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The Gradient of a Solution of the Poisson
Equation in the Unit Ball and Related
Operators

David Kalaj and Djordjije Vujadinovi¢

Abstract. In this paper we determine the L' — L' and L* — L° norms of an integral operator N
related to the gradient of the solution of Poisson equation in the unit ball with vanishing boundary
data in sense of distributions.

1 Introduction and Notation

We denote by B = B" and S = $"~! the unit ball and the unit sphere in R”, respectively.
We will assume that # > 2 (the case n = 2 has already been treated [10, 11]). By the
vector norm |- | we consider the standard Euclidean distance |x| = (£, x?)2.

The norm of an operator T: X — Y defined on the normed space X with image in
the normed space Y is defined as | T|| = sup{| Tx| : |x|| = 1}.

Let G be the Green function, i.e., the function

1 1
G(x, ) =Cy - >
) =e = 2 [x,y]ﬂ-z)

, where w,,_ is the Hausdorff measure of $"~! and

_ 1
where Cy = m

[, 7] = | xlyl = y/Iy| = | ylxl = /1]
The Poisson kernel P is defined

1|«
P(x,n) = PR

| n

. |xl<1,pes"
We are going to consider the Poisson equation

Au(x)=g,x€Q, ulpa=/f,

where f:$"! — R is a bounded integrable function on the unit sphere $”~*, and
g:B" — Ris a continuous function.
The solution of the equation in the sense of distributions is given by

u(x) = P10 - S[g)(x) = [ Plramf(yda(n) = [ Gx.»)g()dy.
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|x| < 1. Here do is the normalized Lebesgue n — 1 dimensional measure of the unit
sphere § = §"71,

Our main focus of observation is related to the special case of a Poisson equation
with the Dirichlet boundary condition Au(x) = g, for x € Q, u|yq = 0, where g €
L (B"). The weak solution is then given by

u(x) ==9[g)(x) = - [ GG )g(»dy, Ixl<1L

The problem of estimating the norm of the operator § in case of various L?-spaces
was established by both authors in [13].

Since P
X-)y _prx-y
G(x,y) = cn(2-1) - ,
’ (Ix—yl" [x, y]" )
this naturally induces the differential operator related to the Poisson equation

W) Dlgl(x) = Vu(x) = wi_l fB ( |;__ yy| - |y[|x)xy}f )8(») dy.

Related to the problem of estimating the norm of the operator D, we are going to
observe the operator N: L*°(B") — L*=°(B") defined by

Y bPx
2 = 5 JESF Tr

The main goal of our paper is related to estimating various norms of the integral oper-
ator and N. Then we use those results to obtain some norm estimates of the operator
D. The compressive study of this problem for #n = 2 has been done by Kalaj [10, 11]
and by Dostani¢ [6,7]. For related results we refer [3,4].

1.1 Gauss Hypergeometric Function

Throughout the paper we will often use the properties of the hypergeometric func-
tions. First of all, the hypergeometric function F(a, b;c, t) = 2 Fi(a, b ¢, t) is defined
by the series expansion
b)n

Z (@)n(b) t", forlt| <1,

n=0 l’l' C)n
and by the continuation elsewhere. Here (a), denotes a shifted factorial, i.e., (a), =
a(a+1)---(a+n-1)and a is any real number. The following identity will be used
in proving the main results of this paper (see [14, 2.5.16(43)]):

w in# 't 1 - 1+
1.3) e dt:B(E,f)F(v v+ ‘u H,rz),
o (1+r%-2rcost)” 2°2 2 2
where B is the beta function.

By using Chebychev’s inequality, one can easily obtain the following inequality for
the Gamma function (see [8]).

Proposition 1.1  Let m, p, and k be real numbers with m,p > 0and p > k > —m: If

k(p—-m-k)>0 respectively <,
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then we have
(L4) T(p)I(m) 2T(p—-k)[(m+k) respectively <

1.2 Mobius Transformations of the Unit Ball

The set of isometries of the hyperbolic unit ball B” is a Kleinian subgroup of all M6bius
transformations of the extended space R onto itself denoted by Conf (B) = Isom(B).
We refer to Ahlfors [2] for a detailed survey to this class of important mappings. The
Mobius transformation z = Ty y is defined by

(A=) (y—x) - |y - xx
[x, y]?

Tyy=

>

and satisfies

, and dy:(1_|x‘2)ndz.

xX-y
Tyl =|—=
| Tey] = | T

[x, 7]
2 The L= Norm of the Operator N

In this section we are going to find the norm of the operator N, defined in (1.2), and,

by using this, we estimate the norm of operator D.

Theorem 2.1 Let N: L (B) — L*(B) be the operator defined in (1.2). Then
2nn"/?

HNHL°°—>L°° = W

Proof First let us note that

2
P S“Pf| —J |y|
x€B x = y[" [x, )’]

So we need to find sup,. . K(x), where

K(x) = f“x j" |y|x E

Now we are going to use the change of variables y = T_,z( T,y = z), where T_:B — B
is the Mobius transform defined by

1= |x)(y+x) + x|z + x|

T . (2) =
(2) —
Now we use the following relations | Ty (y)| = [x m | and
1-|x]*)(~x|z|* -z x|?
0= T(e) = CPRDEEEZD) g ()=

[z, -x]? ’

[z, —x]"
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We have that

Q| 22 _bPx-y
I L ES Ik

-9 - O]

S x-yl [x,y

1 n
= W| (x =) = (IyPx = )]

e 5 ) (Tl Tl
[z —x]" | A=) (e’ -2) | (- |xP)(z +x) "

ICERIET I EEE [z -x]?
[zt (-1xP)
(1= [xP)"lzl" [z, —x]?
_x|(n-2)
Z,—x _
) (1 —[|x|2)(]“—1)|z|n—1 | || I(Z +x) = (x| + Z/|Z|)|
According to the identity (2.1), we have

I=sup K(x) = sup(1-|x[*) fol drfs lrx(r"2 =1) + E(r* —1)| "

xeB" xeB" |rx + £|n+2

Jol| (=x2] = 2/lz]) + [2" " (z + x)]

Furthermore, we have the following simple inequality

re (2 = 1) B D) < (1= P+ 4

Thus,
|rx(r"_2—l)+f(r”—1)| < (1—r”‘2)|rx+f| +rn72_rn|rx+g|n+2.
|rax + &|n+2 |rax + &|n+2
So , ,
1 _ n— n-2 _ n
Ismax(1—|x|2)f drf((l MOl o) e
xeB" 0 s [rx + &|n+2

Then we have

/‘ a¢ W1 /‘” sin" 2 ¢ dt
s|rx+ &9 [ sin" 2 tdt Jo (1+12|x[? + 2r|x|cos t)a/2”
By (1.3) we obtain

f” sin" 2t dt
o (1+r2x|? +2r|x| cos t)a/2
\/EF(%(—1+ n))

_n no20
F(a/2,1 2+a/2,2,rx).

r(3)
In view of ,
nf2
Wp-1 _ r2[1/2] _ 272
[y sin" 2 tdt W VAT[1/2(-1+n)]’
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we then infer
n/2

& X
S =2y g el ),

Hence I < C,, sup, . J(x) with

1) ==y [ a-rp(3 0 e ar

2 n-2 n —(n—4)r2|x|2 _ 1
-l [0 —T)Wdr—fo K,(x) dr

Here K, (x) = Yor_o A (r)|x|*™ where Ag(r) =1-r", r = |x|, and, for m > 1,

An(r) =

(1= 1) (—2m(=2+ n+2m) +2(1+ m)(n +2m)r*)

" r2m—4(r2 _ rn)(_zm(_z +2m + n) + (1 + Zm)(—l +2m+ l’l)rz)
Rl

Zﬁm'l“( LOT(2 +m)

Thus I < ag + Yoy am|x|*™, where

o = 2nm"?
T (n+DI(n2)’
2(-3+n)n+4(-2+n)m
Am =

n(-3+n+2m)(-1+n+2m)(1+n+2m)
(=2+n)(-3+n+4m)I(5 )I‘(—7+m)1“( (- 3+n)+m)

8\/AL ()L (1+ m)[ (% +m)

Then a,, < 0if and only if

2((=3+m)n+2(-2+ mm) VamI()L(5 +m)
(=2+n)n(-3+n+ 4m)r(g)r(_% + m)r(%Tn +m)
Then by (1.4) we have

r(—%+m)r(3;” +m) >r(m)r(2;” +m),

2m((n—-3)n+2(n-2)m)\/al (%)
by <c(m):= .
(=2+n)(n+2m)(-3+n+4m)I(1+7%)
The last expression increases in m because
2((n=3)*n*+4(n-3)(n-2)nm+4(6+ (n-3)n)m?*) /aT(12)
(n=2)(n+2m)*(n+4m-3)r(1+7%)

by =

and so

cd'(m) =

20)

so we have

| Jar(e)
bm < Jim c(m) = () ©
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Then
2nn"/?

(n+1)T(n/2)’

as required. ]

sup K(x) = K(0) =

Corollary 2.2 Let D be the mapping defined in (1.1) and v = Vu = Dg, g € L= (B").
Then

2nm?

TGy €

[vlleo <

Proof First let us note that

ViG(x,y)=c,(2- n)(

x-y Iylzx—y)_
lx—yl*  [x,y]"
For x € B we have

[vu(x)] —sup\ [ 96 )8(r) dn. )| - su_p\ JARCESIRI L

[€]=1

:(n—Z)cnSEurﬂf y s ’xy]y £)2(») dy|

<(n-2)eu [ (1 yy| y['y )|lg)ldy

y P«
—(n-2 f d
=(n-2)eu [l 8Oy

So we obtain the upper estimate for the gradient of u, i.e., | Vu|oo < [N]||g]cc. W

3 The L' Norm of the Operator N

In the sequel let us state a well-known result related to the Riesz potential. Let Q be a
domain of R", and let | Q] be its volume. For u € (0,1] define the operator V,, on the
space L'(2) by the Riesz potential (V,.f)(x) = [, |x—y"®*~) f(y) dy. The operator
V,, is defined for any f € L'(Q), and V, is bounded on L'(£), or more generally we
have the next lemma.

Lemma 3.1 ([9, pp. 156-159]) Let V, be defined on the L? (Q) with p > 0. Then V,
is continuous as a mapping V,;: LP(Q) — L9(Q), where 1 < q < oo, and

0£5:5(p,q):l—l<‘u.
P 9

Moreover, for any f € LP(Q)
1 1-6
Vafla< (5 =5)

Theorem 3.2  The norm of the operator N: L' — L' is ﬁ

Wn-1

1-u B
) 10U

Corollary 3.3 Let g€ L'(B) and v = Vu = D[g]. Then |v]; < 55 gl
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In order to prove Theorem 3.2, we need the following lemma.

Lemma 3.4 Let
y-x |xPy-x

S RPN P
and let
Hlel= o gyar Jo HEoDIE0)
Then
1 1
() 1901 = oy Sy HO DIy ==

Proof We need to find sup, [; |H(x,y)|dy. We will show that its supremum is
achieved for x = 0. We first have

1 1 (1= 1x[*)
[H(x, y)| < K(x,y) +L(x,y) = |x - y| - + :
(Ix—yl” [x>y]”) [x, y]"
Further we have
1 n
su K(x,y)|dy = su f 1- dy.
sup | KGxoy)ldy=sup | o \[M] y
We use the change of variables z = T,y, ie., T_yz = y, where T,y is the Mobius
transform
(1= |xP)(y—x) = |y - x*x
T,y = yx) U LTl = |22
[x, 7] [x, 7]
We obtain

(Ll
dy = ( o —x]z) dz
Assume, without loss of generality, that x = |x|e;. Furthermore, for & = (&,...,&,),

suprH(x>y)Idy
xeB /B

:ilelgf|x T n 1| _| | |([1 |x|])n

_ (1-1[2]"?) dz
sup(1—|x| ) / |x[z —x]2-(1-|x]?) (x+2)— |x+z|2x|n 1 [Z, ]Zn

xeB [z—x]

:sup(1_|x|2)n‘/B ( |Z| ) dz

xcB 2| 1|M|" Uz, —x]*n

]
—sup(l |x| n (n— l)f |Z| 2, x](n—l)—anZ

|z|n 1

—(ne1)- d¢
_ _ 2 _ oy n—(n-1)-1 I S
—iLelg(l |x| )/; (I-r")r drfs |rx+g|2n7(n71)
1
:sup(1—|x|2)f(1—r")d f d8 pYs)
: 5 (Pl + 2l +1)

https://doi.org/10.4153/CMB-2017-020-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-020-7

The Gradient of a Solution to the Poisson Equation 543

2772 (F14n) sin" 2 ¢t

1 g
YR 1-|x|? / 1-7" drf — dt,
[l(—l n)] xe p( k) J, « ) 0 (r2|x|* +2r|x|cost +1) 2
o 3 1+n n
- sup1—|x| ) [Ca-mE( PIxf) dr

[ x€B 2 2
27.[}1/2
= sup J(x wy_1sup J(x
r[%] xeg ( ) 1 p ( )
where
" 3 Zm <100
)= = 2 enbdf™ < (0),
with

n(8m?+ (n—-1)?+2m(3n-5))T(m -T2 +m+ 2)I(%)
(2m+n—-1)2(2m+n+1)2/aT[1+ m]T(m + 2)T(2)

In the first appearance of a hypergeometric function we used (1.3). On the other hand,
similarly we prove that

L(x) = [ Lexy)dy= (- P)F(L

&, 2(1+n)

em =

1+n 3+n||)

:C/ 1- 2m
o mz::l—l+4m2+4mn+n2|x| )
< L(0),
where i
C':LO:/ dy=——_" ey
» = L(0) B|y| 4 n+1T[1+n/2] n+1
Hence
sup [ [H(x,pldy < [ [H(0.9)|dy = w,-1](0) + 1(0)
X
SRR P
n+l n+1/ ot
This implies (3.1). [ |

Proof of Theorem 3.3 and Corollary 3.2  Since | N|pi_p1 = [N*| oo 1, where N*
is the appropriate adjoint operator and

Nf() = [ NOf()dy= [ Hx)If () dy, feL1™(B),

we have | N*||pi 1 = |H|Le—r. So Theorem 3.3 follows from Lemma 3.4. On the
other hand, Corollary 3.2 follows from the inequality

gl < NI .

Now let us point out the fact that D: L?(B,R) — L?(B,R"), where L?(B,R") is
the appropriate Lebesgue space of vector functions. By |D|, we denote the norm of
the operator D.

By using the Ries-Thorin interpolation theorem, we obtain the next estimates of
the norm for the operators N and D
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Corollary 3.5  Let us denote by |N|; := |N||piori, i € {1,00}. Then
-1

Dl < INJ, < INIZINJZ . 1< p< oo,

Conjecture 3.6  We know that D and N map L?(B) into L*°(B) for p > n. We have
that [Ng/e < ApHng and |Dgll < Bp|g|,, where

A f' -y bPx- Vg )q
r wn 1 xeB |x )’|" [x y]

= _|}’|x—y q 1/q
Bp_w”“‘ﬂ‘lvl1 /| [~ yl” [x, y]" ’7>| dy) :

Then we conjecture that

Vg  —1 T[1+q]T[1+ (-1+ 1)q]\ Va
A= o Uhpm b)) = et )

Y
By = w:_l ;T_pl(fBl(y,W(Ulw ) ay) "

_ *%(F[%]F[Hq]F[l(—1+n+q)]F[1+(—1+%MJ)W
T[E(-1+n)]T[Z4]r[2 + 1] '
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