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Abstract

Introduction: Increasing interest in real-world evidence has fueled the development of study
designs incorporating real-world data (RWD). Using the Causal Roadmap, we specify three
designs to evaluate the difference in risk of major adverse cardiovascular events (MACE) with
oral semaglutide versus standard-of-care: (1) the actual sequence of non-inferiority and
superiority randomized controlled trials (RCTs), (2) a single RCT, and (3) a hybrid
randomized-external data study. Methods: The hybrid design considers integration of the
PIONEER 6 RCT with RWD controls using the experiment-selector cross-validated targeted
maximum likelihood estimator. We evaluate 95% confidence interval coverage, power, and
average patient time during which participants would be precluded from receiving a glucagon-
like peptide-1 receptor agonist (GLP1-RA) for each design using simulations. Finally, we
estimate the effect of oral semaglutide on MACE for the hybrid PIONEER 6-RWD analysis.
Results: In simulations, Designs 1 and 2 performed similarly. The tradeoff between decreased
coverage and patient time without the possibility of a GLP1-RA for Designs 1 and 3 depended
on the simulated bias. In real data analysis using Design 3, external controls were integrated in
84% of cross-validation folds, resulting in an estimated risk difference of –1.53%-points (95%CI
–2.75%-points to –0.30%-points). Conclusions: The Causal Roadmap helps investigators to
minimize potential bias in studies using RWD and to quantify tradeoffs between study designs.
The simulation results help to interpret the level of evidence provided by the real data analysis in
support of the superiority of oral semaglutide versus standard-of-care for cardiovascular risk
reduction.

Introduction

Regulatory agencies around the world have increasingly considered how studies that
incorporate real-world data (RWD) might inform the regulatory approval process [1]. One
particular class of studies considers integration of trial data with RWD or other external data
sources [2]. For example, single-arm trials compare a treatment with an external control group.
Hybrid studies randomize participants to active treatment or control and aim to augment one or
both arms of the trial with external data. A third use of external data is to compare treatments
evaluated in different trials, although the comparator arms in these trials may have evaluated the
same drug [3].

These study designs require special considerations. First, each design relies on different
causal identification assumptions – i.e., assumptions about the underlying trial and/or real-
world processes that generate the data that will be used to estimate a treatment effect. For many
designs, these assumptions are not testable, but the validity of inferences about treatment effects
nonetheless relies on them. Second, while single-arm trials may be analyzed using traditional
statistical estimators, special estimators have been developed for analyzing data from the second
two types of external data designs [3,4]. If the same treatment (or control) is evaluated in the
randomized and external data, bias due to violations of identification assumptions may be
estimated to determine whether to include external data in the analysis [5]. Hybrid designs thus
provide greater protection against biased conclusions than purely observational designs, but
because bias is estimated, these designs cannot guarantee 95% confidence interval coverage for
the true effect [5], as would be expected of a traditional randomized controlled trial (RCT).

The purpose of this paper is to demonstrate how to apply a Causal Roadmap [7–9], described
in the companion paper [10], to the design and analysis of a hybrid randomized-RWD study
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using a case study of the effect of semaglutide on the risk of major
adverse cardiovascular events (MACE). We discuss threats to
causal inference when RWD is integrated with RCT data. We also
provide a detailed demonstration of Step 7 of the Causal Roadmap,
which involves comparing alternative study designs using
simulations. Our discussion of this complex example aims to
facilitate comprehension of the Roadmap steps described in the
companion paper.

Case Study

Semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-
1RA), was developed as an antihyperglycemic agent and has been
shown to improve multiple health outcomes for patients with type
2 diabetes mellitus (T2DM). For example, in the SUSTAIN-6 trial,
injectable semaglutide decreased rates of MACE (defined as death
from cardiovascular causes or nonfatal stroke or myocardial
infarction (MI)) compared to placebo in patients with high
cardiovascular risk (hazard ratio (HR) 0.74, 95% confidence
interval (CI) 0.58–0.95) [11]. Subsequently, the United States Food
and Drug Administration (FDA) approved injectable semaglutide
to reduce cardiovascular risk for adults with T2DM and
cardiovascular disease.

Oral semaglutide was later developed and shown to decrease
glycated hemoglobin (HbA1c) and body weight compared to
placebo [12] and multiple medications [13–15]. To satisfy a pre-
approval regulatory requirement for demonstrating cardio-
vascular safety, the PIONEER 6 RCT evaluated non-inferiority
of oral semaglutide versus placebo for the primary outcome of
MACE, with an estimated HR of 0.79 (95% CI, 0.57–1.11) [16].
To establish whether oral semaglutide is superior to placebo for
the prevention of MACE, the larger SOUL trial began in
2019 [17].

A superiority RCT is a standard choice for evaluating the effect
of interest, yet RCTs may also have downsides. For example,
clinicians treating placebo-arm patients are directed not to
prescribe medications of the same class as the treatment under
investigation [17–19]. Yet in 2019, a joint statement by the
American Diabetes Association and the European Association for
the Study of Diabetes emphasized that “for patients with type 2
diabetes and established atherosclerotic [cardiovascular] disease
: : : the level of evidence for MACE benefit is greatest for GLP-1
receptor agonists” [20]. Although none of the trial participants
were taking a GLP-1RA at baseline [17], would it not be better for
the participants in the placebo arm of SOUL if they were allowed to
start a GLP-1RA? This question led us to ask whether a hybrid trial
design incorporating RWD could decrease the amount of
participant time during which commencement of a GLP1-RA is
precluded. Yet this potential benefit must be weighed against the
known risk that confidence interval coverage may fall below 95%
(or type 1 error may increase) in a hybrid design, depending on the
magnitude of bias introduced by the external data [21–24].

To evaluate these potential tradeoffs, we use the Causal
Roadmap [7–10] to compare a traditional program of RCTs to a
hybrid study integrating data from the PIONEER 6 non-
inferiority trial with RWD controls through simulations that
mimic these true experiments. We then present results of the
real hybrid analysis of PIONEER 6 and RWD for the estimated
difference in the risk of a combined outcome of first MI, stroke,
or all-cause death with oral semaglutide versus standard-of-care
(without a GLP1-RA).

Materials and Methods

Table 1 describes design and analysis plans for three potential
study designs for evaluating this question, using the list of Causal
Roadmap steps found in the companion article [10]. As depicted in
Fig. 1, Design 1 is based on what truly occurred – a non-inferiority
trial was run to demonstrate cardiovascular safety of oral
semaglutide (PIONEER 6), after which, due to results that were
promising but non-significant for superiority, a superiority trial
was initiated. Design 2 considers the hypothetical scenario in
which only the superiority RCT is run, as might have occurred if
superiority had been expected from the start. Design 3 is a hybrid
RCT-RWD study in which first a non-inferiority trial potentially
augmented with RWD controls is run, and the follow-up
superiority RCT is only initiated if the hybrid design does not
reject the null hypothesis. This paper aims to compare Design 1
(which is currently in progress) to hybrid Design 3. Design 2 is also
presented as a more traditional alternative to Design 1.

Step 1a: Define the Causal Question and Estimand

The question for all study designs was what would the difference in
risk of MACE (defined as death from any cause, nonfatal MI, or
nonfatal stroke) within one year be if all patients in a target
population consistent with the PIONEER 6 inclusion/exclusion
criteria and timeframe [16], and with similar healthcare engage-
ment, were prescribed oral semaglutide plus standard-of-care
compared to if all patients were prescribed standard-of-care alone,
and if censoring had been prevented for all patients? The outcome
for this case study includes all-cause death (rather than
cardiovascular death as in PIONEER 6) because the RWD does
not include cause of death. The target population for all designs is a
population of patients that not only meet the trial eligibility criteria
but also are likely to enroll in a trial, based on their disease status
and healthcare engagement. We do not aim to generalize the
results of the trial to a new population. See Appendix 1
(Supplementary material 1) for the causal estimand.

Step 1b: Specify a Causal Model

Next, we specify a causal model for each design describing what
variables might affect treatment, censoring, or outcomes using the
causal graphs [25] shown in Fig. 2. For the RCTs, only the
randomization procedure affects treatment assignment. As
depicted in Fig. 2a, health status, socioeconomic status, and
related issues of healthcare access and engagement, collectively
referred to asU, might affect both censoring andMACE.Measured
pre-baseline covariates, including age, sex, race, HbA1c, high-
density lipoprotein cholesterol, low-density lipoprotein choles-
terol, estimated glomerular filtration rate (a marker of kidney
function), priorMI, prior stroke or transient ischemic attack (TIA),
prior heart failure, morbid obesity, and use of glucose-lowering
medications, insulin, and CV medications, may account for some
aspects of these underlying factors.

In hybrid Design 3 (Fig. 2b), participation in the RCT versus the
real-world system affects treatment because RCT participation is
required to receive oral semaglutide if the RWD is concurrent with
the pre-approval RCT. RWD controls receiving standard-of-care
are selected based on initiation of a dipeptidyl peptidase-4
inhibitor (DPP4i), where conditioning on DPP4i initiation in
the RWD is represented by the box around treatment in Fig. 2b.
This choice is discussed in Step 3 and Appendix 2 (Supplementary
material 1).
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Table 1. Causal Roadmap steps for specification of study Designs 1–3

Roadmap Step Designs 1–2 (RCT Only) Design 3 (RCTþ RWD)

1a. Causal question/
Causal estimand

What would the difference in risk of MACE§ (defined as death from any cause, nonfatal myocardial infarction, or nonfatal
stroke) within one year be if all patients in a population consistent with the PIONEER 6 inclusion/exclusion criteria and
timeframe [16], and with similar healthcare engagement, were prescribed oral semaglutide plus standard-of-care compared
to if all patients were prescribed standard-of-care alone, and if censoring had been prevented for all patients? Note that the
broad definition of the target population for all designs is patients meeting trial eligibility criteria and who might be likely to
enroll in a trial based on their disease status and healthcare access and engagement. Although the baseline covariate
distributions may differ between the RCT and RWD cohorts – leading to slightly different causal estimands – we do not aim
to generalize results beyond the types of patients who would enroll in the RCT.

See Appendix 1 (Supplementary material 1) for the mathematical representation of the causal estimand for each study
design.

1b. Causal model Knowledge about potential shared causes of treatment, censoring, MACE, and participation in the RCT vs RWD, as well as
possible causal relations between these variables depicted in Fig. 2.

2. Observed data Data sources used in this analysis:
Pioneer 6 RCT

Data sources used in this analysis: Pioneer 6 RCT, Optum CDM
control arm,

Future data sources that would be used for the
proposed designs: SOUL RCT

Future data sources that would be used for the proposed
designs: SOUL RCT

3. Assess identification Identification highly likely (non-administrative censoring
in PIONEER 6 only 0.3%)

Plausible, though uncertain, that causal gap§§ would be small
(see Step 6).

4. Specify statistical
estimand

Risk difference between treatment and control arms of
the trial.

Adjusted risk difference between treatment and control arms,
standardized to the covariate distribution in the target
population.

5. Statistical model and
estimator

Statistical Model: Semi-parametric statistical model
(incorporating knowledge that treatment was
randomized).

Statistical Model: Semi-parametric statistical model
(incorporating knowledge that treatment in the RCT was
randomized).

Estimator: Unadjusted difference in risk between arms. Estimator: Experiment-Selector CV-TMLE

6. Sensitivity analysis None given that causal identification assumptions are
highly likely to be true.

See Step 6 below.

7. Compare study designs See simulation results reported in Step 7 below.

CDM=Clinformatics® Data Mart Database; CV-TMLE=cross-validated targeted maximum likelihood estimator; MACE=major adverse cardiovascular events; RCT=randomized controlled trial;
RWD=real-world data.
§The revised definition of MACE using all-cause death instead of death from cardiovascular causes was chosen as the primary outcome because cause of death is not available in the RWD.
§§The causal gap is the difference between the true value of the causal estimand that answers the causal question and the true value of the statistical estimand that we will estimate [9].

Figure 1. Diagram of study Designs 1–3. RCT=randomized controlled trial. RWD=real-world data.
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Being in the RCT could also modify the effect of treatment or
directly affect measured outcomes for reasons including closer
monitoring, encouragement of adherence, variation in standard-
of-care or placebo effect, or more accurate outcome measurement
[26–28]. The RCT inclusion and exclusion criteria, the timeframe
of RCT recruitment, health status, socioeconomic status (SES), and
healthcare engagement or access may also affect trial participation
and MACE. Type of clinical site also affects trial participation –
because the RCTs are conducted at research sites globally while the
RWD comes from the United States and includes primary care
practices – and may affect baseline characteristics, the definition of
standard-of-care, censoring, and/or MACE.

Fig. 2b also includes fractures as a negative control outcome
(NCO). NCOs are sometimes used to detect bias in observational
studies [29,30]. An appropriate NCO is an outcome that is not
affected by treatment but that is affected by the same sources of bias
in the treatment effect estimate as the primary outcome. An
observed association between the treatment and the NCO is then
due either to finite sample variability or due to bias from sources
including confounding, selection bias, measurement error, etc.
[29,30]. From the available options, we chose fractures as an NCO
because this outcome is generally serious enough to require
medical attention for those with access, is associated with SES [31],
and is recorded in a manner similar to the primary outcome.
Fractures is not an ideal NCO, however; although closer
monitoring in the RCT might improve cardiovascular outcomes,
we do not expect closermonitoring to lead to decreased numbers of
fractures (no yellow arrow from RCT v. RWD to the NCO in
Fig. 2b). Studies prospectively designed to include an NCO could
consider alternate choices to more comprehensively capture
potential sources of bias.

Step 2: Consider the Observed Data

Next, we consider the data that will be observed. Designs 1–2
propose to use data from one or both of the following RCTs:
PIONEER 6 [16] and SOUL [17]. While PIONEER 6 has ended,
the data from SOUL are not yet available. Both trials randomized
participants to receive semaglutide or placebo plus standard-of-
care. The inclusion and exclusion criteria for both trials targeted
patients with T2DM and high cardiovascular risk but without
unstable disease or recent use of a GLP-1RA, while PIONEER 6
also excluded recent users of pramlintide and DPP4is [17,19].
Participants were regularly evaluated in person or by phone.
Outcomes were adjudicated. The timeframe for the outcome of one

year after baseline was selected because no administrative
censoring occurred before that time in PIONEER 6.

The external control arm considered in Design 3 could come
frommultiple sources, including the control arm of a previous trial
such as SUSTAIN-6. While we would expect controls enrolled in a
previous trial to be more similar to the current trial controls than
participants in RWD, in this case study, we chose to consider RWD
controls in order to discuss the many challenges that might arise in
a hybrid study when a past trial’s control arm is not available. The
RWD also has the advantage of being contemporaneous with the
RCT, avoiding bias due to temporal differences between the RCT
and external control arms. Specifically, the RWD considered in
Design 3 came from Optum’s de-identified Clinformatics® Data
Mart Database (CDM) (2007–2022), which is derived from
administrative health claims for a geographically diverse pop-
ulation, spanning all 50 of the United States.

Consistent with recommendations from the RCTDUPLICATE
study, we used naive initiation of a DPP4i (defined as a new
prescription following at least 90 days without a previous
prescription based on AHFS codes) to enhance comparability of
healthcare access and engagement among RWD compared to RCT
controls [32]. Time zero was defined as the first time a participant
met the eligibility criteria for PIONEER 6, during a calendar time
window contemporaneous with PIONEER 6 recruitment, and was
prescribed a DPP4i.

We applied as many of the PIONEER 6 inclusion/exclusion
criteria as possible given the available CDM data (Supplementary
material 1, Appendix 7). Medical history variables that were part
of these criteria or the baseline characteristics discussed in Step 1b
were determined based on ICD-9/ICD-10 diagnosis and
procedure codes. Medication use was identified through AHFS
codes, where treatment at baseline corresponded to at least one
prescription in the 180 days preceding time zero. To identify
GLP1-RA and pramlintide usage for the exclusion criteria, we
defined continuous treatment eras as consecutive prescriptions
based on AHFS codes with no more than 90-day gaps between
them. Laboratory measurements were identified through LOINC
codes, where baseline values were identified as the most recent
measurement within 180 days prior to time zero. For the primary
and negative control outcomes, we identified nonfatal MI/stroke
and fractures using ICD-9/ICD-10 codes for inpatient visits in the
first diagnosis position (Supplementary material 1, Appendix 7).
All-cause death was identified from external sources as provided
by Optum.

Figure 2. Causal graphs for Designs 1–3. DPP4i=dipeptidyl peptidase-4 inhibitor; MACE=major adverse cardiovascular events; NCO=negative control outcome; RCT=ran-
domized controlled trial; RWD=real-world data; SOC=standard-of-care; SES=socioeconomic status.
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Steps 3-4: Assess Identifiability and Specify a Statistical
Estimand

We now discuss whether the causal effect of interest (Step 1a) is
identifiable from the observed data (Step 2). When using RCT data
alone (Designs 1–2), we assume no unmeasured common causes of
treatment or censoring and MACE and adequate data support
(positivity) [33,34]. These assumptions are highly likely to hold by
design; while it is possible that there are unmeasured common
causes of censoring and MACE because censoring was negligible
(0.3% in PIONEER 6), this would be unlikely to impact the results.
An alternative design (distinct from Designs 1–3) in which we
committed to augmenting the RCT data with external control data
would require additional assumptions: (1) no unmeasured
common causes of MACE and either selection into the RCT
versus the RWD cohort, definition of standard-of-care in the RCT
versus RWD, or censoring (no U in Fig. 2b), (2) no direct effect of
RWD versus RCT participation on MACE or outcome measure-
ment, and (3) adequate data support (positivity [33,34]).

In contrast, rather than rely on these assumptions holding,
Design 3 estimates the magnitude of bias that would be introduced
by RWD before deciding whether to integrate RWD with RCT
data. If violation of these assumptions results in meaningful bias,
Design 3 is likely to reject the RWD controls. In selecting candidate
external controls for Design 3, the objective is to satisfy these
assumptions to the extent possible, thereby increasing the
probability that RWD will be integrated into the hybrid analysis,
decreasing the probability that a follow-up superiority trial will be
necessary, and minimizing risk of lower than nominal confidence
interval coverage.

To improve the plausibility of identification assumptions, we
selected RWD controls with a similar disease stage and healthcare
engagement compared to the RCT controls based on those who
were prescribed an active comparator medication (DPP4i) and had
relevant baseline labs andmedical history recorded. The aimwas to
minimize the impact of factors like health status and healthcare
engagement on selection into the RCT versus the external cohort
and on the definition of standard of care in the two studies. Yet this
step also restricts the target population for the hybrid analysis to
patients similar to those who actually enrolled in the RCT. Because
DPP4i use was an exclusion criterion in PIONEER 6, we also
require the assumption, supported by data, that DPP4is do not
influence cardiovascular outcomes [32]. We also restricted RWD
controls to the time period of PIONEER 6 recruitment to make
standard-of-care more similar, and we selected RWD controls
whose baseline characteristics were shared by at least some RCT
participants. This last step was necessary to avoid a violation of the
positivity assumption and further restricted the target population.

As is generally true when observational data are considered, it
remained unlikely that all causal identification assumptions held
completely. Yet with the above considerations, it was plausible that
the bias from integrating RWD would be small. Design 3 evaluates
this claim empirically. Appendix 1 (Supplementary material 1)
provides statistical estimands that are equivalent to the treatment
effects of interest, or causal estimands, under identification
assumptions. Appendix 2 (Supplementary Material 1) provides
further discussion of these assumptions.

Step 5: Choose a Statistical Model and Estimator

Next, we chose a statistical estimator. In Designs 1–2, because
censoring was negligible, we estimated the unadjusted risk
difference between arms among persons with follow-up through

one year. For Design 3, we used an estimator designed to analyze
hybrid studies.

Multiple hybrid-design estimators have been developed in
recent years, with the common goal of evaluating whether to
include (or how to weight) external data in a hybrid analysis based
on the difference in mean outcomes, conditional mean outcomes,
or effect estimates estimated using external data or estimated using
RCT data alone. These estimators differ based onwhether they take
a Bayesian [35–38] or Frequentist [5,6,24,39,40] approach, their
criteria for deciding whether to include or how to weight external
data, the estimator used for effect estimation, and the method of
confidence interval construction. We refer the interested reader to
Lim et al. (2018) [4] and Oberst et al. (2022) [40] for more detailed
explanations of alternative methods.

In this case study, we use the experiment-selector cross-
validated targeted maximum likelihood estimator (ES-CVTMLE)
[5] as the estimator for Design 3. Cross-validated Targeted
Maximum Likelihood Estimation (cv-TMLE) is a robust, efficient
approach that incorporates machine learning using cross-
validation [7,41–43]. This allows it to flexibly adjust for covariates
without introducing new assumptions, improving precision and
potentially reducing bias while preserving inference [7,41–43].
Censoring is handled by incorporating inverse probability of
censoring weights into the TMLE targeting procedure [44].

The ES-CVTMLE extends the cv-TMLE method to evaluate
and integrate external data [5]. First, the ES-CVTMLE estimates
the bias introduced by augmenting the RCT with RWD by
comparing the conditional mean outcomes for RCT and RWD
controls (see Supplementary material 1, Appendix 3) [5]. ES-
CVTMLE also estimates bias as the estimated average treatment
effect on the NCO. Dang et al. (2022) describe how these two bias
estimates are used to decide whether to integrate RWD or to
analyze the RCT data alone [5].

In this case study, we chose the ES-CVTMLE for Design 3
because it relies on few statistical assumptions, incorporates an
estimate of bias based on an NCO, and adjusts confidence interval
widths based on the estimated magnitude of bias. While the focus
of this case study is on using simulations to compare study designs,
similar simulations could also be used to compare different
potential estimators. Appendices 3–6 provide further details about
estimation.

Step 6: Specify a Procedure for Sensitivity Analysis

Causal Roadmap Step 6 is to conduct a sensitivity analysis to
evaluate how violations of identification assumptions might
impact conclusions. Because the topic of sensitivity analysis is
complex, we do not cover this step in this case study but instead
refer readers to the companion paper that reviews sensitivity
analysis in detail.

Step 7: Compare Study Designs Using Simulations

We compare Designs 1–3 using simulations that mimic our true
study designs (Supplementary Material 1, Appendix 4). The code
to run these simulations may be found in Supplementary Material
2. For Designs 1 and 3, we simulate data from a small RCT aiming
to mimic PIONEER 6 (RCT1). For Design 1, we use an unadjusted
estimate of the difference in risk between arms of RCT1. For
Design 3, we consider simulated RCT1 and a simulated “real-
world” dataset aiming to mimic CDM, and we use the ES-
CVTMLE to estimate the risk difference. For the sake of
comparison to a more standard estimator, we also report the
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results of simulated Design 3 if a cv-TMLE with no assessment of
bias had been used to analyze the pooled RCT and RWD. In both
Designs 1 and 3, if the null hypothesis is rejected at this first stage,
we use this initial estimate as our final effect estimate. If the null
hypothesis is not rejected, then we simulate data from a larger trial
aiming to mimic a superiority trial (RCT2) and estimate the risk
difference using an unadjusted estimate. In Design 2, we use the
unadjusted effect estimate from RCT2.

Because Design 3 considers non-randomized data, it is possible
that confidence interval coverage will be lower than in Designs 1–2
if both the causal identification assumptions (Step 3) are violated
and the empirical bias estimate based on the available finite sample
is smaller than the true bias (leading to inappropriate inclusion of
external controls). Whether this risk is acceptable will depend on
the context, including the magnitude of benefit to patients of
Design 3 over Designs 1–2. While there are many potential ways to
quantify benefit to patients, here we estimate the number of
patient-years during which participants are precluded from
starting a GLP1-RA (by being in an RCT control arm), averaged
over 1000 iterations of this simulation. We also report power to
detect the true effect using α = 0.05. Because participation in an
RCT requires acceptance of potential risks and commitment of
time to the study, it is important that any design that involves an
RCT be adequately powered to answer the question of interest [45].

We evaluate Design 3 when the magnitude of bias introduced
by including simulated RWD is zero and when it is one of ten
potential magnitudes in either direction up to ± 2.1%. In this
primary simulation, the effect of unmeasured factors causing bias
is the same on the relationship between semaglutide and MACE as
it is on the relationship between semaglutide and the NCO.
Appendix 5 (Supplementary material 1) shows the results of the
same simulation both when the NCO is not considered and when
the NCO is considered but the unmeasured factors causing bias for
the relationship between semaglutide andMACE have no effect on
the NCO, mimicking a worst-case scenario for violations of both
the causal identification assumptions and the assumptions needed
to measure bias using an NCO.

Results

Simulation Results

Fig. 3 shows the results of 1000 iterations of the simulation
comparing Designs 1–3. Designs 1 and 2 had similar character-
istics. Simulated Design 1 had 95% CI coverage of 0.941, power of
0.835, and an average of 4,817 patient-years during which a GLP1-
RA was precluded. Simulated Design 2 had coverage of 0.948,
power of 0.775, and an average of 4,750 patient-years during which
a GLP1-RA was precluded. Below, we focus on the differences
between Design 1 (which is currently in progress) and Design 3
(the hybrid trial).

The tradeoffs between Design 3 and Design 1 depended on the
direction of bias introduced by the RWD.With unbiased simulated
RWD, Design 3 had coverage of 0.944, had power of 0.854, and
resulted in an average of 290 fewer participant-years during which
patients were precluded from starting a GLP1-RA compared to
Design 1. In other words, on average, 6% fewer people would have
spent one year during which their doctor avoided prescribing a
GLP1-RA if Design 3 were chosen and unbiased RWD were
available compared to if Design 1 were chosen. If simulated RCT1
and RWD had been pooled and analyzed with a cv-TMLE instead,
Design 3 with unbiased RWD would have had coverage of 0.941,

power of 0.862, and an average of 618 fewer participant-years
during which GLP1-RA use was discouraged. However, the
downsides of this approach, which relies on causal identification
assumptions rather than evaluating them empirically, are apparent
(Fig. 3a) when biased simulated RWD is considered.

Positive bias (toward the null) represents scenarios in which the
introduction of RWD lowers the estimated risk of MACE among
control arm participants. This could happen if MACE were not
well-recorded in the RWD. For Design 3, simulated positive bias
led to coverage ranging from 0.943 to 0.948, power ranging from
0.825 to 0.834, and an average of 38 to 195 extra participant-years
during which prescription of a GLP1-RA was discouraged
compared to Design 1. The increase in person-years without
GLP1-RA access occurred because RWD with bias toward the null
was included in a small number of simulation iterations, triggering
a second RCT. As shown in Fig. 3a, the increase in person-years
without GLP1-RA access would have been much larger if a naïve
pooled analysis had been conducted for Design 3.

Negative bias (away from the null) represents scenarios in
which the introduction of RWD raises the estimated risk of MACE
among control arm participants. This could happen if the subjects
whose data were collected in the RWD showed more severe health
outcomes (conditional on measured factors that affect health
outcomes) than the trial participants due to differences described
in Step 1b. Simulated negative bias led to coverage for Design 3
ranging from 0.929 to 0.942, power ranging from 0.834 to 0.860,
and an average of 33 more to 461 fewer participant-years during
which prescription of a GLP1-RA was discouraged compared to
Design 1. For comparison, if one had used a naïve cv-TMLE
estimator to analyze the pooled simulated RCT1 and RWD,
coverage would have been as low as 0.123 (Fig. 3a). The ES-
CVTMLE thus provided significant (though imperfect) protection
against integration of biased RWD in this simulation. The
possibility of bias away from the null is plausible. Nonetheless,
by objectively quantifying these differences between proposed
designs, investigators can explicitly discuss these tradeoffs with
stakeholders such as patient groups and regulatory agencies when
selecting a trial design.

Real Data Analysis

The actual results of Designs 1 and 2 await completion of the
SOUL trial. Below, we carry out Design 3 using data from
PIONEER 6 and the CDM external control arm described in
Step 2. We also report the results of an unadjusted estimator for
the difference in the risk of MACE among PIONEER 6 active
and control arm participants.

After applying the inclusion and exclusion criteria described in
Step 2 and depicted in Fig. 4, the CDM cohort consisted of 2483
participants. Table 2 lists baseline demographics, medical history,
medication use, outcome missingness, and MACE and NCO event
rates for the PIONEER 6 semaglutide and placebo arms, as well as
for the CDM external control arm. The outcome was missing for
0.3% of PIONEER 6 participants and 16% of CDM participants.
Compared to the PIONEER 6 control arm, the CDM controls were
slightly older, had a higher percentage of females, had a lower
proportion of previous MI or stroke but a higher proportion of
previous heart failure, and had a different distribution of baseline
medication use. These differences in baseline covariates reflect
differences in the clinical settings and patient populations
represented by the RCT and RWD that are adjusted for in the
analysis.
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As shown in Fig. 5, the estimated difference in the risk of
MACE by 1 year based on the unadjusted estimator conducted
using PIONEER 6 data was –1.30%-points (95% CI –2.60%–
0.00%-points). This result is closer to statistical significance
than the primary result reported for the PIONEER 6 trial (HR
0.79; 95% CI 0.57–1.11 [16]) because the primary analysis (a)
evaluated the hazard ratio including all timepoints instead of the
risk difference by one year and (b) evaluated a composite
outcome that included death from cardiovascular causes instead
of death from all causes.

Hybrid Design 3 resulted in an estimated risk difference of –
1.53%-points (95% CI –2.75– –0.30%-points), providing evidence
in support of the superiority of oral semaglutide versus standard-
of-care for the prevention of MACE. The two primary differences
between the risk difference estimates from PIONEER 6 alone
compared to the hybrid analysis are narrower confidence intervals
and a small negative shift in the point estimate. Narrower
confidence intervals resulted from the data-adaptive estimator
accepting the CDM RWD for inclusion in the analysis in 84% of
cross-validation splits, leading to increased efficiency.

Figure 3. Simulation results by study design with different amounts of RWD bias. The “Pooled” analysis is Design 3 where the pooled simulated RCT1 and RWD are analyzed with
a standard cv-TMLE. Purple and gold represent 10 simulated magnitudes of bias away from the null for the ES-CVTMLE and naively pooled cv-TMLE estimators. Pink and brown
represent 10 simulated magnitudes of bias toward the null for the ES-CVTMLE and naively pooled cv-TMLE estimators. CI=confidence interval; GLP1-RA=glucagon-like peptide-1
receptor agonist; cv-TMLE=cross-validated targeted maximum likelihood estimator; ES-CVTMLE=experiment-selector cv-TMLE; RWD=real-world data.

Figure 4. Selection of CDM external control group. CDM=Clinformatics® Data Mart Database; T2DM=type 2 diabetes mellitus; DPP4i=dipeptidyl peptidase-4 inhibitor;
Jan=January; RCT=randomized controlled trial; Sept=September; yr=year.
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Table 2. Baseline characteristics, outcome missingness, and event rates for PIONEER 6 and CDM

CDM RWD control arm (n= 2483) PIONEER 6 placebo arm (n= 1564) PIONEER 6 semaglutide arm (n= 1574)

MACE rate - % 4.5 4.2 2.9

NCO Rate - % 0.73 0.77 0.45

Age - years, mean (SD) 69.2 (6.3) 66.4 (7.1) 65.9 (7.1)

Female sex - % 42.7 31.2 31.9

Race

White - % 44 72 72

Black - % 11 7 6

Other - % 45 21 22

HbA1c - %, mean (SD) 8.0 (1.4) 8.2 (1.6) 8.2 (1.6)

LDL cholesterol - mg/dl, mean (SD) 84.1 (28.3) 84.8 (32.4) 83.9 (34.0)

HDL cholesterol - mg/dl, mean (SD) 44.1 (9.6) 41.6 (10.7) 41.9 (11.0)

eGFR - ml/min/1.73 m2, mean (SD) 74.3 (19.4) 74.2 (20.9) 74.2 (21.1)

Previous MI - % 13.9 36.9 35.3

Previous stroke/TIA - % 11.8 16.6 15.2

Previous heart failure - % 20.4 12.4 11.9

Morbid obesity - % 16.4 12.3 12.2

Glucose-lowering medication (metformin, SU, TZD, SGLT2i) 73.0 83.9 83.9

Insulin 14.9 61.2 61.2

Cardiovascular medication (antihypertensives, lipid-lowering, anti-thrombosis, diuretics) 91.5 98.9 98.9

Outcome missingness - % 15.8 0.3 0.3

NCO missingness -% 17.2 0.3 0.3

CDM=Clinformatics® Data Mart Database; eGFR=estimated glomerular filtration rate; HbA1c=glycated hemoglobin; HDL=high-density lipoprotein; LDL=low-density lipoprotein; RWD=real-world data; MACE=major adverse cardiovascular events;
MI=myocardial infarction; mg/dl=milligrams per deciliter; ml/min/1.73 m2=milliliters per minute per 1.73 square meters of body surface; NCO=negative control outcome; SD=standard deviation; SGLT2i=sodium/glucose cotransporter-2 inhibitor;
SU=sulfonylurea; TIA=transient ischemic attack; TZD=thiazolidinedione.
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The small shift in the point estimate may have occurred for
three main reasons. First, the magnitude of the shift is well within
what might be expected by chance alone. Second, the shift may be
due to subtle changes in the target population that arise from
including external controls despite using the same eligibility
criteria. Finally, the potential for some residual bias remains.

Discussion

In this case study, we demonstrate an application of the Causal
Roadmap to a hybrid randomized RWD trial. We discuss
considerations for improving the plausibility of identification
assumptions in this data fusion context. We also implement the
extension proposed in the companion article [10] to use the Causal
Roadmap to compare different potential study designs using
simulations.

Both the FDA guidance on complex innovative trial designs
[46] and the FDA guidance on adaptive designs [47] suggest the
utility of simulations for comparing alternative design choices. In
this case study, the simulation demonstrates how sponsors may
quantify the tradeoffs between different study designs. Compared
to Design 1, Design 3 with unbiased external data led to similar
confidence interval coverage but less time during which patients
were precluded from receiving a GLP1-RA. This suggests that
Design 3 would be superior if unbiased external data were
available.

Yet with simulated bias toward the null, Design 3 had similar
coverage but potentially more patient time without a GLP1-RA
compared to Design 1, defeating the purpose of the hybrid design.
It would thus be important to evaluate how likely this scenario
would be before proposing Design 3. For example, a study could be
conducted to compare outcomes recorded in CDM to outcomes
recorded following an RCT protocol to assess the likelihood that
bias toward the null would occur due to under-reporting of
outcomes in the RWD.

Compared to Design 1, Design 3 with bias away from the null
generally resulted in less time during which a GLP1-RA was
avoided, but coverage fell below 95% for intermediate magnitudes
of bias. These results are consistent with simulations and
theoretical assessments of other estimators for hybrid random-
ized-external data designs that have demonstrated that hybrid
designs cannot both (1) improve power or mean squared error
(MSE) compared to an RCT alone; and (2) guarantee 95%

confidence interval coverage (or no decrease in MSE) regardless of
the magnitude of bias introduced by the external data [5,40]. The
risk of below-nominal coverage with certain magnitudes of bias
must be weighed against the benefit of allowing more patients to
start a GLP1-RA earlier. We do not advocate for one design over
another in this case study but rather aim to demonstrate how
tradeoffs can be quantified to facilitate discussion with regulatory
agencies and patient groups.

Our estimate of the difference in the risk of MACE by one year
with oral semaglutide versus standard-of-care supports the
superiority of oral semaglutide, but regulatory decisions regarding
whether to extend the label of oral semaglutide to include the
secondary indication of cardiovascular risk reduction will await the
results of the SOUL trial. A key limitation of this study is that it was
planned after PIONEER 6. RWD studies aiming to support policy
and/or regulatory decision-making must pre-specify all design and
analysis decisions before effects are estimated from any of the
proposed data sources [10]. The Causal Roadmap supports a
rigorous design process and reporting structure to ensure pre-
specification of components needed to support the validity of
causal inferences drawn from such designs. The current case study
provides a detailed work example of this process.

While this study aimed to quantify tradeoffs between three
proposed designs, other approaches could be considered. Hybrid
RCT-RWD designs may adapt the probability of randomization to
active treatment based on the efficiency gains that are achieved by
integrating RWD and also on the probability of superiority
compared to placebo [36,48,49], potentially leading to even less
patient time on an inferior product. Power could also have been
higher if oral semaglutide had been available in the CDM dataset
for the specified time period – resulting in integration of both extra
treatment and control arm participants – or if more RWD controls
were available.

This study reports one of many potential metrics aimed at
quantifying the benefits and drawbacks of different study designs
from the perspective of patients. While recommendations have
been proposed regarding the elicitation of patient perspectives to
inform medical product development [50,51], further guidance on
the most relevant metrics of patient benefit as well as best practices
for collaboratively weighing tradeoffs between different metrics of
design performance is warranted. Such guidance would help to
inform future applications of the Causal Roadmap for pre-
specification of hybrid randomized-RWD designs.

Figure 5. Estimated difference in 1-year risk of MACE for PIONEER 6 and hybrid design. CI=confidence interval; ES-CVTMLE=experiment-selector cross-validated targeted
maximum likelihood estimator; MACE=major adverse cardiovascular events; RCT=randomized controlled trial.
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