EUCLIDEAN LIE ALGEBRAS

ROBERT V. MOODY

Introduction. Our aim in this paper is to study a certain class of Lie
algebras which arose naturally in (4). In (4), we showed that beginning with
an indecomposable symmetrizable generalized Cartan matrix (4 ;) and a field
® of characteristic zero, we could construct a Lie algebra E((4,;)) over &
patterned on the finite-dimensional split simple Lie algebras. We were able
to show that E((4;)) is simple providing that (4 ;;) does not fall in the list
given in (4, Table). We did not prove the converse, however.

The diagrams of the table of (4) appear in Table 2. Call the matrices that
they represent Fuclidean matrices and their corresponding algebras Fuclidean
Lie algebras. Our first objective is to show that Euclidean Lie algebras are
not simple. This involves a close look at the root systems of Euclidean Lie
algebras (§ 1) and the construction (§ 2) of a certain module endomorphism
of E (E treated as an E-module in the customary way). Along the way we
discover that the set of null roots Z is a group and the subgroup Z* of (4, § 6)
is of index 1, 2, or 3. We call [Z:Z*] the tier number, 7, of our Lie algebra.

Our second objective is to describe certain simple epimorphic images of a
Euclidean Lie algebra. By the results of (4, § 7), every proper ideal of E is of
finite codimension. For each u € ® — {0} there is an ideal of minimal co-
dimension and the quotient, E(u), of E by this ideal is a finite-dimensional
central simple Lie algebra over ®. For the 1-tiered algebras we have:

(i) E(u) ~E() forall u,» € & — {0},
(ii) E ~ ®(x) Qs E(1), where ®(x) is the associative algebra of finite
Laurent series in an indeterminate x over ®, and

(1ii) E(1) is split.

In § 4 we show that (i), and hence (ii), cannot hold in general for 2-tiered
algebras. Indeed the identity of the E(u)s when E is 2-tiered or 3-tiered is
rather obscure and our efforts are concentrated in working out the type of
each E(u). The procedure is essentially to calculate dim E(u) (which is
independent of x) and, although this is not very sophisticated, it does involve
securing some further results on the root systems which are bound to be
important in any further investigations. Except for F4 », which does not lend
itself to this procedure, we can say that for any u, » € ® — {0}, E(x) and E(»)
are of the same type, this type being given in Table 2.
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Notation and conventions. The notation used here agrees with that of (4)
as closely as possible. In particular, we denote {1,...,7} by L, {0, 1, ..., 1}
by L*, the integers by Z, and the rationals by Q. We will fix an arbitrary field ®
of characteristic zero from the outset and all algebras will be assumed to be
over ® unless explicitly stated otherwise. For each Euclidean matrix X, , we
will assume that E(X;,,) is a copy of the Euclidean Lie algebra associated with
X :,, fixed once and for all. Often we will simply write X, , for E(X,,).

Remark. The use of the adjective ‘‘Euclidean’ in the present context comes
from the fact that the Weyl group of a Euclidean Lie algebra is isomorphic to
the Coxeter group with corresponding diagram (see 1) which in turn is the
group generated by the reflections in the sides of a Euclidean simplex. In this
terminology, the classical simple Lie algebras would be called spherical Lie
algebras.

1. Root systems of Euclidean matrices. We recall a few definitions
from (4). A generalized Cartan matrix is a square integral matrix (4,;),
i, j, € L, with the properties 4;; = 2forallt € L, 4,; =0ifs# 4, A4,;, =0
if and only if 4;; = 0. A Euclidean matrix is a singular generalized Cartan
matrix with the property that removal of any row and the corresponding
column leaves a (not necessarily indecomposable) Cartan matrix.

Let (4:;), 4,7 € L* be a Euclidean matrix. It is obvious from the diagrams
(Table 2) that (4,;) is symmetrizable, i.e., there are non-zero rational numbers
€0, €1y - - ., egsuch that 4 ,5¢; = A €5, 1,7 € L*. Since the diagram is connected,
the ¢; are uniquely determined up to a scalar factor. Let us scale them so that

(a) 2e, is a positive integer for each 7,

(b) (2€q,...,2¢,) = 1.

Put a;; = A€, Note that a;; < 0 if 7 > j. We are going to show that (a;;)
is positive-semidefinite of rank /.

We can suppose that the rows and columns of (4;;) are numbered so that
(44,), 1,7 > 0, is indecomposable. Then (4 ;;), 7,7 > 0, is an indecomposable
Cartan matrix and (a;;), 4,7 > 0, is connected in the sense that for any 7 € L
thereisa j € L — {4} such that a;; # 0.

We have

1 Gy 204 _ 24y T

W A e Aje ay’ A

(@), 1,7 > 0, is, up to a scalar factor, the unique symmetric matrix satisfying
equations (1), ¢,7 € L. Now, since (4;), ¢,j > 0, is an indecomposable
Cartan matrix, there is a fundamental system of roots 8i, ..., 8; for some
simple Lie algebra B such that

4. = 2k(Bi By)
Y k(BB

where k is the Killing form on B. Thus, k(a;, @;) = paqj, 1, j € L, for some real
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number g, and since k (a1, a1) and aq; are positive, w > 0. Thus (ay;), 1,7 > 0,
is positive-definite.

Let 4y = Qao @ ... ® Qa;, where aq, . . ., a; are the fundamental roots of
E = E((44)) (or L = L((A44))), and Q is identified with the prime subfield
of ®. Define a bilinear form ¢ on 4, by a bilinear extension of o (a;, @;) = ayj,
1,7 € L* (see 4, Theorem 3). (4,;), and hence (a,;), is singular and thus 4,
has a radical N, # (0) with respect to ¢. Since o, restricted to

Qal @~ .. @Qalv
is positive-definite, ¢ is positive semi-definite and dim Ny = 1. Thus (a,,) is
positive semi-definite of rank /. We will often use ( , ) instead of o( , ).
Each element of 4, induces a linear functional on the subalgebra H of E.
In fact, if 8 = X jepr Ny, then

B(h)) = Y, NAy; forallj € L*
i

However,
1 1
Z Nd oy = —Z Nai; = —a(B, ;).
i €4 €

Thus 8(k;) = 0if and only if ¢(8,a;) = 0, and B|H = 0 (i.e., 8 is null on H)
if and only if 8 € N,. If 8 € 4y and 7; is one of the fundamental reflections of
the Weyl group, W, then 87; = 8 — 8(h;)a;. Thus 8 is fixed by W if and only if
B8 is null on H. Note also that while every element of N, is isotropic, it is
conversely true that if 8 € 4, is isotropic, then 8 € N,.

Let £ be a vector spanning No. £ = Y s+ £:a; and clearly & # 0. We can
suppose that £ > 0. Following Coxeter (1, p. 175), we have

0= U(E, 5) = Z £:&,a45 = Z Ezﬂii + ; §i&,a = Zz: Sia“ + ; ISngjlaij
1,7 [ %7 =]

(since a;; = 0 if 7 # 7). Thus X |¢]a; € Ny, whence 3 j|¢ia; = 2 &y and
each £, = 0. A minor modification of (4, Lemma 10) yields &, > 0 for all
1 € L*. Scale ¢ so that each £; is a positive integer and (&, ..., &) = 1.
Summing up, we have the following result.

LemmA 1. If (4;) is @ Euclidean matrix and (a.;) = (A je;), where the e; are
defined as above, then:
(1) (aq)) is positive semi-definite of rank I;
(ii) the bilinear form o defined on Ay = Qay @ ... @ Qa, by alai, ay) = ayy
possesses a 1-dimensional radical No;
(iii) for B € Ao, the following are equivalent:
(@) B € Ny,
(b) B 2s null on H,
(c) B s isotropic,
(d) B s fixed by the Weyl group;
(iv) No = Q¢, where £ = 3 e £y can be chosen so that the &; are positive
integers and (&, ..., &) = L.
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In (4), A is carelessly used both as the root system for L and for E. We
correct this by denoting the root system of L by T and that of E by A. Thus
B € Aisin T if and only if Ls 5% (0) and 8 € A if and only if the image of Lg
in E is not zero. T is closed under the action of W, and hence the Weyl roots
Ay = {o, ..., a;} W are contained in T. Let

Tz = {8 € T|Lg C R = radical of L}.

Since RO(w) = Rforallw € Wand Lgf(w) = Lg,forall 3 € T (4, Theorem 2),
we have TgW = Tg. Thus AW = (T — Y)W = A and Ay C A.

In Table 2, the ¢s for the Euclidean matrices are given. Note particularly
that with our choice of subscripts, £ = 1 (also (4i), 4,7 > 0, is indecompos-
able). An immediate and important consequence of £ = 1 is that the set Z
of null roots of E is a subset of Z¢.

ProposiTioN 1. (i) If B = X icnx Moy, Ny € Q, and N; = 0 for all 1, and if
B8 ¢ N, then there is a j € L* such that 8(h;) > 0;

(i1) A = Z\J Ay (disjoint union);

(iii) dimEg = 148 € A — Z.

Proof. (i) If B(k;) < 0forall j € L*, then (8, @;) = 0 for all j € L* Thus
o(B,8) < 0and B € N,, contrary to hypothesis. (ii) Since W is a subgroup of
the group of isometries of 4, relative to ¢, and Ay = {ay, ..., a;} W, we have
Z M Ay = ¢. We see that A = Z 4+ Ay as soon as we can show that every
positive root is in Z + Ay. This is clear for the roots of height 1, (a, . . ., a;).
If B is of heights (> 1) and 8 ¢ Z, then by (i) there is a j such that 8(;) > 0.
Thus Br; = B — B(h;)a; is a non-null root of height less than s. If it were not
positive, we would have 8 € Za,, whence 8 = a; and ht 8 = 1 < 's. Thus Br;
is positive. The proof is completed by using induction on the height.
(iii) See (4, Theorem 2) for the proof.

The argument of (ii) is equally valid for T. A special consequence is the
following result.

Prorosition 2. If L = L((A4,,)) where (4:;) is Euclidean, then the radical
R of L coincides with the centre of L.

Proof. By (4, Proposition 8 (ii)), the centre C of L is contained in R. Now
let « £ R be homogeneous. By (4, Proposition 8 (i)), a € Lg for some 8 ¢ Ay,
i.e., for some null root 8. Since for ¢ € L*, 8 & «; is not null, and since R is an
ideal, we have [ae;] = 0 = [uf;],7 € L*. Thusa € C. Since R is a homogeneous
ideal, R C C.

Fori € L*let K, be the 3-dimensional split simple algebra ®e; + ®h; + ®f,.

LevmyMA 2. If B 4s @ non-null root and a (# 0) is in Eg, then the K -module M
generated by a is irreducible and there are non-negative numbers u, d such that:

(i) B(hi) =d —u,

(ii) B8+ way, B+ (u — Day, ..., 8 — da; are roots.
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Proof. If M is shown to be irreducible, then (i) and (ii) are well-known
consequences. By Proposition 1, 8 € Ay and dim Eg = 1. Without loss of
generality, 8 > 0. Let U, be the universal enveloping algebra of K; and let it
act on E via the adjoint representation. U; = B, U, U;*, where B,;, U,~, and
Uit are the subalgebras of U; generated by %, f;, and e; respectively.
aB, U~ C ®f, + ®h; + X o<j<ns s £(F), where E(j) is the subspace of elements
of degree j in the coarse grading of E. Thus dim aB,;U, is finite. From the
local nilpotency of ad e; (4, Proposition 3), we have dim aB,;U,;~U,* finite, i.e.,
M is of finite dimension. Thus M = >-?_; @ M, where the M ; are irreducible
K ;-modules.a = >_¥_; a;, where eacha; € M. Since [ah;] = B(h;)a, we see that
lah;] = B(h;)a; However, M C 3 ;- _ o Egire; and hence the only non-zero
elements b € M such that [bk;] = B(h;)b are the elements of FEs. Since
dim Eg = 1, we must have p = 1 and M is irreducible.

Lemma 3. (i) If for some j € L* and some k € Z we have a; + k& € A, then
a; + ZkE C A.

(i) If a; + k& € A and vertices © and j of the diagram are joined in any of the
ways shown, then a; + k& € A,

Proof. (i) a; + k& € A — Z and hence thereisan s ¢ L* and aw € T such
that aw = a; + kt. Thus «; + ké = (—a; + kE)r; = —awr, € A and
(i + kt)w = a; + kE + kE = a; + 2k¢ € A. Consequently, a; + k¢ & A =
a; + 2kE € A. Apply this for j replaced by 2 and we have a; + 2k¢ € A, so that
(a; + 2kE)w = a; + 3kE € A, In this fashion we see that a; + Nk& C A.
However, a; + nkt € A= —a; — nkt € A= (—a; — nkf)r; = a; — nki € A,
Thus a; + ZkE C A.

(i1) The hypotheses imply that [4;] = |4 ;4| and also that not both 4 ;; and
Ay are —2, Thus 4;;, = —1. (a; + k&) (h;) = 4;; < 0 and by Lemma 2,
a; + a; + k& € A.On theotherhand, (a; +a; + k8)(h) =2+ 4;,,=1>0
and a; + a; + k¢ ¢ Z, hence by Lemma 2 again, a; + k¢ € A,

The weight of a root B is defined to be o(B,8). From 4 ;0(a;, a;) =
A o (ay, a;) it is easily seen that if 7 and j are joined by s lines and an arrow-
head from 7 to j, then the weight of a; is s times the weight of «;.

By inspecting the diagrams in Table 2 and using Lemma 3 (ii), we see that
with the possible exceptions of C;,1 and 41,1, if a; + s¢ is a root where «; has
maximal weight amongst the fundamental roots, then a; 4+ s¢ is a root for all
7 € L* (and hence 8 + s¢ is a root whenever 8 is a root). Actually, C;,; and
A1,1 are not exceptions, as can be seen directly from the symmetry of their
diagrams. The calculations (a) of Table 1 show that if «; is a fundamental root
of maximal weight for the Lie algebra X, ,, then a; + 7¢ is also a root. Calcu-
lation (c) shows that, for the cases when» > 1,a; + téisnotaroot (1 <t <7r)
by deriving an evidently impossible root from the assumption that it is.
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Calculation (b) shows that there are some j € L* such that @, + £ is a root.

Our choice of aj is characterized up to symmetries of the diagram by:

(1) removal of vertex 0 does not disconnect the diagram,

(2) 50 = 11

(8) (if necessary) ag + £ is a root.
(3) is used only when (1) and (2) fail to characterize a fundamental root (up to
symmetries of the diagram).

TABLE 1
Ay (@) ourars...rr0 = a0 + &
B (@) ourors...riri_1...730r) = @o + £
Ci2 (@) awris1...rararererirs. . 1y = a; + 2¢
(b) arirs...rwia ... v = a0 + £
) (ar+ Eriricr...rsrrs = ap — as
Cit (a) oarimi...7r0 =ao+ £
B (@) ourorers...rri—y. .. Fary = a1 + 2§
(b) ariaria...ri0 = a0+ £
(C) (a;+£)71...71=a0—al
BC[_z (a) (778 TR 41 4 S RPN 4} =ao+2£
(b) OL17’07'2...1'17‘1_1...1’1=0t1+£
() (a0 + Erer1... .71 = 2a1
Dl,l (a) oret3 . o 12 . . . V2V = Qo + E
Eg @)  aarsrsrarsrerarsrsrarire = ao + &
Erq (@)  autars. .. rrsrarstsrarerstsrar vy = oo + £
Es 1 (@) aurars. .. PePsTArIrSYersYer arsTIVSY SV 4V SV P TV sV AT s¥eF 170 = ao + £
Fs; (@)  aurarsrarsrsrariro = ao + &
F4,2 (Zl) Qal gral (T ot 3¥a¥ 17 3V2¥ 374 = o4 —l-— 2£
(b)  aurarsrarsrsrarive = ao + £
(©)  (as + E)rarsreriro = as + a2 — ao
Ga,1 (@) aarriro = ao + &
Ga,3 @)  aorirorarire = o + 3£
(b)  awrriro = a0 + £
(©) (2t Erri =as— o
(e 4 28)rer170 = a2 + a1 — a0
A (@) oaro = a0+ &
A (@)  ariro = ao + 2¢
(b) arery = oy + £
©) (a0 B)ro = 20
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Parts (ii) and (iii) of the following theorem have now been established.

TaroreMm 1. (1) Z = Z¢.

(1) There is a positive integer v with the property that A + ZrE = A. The
minimum value for v 1s 1, 2, or 3. r 1s called the tier number.

(ii1) For some tv € L*, a; + Z& C A.

(iv) The number of equivalence classes of A modulo Zr¢ is finite.

Proof. (i) We know that Z € Zt. By (iii), there exists a j such that
a; 4+ k& € A for all & € Z. Since (a; + k&) (h;) = 2, Lemma 2 shows that
ki € A. Thus Z¢ C Z.

(iv) It will be sufficient to show that there are only finitely many classes of
A modulo Z¢. Since A = Z\U {ay, ..., a;} W, each element of A has weight
equal to 0, 1, 2, 3, or 4. Any two elements in the same class have the same
weight and there is precisely one representative for each class of A in
Zoay @ ... @ Za,. Since o is positive-definite on the lattice Za; @ ... @ Za,,
the number of elements of weight 0, 1, 2, 3, and 4 in the lattice is finite. Thus
the number of classes is finite.

2. Shift mappings. In (4) we have seen that if E = E((A4;,)) is not simple,
then the set Z of null roots of E is not trivial. Furthermore, there is a non-
trivial cyclic group Z* of roots in Z such that for each 8 € Z* there is a
homogeneous bijective module endomorphism of degree 8 of E (E treated as an
E-module in the customary way). This mapping is unique (for each 8) up to a
scalar factor. Clearly a necessary condition for aroot 8tobein Z*isfB + A = A.

Consider E = E((4;;)) when (4;;) is Euclidean. We have Z = Z¢. How-
ever £ + A & Ain general and the first candidate for an element of Z* amongst
the positive rootsis { = rf (r is the tier number). Suppose that we can establish
a bijective endomorphism ’: E — E of degree ¢ such that [ab]’ = [a'D] for all
a,b € E. Then for ¢ € E and ¢ € Z we define ¢ by ¢©® = q, a¥ = (al*D)’
for 2 > 0, ¢V = pre-image of ¢ under ’, a©=? = (a-HD)=D for § < —1.
E is not simple (for example the smallest ideal containing ko + %o’ is proper)
and hence the results of (4, §§ 6, 7) apply. We recall these results briefly:
Z* = [¢] and the ideal structure of E can be described in terms of the associ-
ative algebra ®(x) which is the algebra generated by the algebra of polynomials,
®[x], in an indeterminate x, and x~!. Let U be the universal enveloping algebra
of E. Each ideal of E has the form {(¢) = aU, where a € S = Y. ;72__ ®hy?
and ¢ is unique to within scalar multiples. We make .S into an associative
algebra by identifying it with ®{x) via > NP < XNl If we let (a) denote
the (associative) ideal in .S generated by a, then {(a) M S = (&) and the corre-
spondence {(a) <> (a) is an isomorphism between the lattices of E and S.
Finally, every non-zero ideal of E is of finite codimension.

Our construction of / rests on a series of straightforward but tedious calcu-
lations.
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Notation. For each ¢ € L* we will choose, by a method described below, an
element e,” € E,4¢ k' will denote [e,'f,] and f; will denote [%,/f.].

Choose ¢, to be any non-zero element of E,,. For convenience in notation
suppose that Ag # 0. Then a¢ + a1, and hence ay + a1 + ¢, is a root. If
ag+ a1+ ¢ ¢ Z we have dim Eggro4r = 1. If g + a1 + ¢ € Z, E is the Lie
algebra 41,1 and Eqgta,+¢ 18 spanned by [[[ece1]ei]eo] and [[[eoe1]eo]e:] which are
equal, thus again dim E,gje,+¢r = 1. With this and Lemma 2, [E,.¢, €1] =
Eegtarts = [Earts, €0], whence Eooip = [[e0Eayi¢]fi] = [eo[Earte, f1]]. Define ey’
to be the unique element of E, ¢ such that [eo[e)f1]] = ao(h1)ey, i.e.,

[eokll] = [eolhl].

It is now easily checked that [a'0] = [ad’] for a,b € {e;, by, fi| 1 = 1, 2}.
For example, [ey'e1] = [eoer’] follows from [Eagiar+sr f1] = Eaere and [[eder] f1] =
leo'1] = [eohi'] = [esled'f1]] = [[eoer']f1].

The equation

(%) [a'd] = [ab'] fora,b € {ey, by fi|i =7, k)

holds independently of the choice of ¢,/ and ¢;” if j and %k are unjoined vertices
of the diagram. Thus, if the diagram has no loops, the procedure by which we
obtained e;’ from ey’ can be repeated until () holds for all 7, & € L*. The case
of 4,1 must be considered separately.

In this case, having chosen ¢y’, non-zero, in Eqy1¢, we let the automorphism 7
of E defined by e; — €1, fi — fiy1, b: — ki1 (indices taken modulo I + 1)

define e¢;/. Namely ¢,/ = ¢)/’r%, ¢ =1, ..., I. () will hold for all ;7 and & if
[eo’er] = [eoer’]. To be specific, put ey’ = [eo, €1,...,€;e0].T € #0, for
Lemma 2 shows that [es, ..., e, €] # 0 whence
leo’fo]l = —Auoles, . .., e, 0] # 0.
Now
[eOell] = [[6061]1 €2y ...,€y €, 61] - [61, €2y .00y [elr 30]7 €o, 61]
- [ely €2y . . .y €y €, [eleO]]'

The first term on the right-hand side of this equation is [ey’e;]. Let b be the
remaining pair of terms. We have b € E,a14¢, and in order to show that
b = 0, it suffices to show that b ad fo = 0. This is easily checked.

e/, hi, f/, 1 € L¥ are now defined in all cases so that (x) holds. The next
step is the following result.

LEMMA 4. / can be extended to a linear mapping of E into E in such a way that if
gm LRI ,gi. E {eiyhi»fi I'L E L*}: then [giu LRI rgij/r (U] !gin] = [gils e !gis]/ =
[gily “ ey giklv ceey gis]for (J/I’Ly], k E {1’ ce ey S}.

tlay, . .., ax) denotes [[. .. [[aias]as] . . . Jak].
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Proof. (i) Suppose that g, ..., gi, € {e;| ¢ € L*}. We establish
[eily"-reij,,-"veis] = [eily"-yeik11'~'7eis

by induction on s. If the result holds at s — 1 (=2), then for each ¢ € L*
we have:

[eil, [P ,eij', e ey e,-s] adft = Z [61‘1» ooy [e,-uf,], s ey eij,, oy e,;,]

uF g,k
+ [eilr LI} [eij,fl]v LR eis] + [ein ceey eij’y ] [eikfl]y e 7eis]1
and a similar expression results for [e,, ..., €4/, . . ., €;,] ad f;. The summation

terms are clearly equal by the induction hypothesis and a straightforward
computation, together with the induction hypothesis, shows that

iy - ooy legfedy oo oven] = lew, ..oy legfd, oo oven!s ooy el
and [eq, ..., ey ooy leafd, o oy e] = lea, ooy ey oo, ledfdd, o) eq ]
The result follows by (4, Proposition 9).

If each g;, € {f:| < € L*}, we obtain the corresponding result by a similar
computation. If each g, € {h; |4 € L*}, the result is trivial.

(ii) Define ’ from E into itself by [gs, ..., €)' = [giry -5 €55 -+ -y L)
whenever the gs are all es, all ks, or all fs, and by linear extension. This mapping
is well-defined: Suppose that @ = 32 X\y,....5[84, - - -, g1,] = 0, where the gs
in each product are all es, all ks, or all fs. We can suppose that each product in
the sum is of the same type, for example, all es. Then for any k£ € L*, we have
0 = [aei'] = Zhis,illen, .o henle’] = 2N, allen’s oo enled] = [dle].
By (4, Proposition 9), @’ = 0, as required. The other cases are similar.

(iii) We have:
[[ein ey eis]hj,] = [[eily ce ey eis],h’j] = [[eily e ey eis] hj],y
lew, ...y ei,lfi] = llew, ..., e, )" fil = llew, ..., e lfil,

and the corresponding equations hold when the es and fs are interchanged.
(iv) The general case. We wish to show that [gs,..., g/ ..., 2] =

[gilr N ) gia], = [g‘in ey gik,r ce ey gia]! Where eaCh gip E {eiy hiyfi l ’L 6 L*}
This is true when s = 1, 2. Assume thatitis trueats — 1 = 2.

(g - iamn] € B
for some root 8. Suppose that 8 > 0. Then
(i) - o) iamn] = D Nl o e,
and
[N grvenlen, -y end)s ga] = [0, alen, -y en]), ga)

1seees ju[e,h’ LI} eju])r gis,]-

I
™
“>’

The other cases are similar.
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It is now easily checked that [ab]’ = [a'd] = [ab'] for all a, b € E. That ' is
bijective follows from the fact that ’ is homogeneous and that if M is the multi-
plication algebra of E and ¢ € E is homogeneous and not zero, then M = E.
Thus E' = (eeM)' = e/ M = E, and if ¢ € E is homogeneous and a’ = 0,
then (0) = ¢’M = (a¢M)’ and hence ¢ must be zero.

3. 1-tiered Euclidean Lie algebras. From the results of § 2 and (4, § 7),
we know that the ideal lattice of a Euclidean Lie algebra E is isomorphic to
that of the associative algebra

d(x) = {f Aaxt

i=—c

almost all A; = 0}

with its usual multiplication. An obvious method for constructing a Lie
algebra with this ideal lattice is to take a central simple Lie algebra, B, over
® and form ®(x) ®s B with the standard multiplication.{} In this section we
establish that the 1-tiered algebras have this form. Later (Theorem 3) we will
show that this is not in general true for the 2-tiered algebras.

Let E = E((4,;)) be a Euclidean Lie algebra and let p € & — {0}. The
ideal of E corresponding to the ideal of ®{x) generated by x — u is maximal
and thus the quotient, E(u), of E by this ideal is simple. The elements of E (u)
are the classes formed by identification of «¢’ with pa for all ¢« € E. By
(4, Theorem 6), E(u) is of finite dimension.

ProprosiTION 3. If (4 ;) is @ Euclidean malrix, and if F is a Lie algebra over ®
with generators E, ..., Ey Hy, ..., Hy Fo, ..., F,satisfying the relations

1) [EH,;) = Ay,E,;, [FH)) = —A,F, [EF;) = 6,H,, [H:H;] = 0 for all
i and j and E;(ad E;)~4iit1 = 0, F,(ad F,)~4i*1 = 0 for all © and j with
1 # j; and if in addition,

(2) F has a trivial centre and

(8) F is of infinite dimension,
then F~ E((44,)).

Proof. There is clearly an epimorphism of L((4,,)) onto F. Since the
radical of L isits centre, thereis an induced epimorphism from E((4 ;,)) onto F.
Since every proper ideal of E is of finite codimension, the mapping must be a
monomorphism.

TaeEOREM 2. If E = E((4.;)) is a l-tiered Euclidean Lie algebra, then
E~ ®(x) Qs E(1).

Note. The 1 is a matter of convenience. It follows from this theorem that
E(u) ~E(1) forall x € & — {0}.

Proof. Inspection of the calculations (a) for the 1-tiered cases (Table 1)
shows that they have the form a7y ...7,70 = ag + £ where 7, 4, ..., @1

o) @ a, ¢(x) @ b] = p(x)g(x) @ labdl.
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are all different from 0. As a matter of convenience, we will suppose that j = /
in what follows. Thusa7y; . . . 74, = — ao + £, whenceayry, ... 7y = — a; + &

Consider the Lie algebra K = ®{x) ®s E(1). We will identify E(1) with
the subalgebra of elements 1 ® b, b € E(1). For a € E let @ be its canonical
image in E(1). The elements Eq = x ® &, E1=¢&,..., E; =&, Hy = %o,
Hy=hy...,H =hy,and Fo = x! ®fo, F1=f1,..., F, = f, satisfy the
relations (1) of Proposition 3 and generate a certain subalgebra F of K. If we
can show that F = K, then it will be clear that F also satisfies conditions (2)
and (3) of the proposition, and in consequence, K = F~ E,

Let B be a non-null root and suppose that a € Eg5 — {0}. Let ¢ € L*.
By Lemma 2, 8r; = 8 — B(hi)a; is a root and by the theory of irreducible
modules over a split 3-dimensional simple algebra, we have:

a(ad f)P"9 € Egy — {0} if B(h:) 2 O,
a(ad e;)!B®dl ¢ Eg.. — {0} if B(ky) < O.
It follows that
eo(ad g4,)120®iv1 (ad gq,) 1 @rip®il | (ad g,,)1@0Tir TRy
is a non-zero element of E_,,1¢, where g;; = ey; (g;; = f4;) for
(ag?iy - 7452,)(Re;) <O (20).
Thus
(x ® &) (ad go)'=o®D! ... (ad gyp)leo i 700w = & @af ) = x @ af,

for some o € & — {0}. This shows that x ® f, € F. Successive applications of
ad %, show that x ® %, and x ® &, € F. One then obtains readily that x ® 7,
¥ ® fi, and x ® &;, ¢ € L, are in F. (The fact that the vertex 0 is a terminal
vertex is used here.) Then [[x ® &, x ® &,], f;] = Bx2 ® &, B8 € & — {0} if
vertex j is joined to vertex 0, so that x2 ® &, ¥ ® %o, and fo are in F. Repetition
of this performance demonstrates that for all i € L* x* ® fi, «* @ &; € F,
n =0, and ¥* ®& € F, n > 0. (At this point we have not shown that
€ € F~) B

If we begin with f, instead of e, we find that x* @&, x* @ %, € F, n £ 0,
and x” ® f, € F,n < 0. Thus F = K, as required.

It is interesting to note that when E is 1-tiered, E(1) ~ E((4 ;) :,j0) SO
that E(1) is the split simple Lie algebra over ® whose diagram is that of E with
vertex 0 removed. To show this isomorphism it is enough to show that &, %,
and f, are in the algebra F* generated by &;, %, fi ¢ € L. However, from
ary ...ty = —ag+ £ we have (—a; + £)7y ... 75, = ao. Thus

fl, (ad gik)|(—a[+f)(hik)[ . (ad gil)!((_al"‘E)”k'“’iz)(hil)|
is a non-zero element of E,,. Here again

gi; = €y (g4; = fu;) for (—may+ E)ry .o ri;0(hy;) <0 (20).
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Since none of the~numbers g - - -, 1118 0, we obtain & € F*. Likewise, fy € F*
whence [éofo] = J € F* and F* = E(l).

With the aid of the following proposition, we can obtain interpretations of
A1, B, Ci, and Dy as Lie algebras of linear transformations.

Let V be a vector space over ® of countably infinite dimension and let v,,
1 € Z, be a basis for V. Let S be the shift mapping defined by v,S = v, for all
1€ Zandlet I, = {T € Home(V, V) | ST!TS* = T}.

ProposITION 4. [; =~ ®{x) ® ®,;, where ®,1is the ring of | X I matrices over &.

Proof. Suppose that v,7 = 3 jez uiv; (ui; = 0 for all but a finite number of
thej € Z). Then T € Il if and Only if Mij = Mitkl,j+x1 for all & € Z. In view of
this, the matrix of 7" relative to the basis {v;} has the form:

Ay Ay 4. A3 A,
A_1 Ao Al A2 A3
Ay A, 4, 41 A,
A..g A_2 A__.l Ao Al
A_4 A_3 A—2 A—l AO

where 4, € &, and all but a finite number of them are zero. Define
w: [;— ®{x) ® &, by
THY>x® 4,
i€z

Clearly w is linear, one-to-one, and onto. One checks also that it preserves
multiplication.

Consider ®(x) ® &, with its usual Lie multiplication. For a Lie algebra K,
let D(K) represent its derived algebra. Clearly D (®(x) ® ®;) ~ &{x) ® D(®,),
whence we have the following result.

ProrosiTioN 5. D(I;) >~ A, 1,1.
Now let (, ) be a bilinear formon V; = &y, + ... 4+ ®v,_; and extend this
to a bilinear mapping of V into ®(x) by
(viS”, 7)]5”)[ = (vi, v,)x”‘”.

Let S; = {T € Hom(V,, V,;) | T is skew relative to (,) on V;} and S;* =
{T € Hom(V, V) | T is skew relative to (, ); on V}. Then S* ~ &(x) ® S,,
as is easily verified.

ProprosITION 6. Let (, ) be a non-degenerate skew-symmetric bilinear form or
a non-degenerate symmeiric bilinear form of maximal Witt index on V. Extend
it to V as above. Then in the skew case, S;* >~ Cy/2,1 and in the symmetric case,
S* >~ D1 0r Bo—12,1 depending on whether | is even or odd.
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4, 2-tiered and 3-tiered algebras.

(1) A non-isomorphism theorem. Let E be a Euclidean Lie algebra. The iso-
morphism of (4, § 7) between the ideal lattices of E and ®{x) maps the ideal
(F_o M) into the ideal (TF_oNx?) of ®(x). It is straightforward to show
that the centroid C of E is the subalgebra of Home (E, E) generated by the
shift mapping ’ and its inverse. Thus C can be identified with ®{(x), where the
action of x on E is given by ax = a’ for all ¢ € E. The centroid of

is then isomorphic to ®(x)/ (Z¥_o Aw?). In particular, E (1) is central simple for
all u € & — {0).
Fix a particular u € ® — {0}. Let ~ be the natural mapping of E onto E (u).

LeEMMA 5. Y728 Eit is a Cartan subalgebra of E(u). (r is the tier number.)

Proof. Let B = 3i28 E,;. We will show that B is its own normalizer and is
nilpotent. Suppose that [b, B] C B for some b € E. There is an element a € E
of the form > o<ns g<ntr ag, Where ag € Eg, such that @ = b. We must have
la, H] C 12 Ep + (B! — pho). This can only happen if a € Y128 Eq.
Thus b € B.

In showing that B is nilpotent we will rely on the fact that » = 1, 2, or 3.
If » = 1, then B = H, which is abelian. If » = 2 or 3, then H is in the centre of
B. If r = 2, B/H is abelian since [E;, E;] € E; = H. Thus B? = (0). If
r = 3,let B, = (E; + H)/Hand By = (Ey; + H)/H. Then B/H = B, + B,,
B;% C B,, B, C By, and [B1B:] = (0). It follows that (B; + B,)® = (0), so
that B* = (0).

Let ¥ be the algebraic closure of ®. Then ¥ ®¢ E(u) is a split finite-
dimensional simple Lie algebra and ¥ ® 372§ E is a Cartan subalgebra.
Thus E (u)¢ has dimension E (u) and rank Y723 dim E,;. Note that

dim E(w) = Y, dim Eg

0=htf<nt{

which is independent of p.

TurEOREM 3. Suppose that E is a Euclidean Lie algebra and dim E(u) = m,
dim H = I. Then E(u1) is not isomorphic to E (us) ¢f (u1'u2)™ ' is not a square.

Proof. Let B = {c;|j € @} be a basis for X o<np<niz Es, chosen so that
(i) each ¢, is in some root space Eg; and (ii) k1, ...,k € B. Let u1, u2 € ® — {0}
and suppose that E(u1) ~ E(us). Let D be a Lie algebra isomorphic to both
and for a € E let @ (@) be the image of ¢ in D under the composition of the
natural mapping of E onto E(u1) (E(ks)) and the given isomorphism of E (u1)
(E(uz)) onto D. {Z;} (j € @) and {¢,} (j € @) arebasesof D. We will derive the
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theorem by comparing the determinants of the Killing form on D computed
relative to these two bases and using the fact that they must differ by a factor
of a square.

For trpad¢;ad ¢; # 0, it is necessary that 8; + 8, = 0 or B8, 4+ B, = ¢,
and similarly for trp ad ¢; ad ¢,. Thus the matrix

M = (trD a.d 51ad Ej)i,]'eﬂ (M = trp (ad Ci ad Ej)i,jESZ)

decomposes into two diagonal blocks, one for the ks, M; (M), and one for the
remainder of the basis, M, (I>).

g (L) e o (7).

For ¢, € B,%,ad hyad iy = B,(h)B(h,)¢, and ¢, ad h;ad hy; = B,(h,)8,(h,)E,.
ThuSMI = Ml. FOrCi, Cj E B — {hl,. .. ,hl},trl) ad El ad Ejand trl)ad Eiadéj
are zero unless 8; + 8; = r£. Suppose that 8; + 8; = r£. For ¢ € Q,

’
coadc;ad¢; = Nece )
q J
(keq [Bk=Ba)

and hence ¢, ad ¢;ad ¢; = pu1(3_M&x) and ¢, ad ¢; ad ¢; = p2 (3 Milx). It follows
thattrad ¢;ad ¢; = ur'ws trad ¢;ad ¢;and My = py—'usM,. Therefore det M =
(w1 tue)™ 'det M and (u1~'we)™ ' must be a square.

To apply this theorem we require that ® contain non-squares and m — [ is
odd. The remainder of this section is devoted essentially to calculating m for
the various Euclidean Lie algebras. These values may be computed from
Table 2. Here one observes that m — [ can be odd (for example, in the case of
C,,» when [ is even) and this at least suffices to show that Theorem 2 is not
valid (in general) for the 2-tiered algebras. We conjecture that Theorem 2 is
false for all 2-tiered and 3-tiered algebras.

(2) Thetype of E(u). Assume throughout that a fixed p € & — {0} has been
chosen. We would like to know the type of E(u). This amounts to identifying
E(u)w, where ¥ is the algebraic closure of ®. The knowledge of the dimension
and rank of a split simple Lie algebra is often enough to determine its identity,
and we will find that this approach works on all the 2-tiered and 3-tiered
algebras except Fi. What we must do is calculate p = Y723 dim E,: and
dim E(u) for each 2-tiered and 3-tiered Euclidean Lie algebra.

Let Ay denote the set of equivalence classes of Ay modulo ¢ = rt.
dim E(u) = |Aw| + p, thus we must calculate |Ay| and p.

LeMMA 6. Let k€ {1,..., r — 1} and let Jy = {j € L*|a, + k& € A}.
For each j € J;. let e;* be a non-zero element of Eq;ine. Then {[e*f;]1]7 € T4}
spans Eyg.

Proof. Let a € Eye. a can be expressed in the form > ,er M\y[a,€:¢], where
M € @, 2(v) € L* and ¢, € Eypa,,- Since (kf — aim) (i) = —2,

Ay (ad 61(7))2 #= 0.
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Thus ay(ad €;))? = wyeyn*. The K;,-module generated by a, contains
[ase:0] and wyeiqy®*, and hence [wyeimn*, fim] is a non-zero multiple of [a,e:¢)].

Because of its exceptional nature, it is as well to dispose of G»,3 immediately.
It is easy to list all the roots and find that [Ay| = 24. dim H = 2,dim E; = 1
or 2, and dim E,; = 1 or2 by Lemma 6. Thus G2,3(u) is of dimension 28, 29, or
30 with a rank of 4, 5, or 6, respectively. The only possibility is dimension 28
and rank 4, and hence G; ;(u) is of type D..

From now on all our Euclidean Lie algebras will be assumed to be 2-tiered.

LEMMA 7. Let E be a 2-tiered Euclidean Lie algebra and let U = {ay, . . ., as}
be a connected subset of the fundamental roots with the property that a; + £ € A,
it =1,...,s. (The numbering on these roots is one of convenience and does not
necessarily cotncide with that of the diagram for E in Table 2.) Let L(I') be the
finite-dimensional Lie algebra generated by {e;, hy, fi|i=1,...,s} and let v
be the highest root of L(IU"). v+ & 4s a root. If E, ¢ is annihilated by
adey, ..., ad ey, then the L(XI")-module M generated by E,.: is isomorphic to
L(11"), considered as an L(Il")-module and dim(M M E;) = s.

Proof. Let a and a¢* be non-zero elements of E,,; and E,, respectively.
L(II') is, up to isomorphism, the only e-extreme irreducible L(II')-module
with vy as the highest weight. Since M is e-extreme and has the same highest
weight, there is an L(II')-module homomorphism ¢ of M onto L(II') which
takes ¢ onto «¢* and each weight space M_z,..; (which is a subspace of
Ey_suiairt) Onto Ey_sui0: (3, pp. 214-215). Now M M E; is clearly contained
in the space spanned by [e; *f1],..., [e; *fs], where the e;* are non-zero
elements of E,;. and on the other hand M M E; is mapped onto

®hy 4 ... + Dh,.

Thus ¢ | M M E; is injective.

Suppose that ¢ is not injective. Then there is a weight space M M Eg;
on which ¢ is not injective and it is clear that 8 ¢ Z¢ so that 8 + £ is not
isotropic. Thus M M Eg ¢ = Egyrand (Eg )¢ = (0). Suppose that 8 is chosen
of maximal height with this property. Let ¢ ad f;, ... ad f;, be a non-zero
element of Eg ¢ By assumption, ¢* ad f;, . ..ad f,, = 0. However,

b*=qa*adf,...adfy_, #0.

Let b = aadf; ...adf,_,. In the notation of Lemma 2, with the obvious
use of *, d — u = d* — u*. Now b(ad ¢;)? # 0 implies that d*(ad e;)? = 0
since ¢ is injective on any space F;: (M M when ht § > ht 8. This means that
u* Z u. Combining this with d* = 0 yields d = 0, which is a contradiction.
Thus M ~ L(II') as L(II')-modules.

CoROLLARY. Under the hypotheses of Lemma 7, and in the notation used in its
proof, le1 *f1l, . . ., les *fs] are linearly independent.
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In what follows, aq will always represent a fundamental root chosen in the
manner described in § 1. a; will be the unique fundamental root such that
(eo, 1) % 0. Unless otherwise indicated, the labels 2, ..., ! will be assigned
to the remaining vertices of the diagram in some way convenient to the dis-
cussion at hand. u will denote a fixed element of ® — {0}. The subgroup of W
generated by wi, ..., w; € W will be denoted by (wy, ..., wy). If X is any
finite-dimensional split semi-simple Lie algebra, its Weyl group will be denoted
by W(X). The Lie algebra L generated by {e;, k;, f; | # € L} will be considered
as both a subalgebra of E and E(u). Note that W(L) = (ry, ..., r;). The set of

non-zero roots, Aw(zy, of L is {ai, ..., a;)W(L). Let T be the set of roots
S ierr Nas € Ay with N = 1. Ay, Ay (py, and T represent the set of equivalence
classes of Ay, Ay, and T modulo 2¢ = ¢. |Aw| = |Aww| and |T| = |T|.

LEMMA 8. Ay = Ay \J T (disjoint union).

Proof. Let B € Ay and choose B = Y e Mia; so that the equivalence class
of Bmod ¢is Band \¢ = Oor 1. If A\ = 0, then a trivial induction on the height
of B shows that 8 € Awyy. If A\ = 1, then 8 € T. The union is clearly disjoint.

As a result, |Ay| = |Aww] + |T|, and since Ay (y is the root system of a
finite-dimensional split simple Lie algebra and |Aw(z] is well known, we need
only determine |T|.

We first derive a method of calculating |T'| when @, is a root of minimal
weight amongst the weights of the a;. This is applicable to By,s, C;,2, and Fy,s.
Slight modifications then allow us to deal with BC, ; and A1,».

LEMMA 9. If ag is of minimal weight, then T = aolry, ..., 7).

Proof. Clearly ay(ry,...,r;) & T'. To prove the reverse inclusion we use
induction on the height. If 8 € T has height 1, then 8 = «y, hence we can sup-
pose now that ht(8) < m implies that 8 € ao(ry, ..., 71), m > 1. Suppose

that 8 € T and ht(B) = m. 8 = ag + v1 = a¢ + 2 iex N, where K is a
subset of L and each \; > 0.

We know that there is an 7 € L* for which ht(87;) < ht(8), and if we can
choose 7 > 0, our proof will be complete. We assume therefore that ht(8r;) =
ht(8) if 2 > 0 and that ht(87,) < ht(8). From

Bro = —ao + v1 — 2((v1, @)/ (a0, a0))exo,

we have —1 = 2(y1, ao)/ (@, @0) = MA410, and consequently N\; = 1 and
Ao = —1. This rules out B .

There is no loss of generality in supposing that K = {1,2,...,s}, s = L
In what follows, we may rearrange the subscripts 2, . . ., s. However, we define
v, B =1,2,..., 5, by v& = Xr<izs \ia; bearing in mind that this is not

properly defined yet if 2 = 2. Put v, = 8.
Consider the following statements:
(@) N = 1;
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(b) eachof @y, . . ., ay_1 isorthogonal to each of a1, . . . , ay;

(€) App—1 = —1 = Ap_1s;

(d) (Vi-1,0x) = 0;

These are all true if & = 1. We will see that their truth up to and including %
implies their truth at & + 1, after a possible rearrangement of the indices
E+1,...,s.

Since v; has all positive coefficients in its expression in terms of the funda-
mental roots, there is an ¢ € L* such that (v, @;) > 0. This certainly does not
happen if 2 < k or 7 ¢ K, thus we know that 2 =7 =<s. If ¢ > k, then
Bya) = (ao+ ...+ a1+ v,a1) = (yr,2) >0 by (a) and (b). This
implies that ht(8r;) < ht(B), contrary to our assumption. Thus (v, az) > 0
and (yi, a;) = 0fork <7 = s. Now

0 = 2(710—11 ak)/(ak, ak) = 2(ak—1 + Yk ak)/(ak’ ak)
= Ak—],k + 2(716) ak)/(aky ak)!

whence 0 < 2(vg, ag)/ (o, ax) = — A1, = 1.

1= 20y, ar)/(ox, ax) = 2 + P2 Nid g

[N
»

This means that there is only one 7, £ < 7 =< s, such that 44 0. Call it
k + 1. Then Ayi1x = —1. We have M1 = 1. (b), (c), (d) are now seen to be

true at & 4+ 1 (note that A1 = —1 since ay has minimal weight and B,
has been ruled out, so that as we move away from ay, we always meet arrows
head on).

We conclude that8 = @y + @1 + ... + ayandfors,j € {1,..., s} wehave:

0 ifle—j>1,
—1 ifli—j] = 1.
Thus 87 = a¢ + a1y + ... + a,—; and ht(8r;) < ht(B), a contradiction.

For w € {ry, ..., r;) we will let /(w) denote the reduced length of w, i.e., the
minimum integer k such that w may be written in the form 7, ... 7y,

A” = A/1 =

LeMMA 10. If ao is of minimal weight, then

IT| = |[{rey ooy )/ [ry o ooy 7))

Proof. We know that T = a¢{ri,...,7;). Let V be the subgroup of
{r1, ..., 7;) leaving a fixed. Clearly V 2 (rs, ..., ), and we complete the
lemma by showing that we have equality here.

Use induction on thelength /(w) of w € V. Thus suppose that for some
m > 0 we have shown thatw € V and /(w) < m imply that w € {rs, ..., 7y),
and suppose now that w € V and I(w) = m. By a well-known result (see for
example 3, Theorem 8.2), there is an ¢ € L such that a;w € A~. This ¢ cannot
be 1, for then ayw = Y ;¢ Ny with each A; = 0 and

0> (o, 1) = (aow, arw) = (o, 2 seL Nixi) = 0.
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Thus a;w € A~ for some ¢ > 1. It follows (2, Lemma 2.2) that I(r w) < l(w).
However, r;w € V. By the induction assumption, r;w € (rs, ..., 7,), whence
w E <7’2,...,7’l>,

ProrosiTION 7. If E is a 2-tiered Euclidean Lie algebra, and o is of minimal
weight amongst the weights of the a;, 1 € L*, then

'EWI = IAW(L)I + l<7’1r ceey 7l>l/l<7’2» seey 7'l>|'

We now turn our attention to the remaining 2-tiered Lie algebras, BC, » and
A1,s. In both these cases, o is the unique fundamental root of maximum weight
and this weight is 4.

LeMMA 11. In the cases BC,,» and Ay,q, we have:

T=Apw + EYVar,...,r) (disjoint union).

Proof. It is clear that Ay + £ \J ao{ry, ..., 7;) C I'. The union is dis-
joint since the elements of Ay ;) + £ are of weight less than 4 whereas those of
ao{ry, . . ., ;) have weight equal to 4.

Let 8 € T and choose 8 so that 8 defines the equivalence class 8 and 8 € T.
If B has weight less than 4, then 8 € {ay, ..., a;} W, and since a; + k¢ is a

rootforallk € Z whens € L,8 — fisaroot. 8 — £ = 3 sa Nix; so that, asin
Lemma 8,3 — £ € Awpy. Thus B € Ay + & If 8 has weight 4, which is the
only other possibility, B8 € aoW. We must still show that 8 € a¢{ry, ..., 7).
If B8 has height 1, this is obvious. If 8 is of height greater than 1, there is an
72 € L* such that 0 < ht(B7;) < ht(B). If < = 0, we obtain a contradiction
since By € Zay + ...+ Za; and this means that Bry € {a, ..., a;)W, which
in turn means that 87, has weight less than 4. Thus 0 < ht(8r;) < ht(8) for
some ¢ € L and we complete our proof by induction.

The proof given in Lemma 10 can be used without change to show that

Ia0<1’1, c ooy 7’1>l = |<1’1, « ooy rl>|/[<f’2, ooy ’f’z)[.
ProposiTION 8. If E s of type BCy,2 or A1z, then

IZWI = 2IAW(L)I + |<7’1, e ey T'l>l/[<7’2, ce ey Tl>l.
We are now ready for acase by case discussion of the 2-tiered Lie algebras.
(1) Cy,2(n). Consider II” = {ay, ..., a;—1}. It is an easy matter to check
that ey + ... + a;-1 + £ + «; is not a root for any 2 =1,..., 1 — 1. For
example, if a1 + 200+ ...+ a;-1 4+ £ is a root, we find, by applying
ri—1...¥%s"o, that

ag+ay+ 200+ 203+ ... F 200t + E=ay — ay + 28

is a root. This means that as — «; is a root, which is false.

By thecorollary of Lemma 7, [e; *f1], . . . , [6;-1%f;—1] arelinearly independent,
where e;* is a non-zero element of FE,.: 7=1,...,1 — 1. Hence
dim E; = I — 1. On the other hand, since a; + ¢ is a root if and only if
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1€ {0,1,...,1 — 1}, we see that [e*fo], [es*f1], . .., [er1*fi_1] span Ei, so
that dim E; < I. We now show that [eo*fo] and [es*f.] are linearly dependent.
Sinceay + as + £ = ari1... 75717970, it is a root. Let b be a non-zero element
of Eptastt 200 + a2 + & and ag + 2a2 + £ are of weight 5 and thus are not
roots. This means that [beg] = 0 = [be.]. By Lemma 2, [bf,] = 0 and [6f.] = 0.
Put eo* = [bf:] and e* = [bfs]. We see immediately that [es*fa] = [eo*fo]
which is what we wanted.

Using Proposition 7, we have:

dim C;,5() = dim C; + |W(C)|/|W (A1) X W(Ci2)| + (I — 1)
=2l —-1)2+1).
The only split simple Lie algebra of rank 2/ — 1 and dimension (2] — 1) (2/ + 1)
iSAzl_l.

(2) By,2(u). In this case, a; + £ is a root if and only if 2 = 0 or /. Conse-
quently, dim E; £ 2. Amazing as it may seem, dim E; = 1, the argument
being essentially the same as in (1). The dimension of B, (u) may then be
computed and it is 2/2 + 3] + 1. Thus B2 (u) is of type D 1.

(3) BCys(u). Put I’ = {au,...,a;-1}. Apply the corollary of Lemma 7
to conclude that dim E; =27 — 1. On the other hand dim E¢ < I. From
dim BC,,2(u) = dim H + dim E; + 2(dim B, — 1) + |W(B)|/|W(B._1)| we
obtain:

412 4+ 4] — 1 withrank 2/ — 1 or

472 + 4] with rank 2.

Itisnot hard to see that 2/ — 1 can only divide 47> + 4/ — 1if ! = 1 and hence
the only possibility is the second. Thus BC;,2(u) is of type 4s,.

(4:) A1.2(N)- A1,2(,U,) is of type Az.

(5) Fy2(u). One checks that Fy2(u) is of rank 6 and dimension 78. Un-
fortunately, Bs, Cs, and Eg all have dimension 78. To resolve this difficulty
one has to take a little less superficial approach to the structure of the 2-tiered
algebras. We hope soon to publish some results in this direction which show
among other things that Fy is of type Es. 111

dim BCl,g(#) =

TuroreM 4. Let E be the Euclidean Lie algebra whose diagram is X ;5. For
p € & — {0}, X;,2(u) is finite-dimensional central simple of type given by:

X1,2 Cl,2 Bl,2 Bcl,z Al,g
Type Agyq D +1 Azz A,

111 Added in proof. We have recently shown (Robert V. Moody, Stmple guotients of Euclidean
Lie algebras, Can. J. Math., to appear) that if X, is a 2-tiered algebra, then the shift map can
be chosen so that Xi»(u) splits over ®(+/u) for all u € & — {0}, and X;,2(u) =~ X;,2(») if and
only if w»™*is a square. The type of the split algebra ®(+/u) ® Xi2(u) is given by the table of
Theorem 4 for X, £ Fa», while the type of ®(v/u) @ Fi2(u) is Eq.
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