its usual multiplication. An obvious method for constructing a Lie 
algebra with this ideal lattice is to take a central simple Lie algebra, B, over 
<£ and form $(x) (x)$ B with the standard multiplication.fi In this section we 
establish that the 1-tiered algebras have this form. Later (Theorem 3) we will 
show that this is not in general true for the 2-tiered algebras. 

Let E = E((Aij)) be a Euclidean Lie algebra and let M G $ — (0}. The 
ideal of E corresponding to the ideal of <£>(x) generated by x — /x is maximal 
and thus the quotient, E(JJL), of E by this ideal is simple. The elements of E(n) 
are the classes formed by identification of a' with pa for all a G E. By 
(4, Theorem 6), £ ( M ) is of finite dimension. 

PROPOSITION 3. If (A tj) is a Euclidean matrix, and if F is a Lie algebra over $ 
with generators E0, . . . , Eh H0, . . . , Hh F0, . . . , Ft satisfying the relations 

(1) [EtHj] = AtjEu [FJIj] = -AtjFi9 [EtF,] = ôtjHi9 [HJffj] = 0 for all 
i and j and E^(ad Ef)~A^+l = 0, 7^(ad Ff)~A^+l = 0 for all i and j with 
i 7e- j ; and if in addition, 

(2) F has a trivial centre and 
(3) F is of infinite dimension, 

then F~E((Atj)). 

Proof. There is clearly an epimorphism of L((Atj)) onto F. Since the 
radical of L is its centre, there is an induced epimorphism from E((A tj)) onto F. 
Since every proper ideal of E is of finite codimension, the mapping must be a 
monomorphism. 

THEOREM 2. If E = E{{Atj)) is a 1-tiered Euclidean Lie algebra, then 
£ ~ $<x> ®*£(1) . 

Note. The 1 is a matter of convenience. It follows from this theorem that 
£(/x) ^ £ ( 1 ) for all M G $ - {OJ. 

Proof. Inspection of the calculations (a) for the 1-tiered cases (Table 1) 
shows that they have the form apik . . . rixr^ = «o + £, where j , ik, . . . , i\ 

\\\p{x) ® a, q(x) ® b] = p(x)q(x) ® [ab]. 
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are all different from 0. As a matter of convenience, we will suppose that j = I 
in what follows. Thusaxr i h . . . rix = — a0 + £, whencea0r21 . . . rik = — ai + £. 

Consider the Lie algebra K = $(x) ®$E(1) . We will identify E(l) with 
the subalgebra of elements 1 ® &, b G £ (1 ) . For a G £ let a be its canonical 
image in -E(l). The elements E0 = x ® e0, E\ = ëi, . . . , Ex = eh H0 = h0, 
Hi = hi, . . . , Hi = hh and F0 = x_ 1 (g)/0l Fi = fh . . . , Ft = ft satisfy the 
relations (1) of Proposition 3 and generate a certain subalgebra F oi K. If we 
can show that F = K, then it will be clear that F also satisfies conditions (2) 
and (3) of the proposition, and in consequence, K = F c^ E. 

Let j8 be a non-null root and suppose that a f £ ^ - (0 | . Let i G L*. 
By Lemma 2, jSr* = £ — P(hi)cti is a root and by the theory of irreducible 
modules over a split 3-dimensional simple algebra, we have: 

a(ad/,)**••> eEf>ri - {0} ifi8(A0 ^ 0, 

a(ad e<)i«»<>i 6 ^ ~ {0} if 0(ht) < 0. 

It follows that 

co(adg11)
,ao(*ù)i(adg<2)i

(aof*i)(*»2)i . . . ( a d g J i ( a o r i i - V ^ A » V i 

is a non-zero element of £_«,+£, where gtj = eiy (giy = ftj) for 

( « ( ^ . . . r ^ K A , , - ) < 0 ( ^ 0 ) . 

Thus 

(x ® ê o H a d g û ) 1 " 0 ^ ! . . . ( a d g u ) ' a o r n - r u - i ^ ^ l = x ®afl' = x ®aj\ 

for some a f $ - {0). This shows that x ® / j G F. Successive applications of 
ad hi show that x ®hi and x g ) ê | Ç i7. One then obtains readily that x ®hu 

x ® fu and x (x) £*, i G L, are in F. (The fact that the vertex 0 is a terminal 
vertex is used here.) Then [[x ® e0, x ® e J , / J = i&e2 ® e0, 0 G $ — {0} if 
vertex j is joined to vertex 0, so that x2 ® ë0, x ® h0, and Jo are in F. Repetition 
of this performance demonstrates that for all i G L*, xn ® fu xn ®hi G T7, 
n ^ 0, and xB (x) ̂  Ç ^ , n > 0. (At this point we have not shown that 
e0 G F.) 

If we begin with / 0 instead of e0, we find that xn ® g*, xn ® A* G F, n ^ 0, 
and xw ® /* G T7, ^ < 0. Thus T7 = i£, as required. 

It is interesting to note that when E is 1-tiered, E(l) c^ E((Atj) t,j>o) so 
that £(1) is the split simple Lie algebra over <£ whose diagram is that of E with 
vertex 0 removed. To show this isomorphism it is enough to show that eQ, h0j 

and /o are in the algebra F* generated by et, hu fu i G L. However, from 
atfik • • • rn = —«o + £, we have (—az + f)rifc . . . rtl = a0. Thus 

/ / ( a d gu)ic-«/+€)(».-*)l . . . ( a d g f J i ^ + ^ ^ - ' ^ ^ ^ i 

is a non-zero element of EaQ. Here again 

gtj = eu (gtj = f^) for (-ai + £)rik . . . rij+l(htj) < 0 ( ^ 0 ) . 
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Since none of the numbers ik, . . . , ix is 0, we obtain eQ € F*. Likewise, f0 £ F* 
whence [ë0f0] = h0 6 F* and F* = E(l). 

With the aid of the following proposition, we can obtain interpretations of 
A Zti, Biti, Ci,i, and Dhx as Lie algebras of linear transformations. 

Let V be a vector space over <i> of countably infinite dimension and let vu 

i G Z, be a basis for V. Let S be the shift mapping defined by vtS = vi+1 for all 
i e Z and let 7Z = {T G Hom*(F, F) | 5 " z r 5 z = T). 

PROPOSITION 4. 7j ~ $(x) (x) <£j, wAerg <£? is the ring of I X I matrices over <£. 

Proof. Suppose that vtT = YLjtz Viflj (vij = 0 for all but a finite number of 
the j G Z). Then r G Ix if and only if /z^ = /xi+ki,j+ki for all & G Z. In view of 
this, the matrix of T relative to the basis {vt} has the form: 

AQ AX A2 AZ AA 

A-! Ao Ax A2 Az 

A-2 -4-1 Ao Ax A2 

A_z A-2 A-x Ao Ax 
A-4 A_z -4-2 -4-1 A0 

where A{ Ç <£z and all but a finite number of them are zero. Define 
ai: Ii-+ $(x) (g) 3>z by 

r - + £ x * (8) ,4,. 
Î '6Z 

Clearly co is linear, one-to-one, and onto. One checks also that it preserves 
multiplication. 

Consider <£(x) (x) <i>z with its usual Lie multiplication. For a Lie algebra K, 
le tD(K) represent its derived algebra. Clearly D(${x) ® $z) ~ <£(x) ®Z>($j), 
whence we have the following result. 

PROPOSITION 5. D(Ii) ~ A z_i,i. 

Now let ( , ) be a bilinear form on Vt = $v0 + . . . + <i>z>z_i and extend this 
to a bilinear mapping of V into $(x) by 

(vtS
tl,vjS'l)l= (vt,v,)x*: 

Let Si = {T Ç Hom(F z , Fz) | T is skew relative to ( , ) on Vt} and 5Z* = 
{T e Hom(F, V) | T is skew relative to ( , ) , on V}. Then Sz* ~ $<x) (x) S„ 
as is easily verified. 

PROPOSITION 6. Let ( , ) be a non-degenerate skew-symmetric bilinear form or 
a non-degenerate symmetric bilinear form of maximal Witt index on Vt. Extend 
it to V as above. Then in the skew case, S* o^ C 1/2,1 and in the symmetric casey 

S*c^Di/2txor B(i-x)/2,i depending on whether I is even or odd. 
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4. 2-tiered and 3-tiered algebras. 

(1) A non-isomorphism theorem. Let £ be a Euclidean Lie algebra. The iso­
morphism of (4, § 7) between the ideal lattices of E and <£>(x) maps the ideal 
Œ*=o X«^o(i)) into the ideal (X^=o X*x*) of $(x). It is straightforward to show 
that the centroid C of E is the subalgebra of Hom$(£, E) generated by the 
shift mapping ' and its inverse. Thus C can be identified with 3>(x), where the 
action of x on E is given by ax = a' for all a Ç E. The centroid of 

£/<5w"> 
is then isomorphic to ^ K ^ V Œ ^ o X*#0» I n particular, E(M) is central simple for 
all/x Ç $ - {0}. 

Fix a particular /i Ç $ - {0j. Let ~ be the natural mapping of E onto £(/x). 

LEMMA 5. X;=o ^*£ ^ # Cartan subalgebra of £(ju)- (r w ^ tier number.) 

Proof. Let 5 = X);=o £*£• We will show that B is its own normalizer and is 
nilpotent. Suppose that [b, B] C 5 for some b Ç E. There is an element a Ç E 
of the form Xo^ht/3<htr a£> where &# € -E/s, such that a = b. We must have 
[a,H] Ç £î=0jEiç + <fc0' — MAO). This can only happen if a € Z;=o E<f. 
Thus b e B. 

In showing that B is nilpotent we will rely on the fact that r = 1, 2, or 3. 
If r — 1, then B = H, which is abelian. If r = 2 or 3, then S is in the centre of 
B. If r = 2, B/H is abelian since [EbE^\ £ £ r = H. Thus £ 3 = (0). If 
r = 3, let J^ = (£s + H)/H<xndB2 = (£2« + # ) / # . Then B / # = JBi + 5 2 , 
J3X

2 C B2> B2
2 C B!, and [5iB2] = (0). It follows that (Bx + B2)* = (0), so 

that B4 = (0). 
Let \l> be the algebraic closure of <£. Then SI> ®$E(/x) is a split finite-

dimensional simple Lie algebra and SF (x)X^=o£z£ is a Cartan subalgebra. 
Thus E(ii)y has dimension E(AO and rank 5Zï=o d i m Ett- Note that 

dim£(ju)= 2 dim E^ 
o^ht^<htr 

which is independent of ju. 

THEOREM 3. Suppose that E is a Euclidean Lie algebra and dim E(n) = m, 
dim H = I. Then £ ( M I ) is not isomorphic to E(fx2) if (n\~lyL2)

m~l is not a square. 

Proof. Let B = {Cj \ j 6 £2} be a basis for ]Loâit/3<htr -E0, chosen so that 
(i) each Cj is in some root space E^ and (ii) hi,..., hi G 5 . Let /xi, /x2 Ç $ — {0} 
and suppose that £(/xi) — -EG* 2). Let P be a Lie algebra isomorphic to both 
and for a G £ let a (â) be the image of a in Z> under the composition of the 
natural mapping of E onto £(AH) (E(/Z2)) and the given isomorphism of E(MI) 

(E(/x2)) onto J9. {c;} (j Ç 12) and {ĉ } (j 6 12) arebasesof D. We will derive the 
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theorem by comparing the determinants of the Killing form on D computed 
relative to these two bases and using the fact that they must differ by a factor 
of a square. 

For trD ad ct ad c3 j£ 0, it is necessary that /3t + Pj = 0 or fit + Pj = r£, 
and similarly for tr^ ad ct ad Cj. Thus the matrix 

M = (tr^ ad ct ad c,)M € 0 (M = trD (ad ct ad c0)i,m) 

decomposes into two diagonal blocks, one for the hiS, M\ (Mi), and one for the 
remainder of the basis, M2 (M2). 

Mr (M^ \ A Mr (^ \ 
M=[—r^J and M=[—r^r ) . 

V \Mj \ \Mj 
For cq G B, cq ad hi ad hj = pq(hi)pq(hj)cq and cq ad Â* ad hj = /3q(hi)l3q(hj)cq. 
Thus Jl?i = Mi. For ĉ , Cj £ B — {hi,. . . ,hi], tr^ ad c* ad c^and t r^ad CfSidCj 
are zero unless 0* + /3j = r£. Suppose that 0* + /3^ = r£. For q G fi, 

Cç ad Ci ad cy = l ^ Xkck ) , 

and hence cq ad CÎ ad Cj = A H Œ ^ C ^ ) and cQ ad ë* ad ĉ  = M2(2ZXÀÂ). It follows 
that tr ad ct ad ëy = MI~V2 tr ad c* ad c^and il?2 = M I - 1 / ^ ^ . Therefore det M = 
(fjLi~1lJ.2)m~ldet M and (MI-1/^)™"-* must be a square. 

To apply this theorem we require that <£ contain non-squares and m — I is 
odd. The remainder of this section is devoted essentially to calculating m for 
the various Euclidean Lie algebras. These values may be computed from 
Table 2. Here one observes that m — I can be odd (for example, in the case of 
Ci,2 when / is even) and this at least suffices to show that Theorem 2 is not 
valid (in general) for the 2-tiered algebras. We conjecture that Theorem 2 is 
false for all 2-tiered and 3-tiered algebras. 

(2) The type of E(iu). Assume throughout that a fixed fi G <£> — {0} has been 
chosen. We would like to know the type of E(ix). This amounts to identifying 
E(fi)y, where SF is the algebraic closure of <ï>. The knowledge of the dimension 
and rank of a split simple Lie algebra is often enough to determine its identity, 
and we will find that this approach works on all the 2-tiered and 3-tiered 
algebras except ^4,2. What we must do is calculate p = ]C;=odimE^ and 
dim E(n) for each 2-tiered and 3-tiered Euclidean Lie algebra. 

Let Aw denote the set of equivalence classes of Aw modulo f = r£. 
dim E(fx) = \&w\ + P> thus we must calculate lA^I and p. 

LEMMA 6. Let k G {1, . . . , r — 1} and let ik = {j G L* | aj + k£ G A). 

For each j G J& let e3* be a non-zero element of Eaj+k^. Then {[e*ff\ \ j G J*-} 
spans Ek£. 

Proof. Let a G Ek%. a can be expressed in the form ]L7çr X7[a7£z(7)], where 
X7 G $, i(y) G L*, and ay G Ek^a.(yy Since (k£ - ai{y)) (hi(y)) = - 2 , 

a7(ad ei(y))
2 ^ 0. 
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Thus a7(ad ^i(7))
2 = coTei(7)*. The Ki(y)-module generated by ay contains 

[ayei(y)] and co7e (̂7)*, and hence [co76j(7)*,/^7)] is a non-zero multiple of [aye^y)]. 

Because of its exceptional nature, it is as well to dispose of ^2,3 immediately. 
It is easy to list all the roots and find that \ÂW\ = 24. dim H = 2, dim E% = 1 
or 2, and dim E2% = 1 or 2 by Lemma 6. Thus G .̂sG*) ls °f dimension 28, 29, or 
30 with a rank of 4, 5, or 6, respectively. The only possibility is dimension 28 
and rank 4, and hence G2>3(A0 *S °f type J94. 

From now on all our Euclidean Lie algebras will be assumed to be 2-tiered. 

LEMMA 7. Let E be a 2-tiered Euclidean Lie algebra and let TLf = {au . . . , as} 
be a connected subset of the fundamental roots with the property that at + £ Ç A, 
i = 1, . . . , s. (The numbering on these roots is one of convenience and does not 
necessarily coincide with that of the diagram for E in Table 2.) Let L(TL') be the 
finite-dimensional Lie algebra generated by {eu hu ft\ i = 1, . . . , s] and let 7 
be the highest root of L ( n ' ) . 7 + £ is a root. If Ey+% is annihilated by 
ad £1, . . . , ad es, then the L(Uf)-module M generated by E7+t is isomorphic to 
L ( n / ) , considered as an L(Jl')-module and dim(Af C\ E%) = s. 

Proof. Let a and a* be non-zero elements of E7+% and E7, respectively. 
L(II /) is, up to isomorphism, the only ^-extreme irreducible L(n')-module 
with 7 as the highest weight. Since M is ^-extreme and has the same highest 
weight, there is an L(II /)-module homomorphism $ of M onto ^ ( n ' ) which 
takes a onto a* and each weight space 7kf_sMi«t- (which is a subspace of 
Ey^zmai+ù onto Ey-Zfticti (3, pp. 214-215). Now M Pi E^ is clearly contained 
in the space spanned by [ei */i], . . . , [es * / s ] , where the e* are non-zero 
elements of Eai+^, and on the other hand M P\ E% is mapped onto 

$fti + . . . + $hs. 

Thus <j>\ M C\ E$ is injective. 
Suppose that <j> is not injective. Then there is a weight space M C\ Ep+% 

on which <£ is not injective and it is clear that fi $ Z£ so that /? + £ is not 
isotropic. Thus M H E$+$. = Ep+% and (Ep+^cj) = (0). Suppose that 13 is chosen 
of maximal height with this property. Let a a d / 2 1 . . . a d / ^ be a non-zero 
element of E$+%. By assumption, a* a d / ^ . . . ad fu = 0. However, 

6* == a* a d / i ! . . . a d / ^ . j 9e- 0. 

Let & = a ad / z l . . . ad/^_!. In the notation of Lemma 2, with the obvious 
use of *, d — u = d* — u*. Now &(ad et)

j 9^ 0 implies that 6*(ad et)
j 7^ 0 

since <j> is injective on any space Es+t C\ M when ht ô > ht 0. This means that 
u* ^ w. Combining this with d* = 0 yields d = 0, which is a contradiction. 
Thus I f ~ L ( n ' ) as L(lf')-modules. 

COROLLARY. Under the hypotheses of Lemma 7, and in the notation used in its 
proof, [ei */i], . . . , [es *fs] are linearly independent. 
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In what follows, a0 will always represent a fundamental root chosen in the 
manner described in § 1. a\ will be the unique fundamental root such that 
(«o, ÛJI) T1^ 0. Unless otherwise indicated, the labels 2, . . . , / will be assigned 
to the remaining vertices of the diagram in some way convenient to the dis­
cussion at hand, /x will denote a fixed element of $ — {0}. The subgroup of W 
generated by Wi, . . . , ws G W will be denoted by (w\, . . . , ws). If X is any 
finite-dimensional split semi-simple Lie algebra, its Weyl group will be denoted 
by W(X). The Lie algebra L generated by \eu hi,fi | i G L} will be considered 
as both a subalgebra of E and E(JJL). Note that W(L) = (ri, . . . , rt). The set of 
non-zero roots, AW(L), of L is («i, . . . , ai)W(L). Let T be the set of roots 
X!*€L* ̂ iai € A^ with Ao = 1. &w, &W{L), and Y represent the set of equivalence 
classes of A^, AW(L), and V modulo 2£ = f. lÂ^^I = lA^^I and |T| = | r | . 

LEMMA 8. Âw = ÂW(L) U F (disjoint union). 

Proof. Let 0 G Aw and choose /3 = ]C*€L* ^*a* s o that the equivalence class 
of P mod f is 0 and X0 = 0 or 1. If X0 = 0, then a trivial induction on the height 
of fi shows that (3 G AWCD* If Xo = 1, then /3 G T. The union is clearly disjoint. 

As a result, \ÂW\ = [A^^l + | r | , and since ATr(Z/) is the root system of a 
finite-dimensional split simple Lie algebra and [A^^l is well known, we need 
only determine |T|. 

We first derive a method of calculating |T| when a0 is a root of minimal 
weight amongst the weights of the at. This is applicable to BIJ2, Cz,2, and 7̂ 4,2. 
Slight modifications then allow us to deal with BCi,2 and Ai,2. 

LEMMA 9. If ao is of minimal weight, then Y = a0(ri, . . . , rt). 

Proof. Clearly ao(fi, • • • , fi) Q Y. To prove the reverse inclusion we use 
induction on the height. If fi G Y has height 1, then /3 = a0, hence we can sup­
pose now that ht(/3) < m implies that /3 G a0(^i, • • . , rt)} m > 1. Suppose 
that £ G r and ht(/3) = w. /3 = a0 + 71 = a0 + X ^ K X^-, where K is a 
subset of L and each \ t > 0. 

We know that there is an i G L* for which ht(/3r^) < ht(/3), and if we can 
choose i > 0, our proof will be complete. We assume therefore that ht(/3/^) ^ 
ht(j8) if i > 0 and that ht(/3r0) < ht(/3). From 

/fro = —«0 + 7i — 2 ( ( Y I , ao)/(a0, a0))ao, 

we have — 1 = 2(71, a0)/(a0 , ao) = Xi^io, and consequently Xi = 1 and 
4̂10 = — 1 . This rules out Bh2-

There is no loss of generality in supposing that K = {1, 2, . . . , s), 5 5= /. 
In what follows, we may rearrange the subscripts 2, . . . , s. However, we define 
yk, k = 1, 2, . . . , s, by yk = Z ^ ^ s ^i&i bearing in mind that this is not 
properly defined yet if k ^ 2. Put 70 = £. 

Consider the following statements: 
(a) X, = 1; 
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(b) each of a0,. . . , ak-i is orthogonal to each of ak+i, . . . , as; 
(c) Ak>]c-i = - 1 = Ak-it1c; 

(d) (7*-i.«*) ^ 0 ; 
These are all true if k = 1. We will see that their truth up to and including k 
implies their truth at k + 1, after a possible rearrangement of the indices 
k + 1, . . . , s. 

Since yk has all positive coefficients in its expression in terms of the funda­
mental roots, there is an i G L* such that (Y*, at) > 0. This certainly does not 
happen if i < k or i G K, thus we know that k S i ^ s. If i > k, then 
(0, a^ = (ao + . . . + tt*-i + Tt» oti) = (Y*, « 0 > 0 by (a) and (b). This 
implies that ht (fir t) < ht(j3), contrary to our assumption. Thus (yk, ak) > 0 
and (Y*, &i) S 0 for k < i ^ s. Now 

0 ^ 2(Y*-I , ak)/(ak, ak) = 2(afc_i + Y*, ak)/(akl ak) 

= ^fc-i.jb + 2 ( Y * I OLk)/(ak, ak), 

whence 0 < 2(ykl ak)/(ak, ak) ^ —Ak-ltk = 1. 

1 = 2(Y*,a*)/(ajt,at) = 2 + ^ A*4tt. 

This means that there is only one i, fe < i g 5, such that ^4 a 9^ 0. Call it 
fe + 1. Then Ak+itk = — 1. We have \k+i = 1. (b), (c), (d) are now seen to be 
true at k + 1 (note that Aktk+i = — 1 since a0 has minimal weight and Bh2 
has been ruled out, so that as we move away from a0 we always meet arrows 
head on). 

We conclude that/3 = a0 + «i + . . . + as and fori, j G {1, . . . , s} we have: 

0 if \i -j\ > 1, 

- 1 if \i -j\ = 1. 

Thus I3rs = «o + «1 + • . . + «5-1 and ht (firs) < ht(/3), a contradiction. 
For w G (ru . . . , n ) we will let l(w) denote the reduced length of w, i.e., the 

minimum integer k such that w may be written in the form rtl . . ,rik. 

LEMMA 10. If ao is of minimal weight, then 

\T\ = \{n,...,rl)\/\(ri r,>|. 

Proof. We know that T = a0(ri, . . . , r 1). Let V be the subgroup of 
(ri, . . . , fi) leaving a0 fixed. Clearly V 2 (̂ 2, . . . , rz), and we complete the 
lemma by showing that we have equality here. 

Use induction on the length l(w) of w G F. Thus suppose that for some 
m > 0 we have shown that w £ V and Z(w/) < m imply that «/ G (r2, . . . , rz), 
and suppose now that Î£; G F and /(w) = w. By a well-known result (see for 
example 3, Theorem 8.2), there is an i G L such that a{w G A~. This i cannot 
be 1, for then ct\W = S j a ^ a i with each X* ^ 0 and 

0 > (aot«i) = (a<flV,aiw) = (a0l ]L*€L X ^ ) ^ 0. 

^ t i — Ajt — 
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Thus atw G A~ for some i > 1. It follows (2, Lemma 2.2) that l(rtw) < l(w). 
However, rtw G V. By the induction assumption, rtw G (̂ 2, . . . , n ) , whence 
w G <r2, . . • , r,). 

PROPOSITION 7. / / E is a 2-tiered Euclidean Lie algebra, and a0 is of minimal 
weight amongst the weights of the a. u i G L*, then 

\LW\ = \&wu)\ + \(rh . . • , rl)\/\(r2, . . . , rl)\. 
We now turn our attention to the remaining 2-tiered Lie algebras, BCïi2 and 

.41,2. In both these cases, a0 is the unique fundamental root of maximum weight 
and this weight is 4. 

LEMMA 11. In the cases BCi,2 and Ai)2j we have: 

T = AW(L) + £ VJ ao(ri, . . . , rt) (disjoint union). 

Proof. It is clear that AW(L) + £ U a0(fi, . • • , n ) £ T. The union is dis­
joint since the elements of ATF(L) + £ are of weight less than 4 whereas those of 
ao(ri, . . . , r 1) have weight equal to 4. 

Let (H G r and choose 0 so that /3 defines the equivalence class /3 and /3 G T. 
If jS has weight less than 4, then 0 G {«i, . . . , ai}W, and since a,- + k£ is a 
root for all & G Z when i G L, 0 — £ is a root. /3 — £ = X^o. X â* so that, as in 
Lemma 8, (3 — % £ ATr(z,). Thus (3 G ATF(Z/) + £. If £ has weight 4, which is the 
only other possibility, £ G «oW. We must still show that fi G «0(ri, . . . , r t). 
If /3 has height 1, this is obvious. If /3 is of height greater than 1, there is an 
i G L* such that 0 < ht(Prt) < ht(/3). If i = 0, we obtain a contradiction 
since (3r0 G Za\ + . . . + Zaz and this means that /5r0 G («i, . . . , az)W, which 
in turn means that /3r0 has weight less than 4. Thus 0 < ht(/3ri) < ht(/3) for 
some i G L and we complete our proof by induction. 

The proof given in Lemma 10 can be used without change to show that 
[a0v*i, • , fi)\ = \(ri, • • • , rl)\/\(r2, . . . , r ,) | . 

PROPOSITION 8. If E is of type BCU2 or Ai>2, then 

\AW\ = 2 ^ ^ ^ ! + \(r1,...,rl)\/\(ri,...,rl)\. 

We are now ready for a case by case discussion of the 2-tiered Lie algebras. 
(1) Ci,2(fx). Consider 11' = {«i, . . . , a z _i} . It is an easy matter to check 

that ai + • . • + <xi-i + £ + oci is not a root for any i = 1 , . . . , I — 1. For 
example, if a± + 2a2 + . . . + az_i + £ is a root, we find, by applying 
rjr,_i . . . r3r0> that 

ao + «1 + 2^2 + 2a3 + . . . + 2ai-i + az + £ = a2 — <*i + 2£ 

is a root. This means that a2 — ai is a root, which is false. 
By the corollary of Lemma 7, [ei*/i], . . . , [ez_i*/z_i] are linearly independent, 

where e* is a non-zero element of Eai+^, i = 1, . . . , / — 1. Hence 
dim £ j ^ / - 1. On the other hand, since a< + £ is a root if and only if 
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i G {0, 1, . . . , / - 1}, we see that [e0*f0], [ei*fi], . . • , [*I-I*/J-I] span £{, so 
that dim E^ g /. We now show that [e0*/o] and [e2*f2] are linearly dependent. 
Since a0 + a2 + £ = a ^ z - i . . . rzr\r2r^ it is a root. Let & be a non-zero element 
of Eao+a2+$. 2a0 + «2 + £ and a0 + 2a2 + £ are of weight 5 and thus are not 
roots. This means that [be0] = 0 = [be2]. By Lemma 2, [bf0] ^ 0 and [bf2] 9^ 0. 
Put e0* = [6/2] and e2* = [bfQ]. We see immediately that [e2*f2] = [e0*/o] 
which is what we wanted. 

Using Proposition 7, we have: 

dim CZ,2(M) = dim d + |W(C,) | / |T^Ui) X W(C^2)\ + (/ - 1) 

= (2/ - 1 ) ( 2 / + 1). 

The only split simple Lie algebra of rank 2/ — 1 and dimension (2/ — 1) (2/ + 1) 

(2) B 1,2(11,). In this case, at + £ is a root if and only if i = 0 or I. Conse­
quently, dim E^ S 2. Amazing as it may seem, dim E^ = 1, the argument 
being essentially the same as in (1). The dimension of Bu2(ix) may then be 
computed and it is 2/2 + 3/ + 1. Thus B 1,2(11) is of type Di+i. 

(3) BCi,2(ix). Put II' = {«i, . . . ,o:z_i}. Apply the corollary of Lemma 7 
to conclude that dim E^ ^ / — 1. On the other hand dim E^ ^ /. From 
dimBC,l2(/x) = d i m i J + d i m E ^ + 2(dimJ3z - Z) + |T^(5,) | / |TT(BW ) | we 
obtain: 

U/2 + 4/ - 1 with rank 2/ - 1 or 
d i m BC 1,2(11) = ^ 

(4/2 + 4/ with rank 2/. 
It is not hard to see that 2/ — 1 can only divide 4/2 + 4/ — 1 if / = 1 and hence 
the only possibility is the second. Thus BCI,2(IJL) is of type A2h 

(4) Ai,2(ii). A1,20) is of type A2. 
(5) E4,2(M)« One checks that E4 ( 2(M) is of rank 6 and dimension 78. Un­

fortunately, B&1 CO, and E6 all have dimension 78. To resolve this difficulty 
one has to take a little less superficial approach to the structure of the 2-tiered 
algebras. We hope soon to publish some results in this direction which show 
among other things that E4)2 is of type E 6 . f t t 

THEOREM 4. Let E be the Euclidean Lie algebra whose diagram is X h2. For 
fjL 6 <£ — {0}, Xi,2(n) is finite-dimensional central simple of type given by: 

X i,2 C\,2 Bi,2 BCi,2 Ai,2 

Type A 21-1 Dl+1 A21 A2 

tttAdded in proof. We have recently shown (Robert V. Moody, Simple quotients of Euclidean 
Lie algebras, Can. J. Math., to appear) that if Xi,2 is a 2-tiered algebra, then the shift map can 
be chosen so that Xi , 2 W splits over <ï>(vV) for all /x £ $ — {0}, and Xi,2(v) ^ Xi,2(v) if and 
only if \xv~x is a square. The type of the split algebra ^ ( v V ) ® XI, 2(M) is given by the table of 
Theorem 4 for Xij2 9e Fi)2, while the type of 3>(vV) ® ^4,2(M) is LQ. 
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