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Classification of generalized Einstein
metrics on three-dimensional Lie groups
Vicente Cortés and David Krusche
Abstract. We develop the theory of left-invariant generalized pseudo-Riemannian metrics on Lie
groups. Such a metric accompanied by a choice of left-invariant divergence operator gives rise to
a Ricci curvature tensor, and we study the corresponding Einstein equation. We compute the Ricci
tensor in terms of the tensors (on the sum of the Lie algebra and its dual) encoding the Courant
algebroid structure, the generalized metric, and the divergence operator. The resulting expression
is polynomial and homogeneous of degree 2 in the coefficients of the Dorfman bracket and the
divergence operator with respect to a left-invariant orthonormal basis for the generalized metric.
We determine all generalized Einstein metrics on three-dimensional Lie groups.

1 Introduction

Generalized geometry was proposed by Hitchin [H] as a framework unifying complex
and symplectic structures. The two latter can be viewed as particular instances of
the notion of a generalized complex structure, the theory of which was developed
in [Gu1, Gu2] including a geometrization of Barannikov’s and Kontsevich’s extended
deformation theory.

Similarly, pseudo-Riemannian metrics have a fruitful counterpart in generalized
geometry, which can be used, for instance, to unify and geometrize the structures
involved in type II supergravity [CSW]. A generalized pseudo-Riemannian metric
together with a divergence operator is indeed sufficient to define a notion of general-
ized Ricci curvature and thus to pose a generalized Einstein equation as the vanishing
of the generalized Ricci curvature [GSt]. In the context of supergravity and string
theory, the divergence operator is related to the dilaton field, which is itself subject
to a field equation.

A generalized geometry formulation of minimal six-dimensional supergravity
has been given in [GS] with a particular case of the generalized Einstein equation
as the main bosonic equation of motion. It would be interesting to classify left-
invariant solutions on six-dimensional Lie groups using the theory developed in our
present work. We note that by taking, for instance, the product of a pair of three-
dimensional generalized Einstein Lie groups (as defined below in the introduction
and classified in our paper), we obtain a six-dimensional generalized Einstein Lie
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group. If one imposes, in addition, a self-duality condition on the three-form, one
arrives at (decomposable) solutions of the equation of motion mentioned above. Other
(indecomposable) solutions on products of three-dimensional Lie groups have been
constructed in [MS]. Examples of invariant Ricci-flat Bismut connections on compact
homogeneous Riemannian manifolds have been constructed in [GSt, PR1, PR2].
They include non-Bismut-flat examples [PR1, PR2] and give rise to invariant positive
definite solutions of the generalized Einstein equation with Riemannian divergence
operator.

In this paper, we focus on left-invariant generalized pseudo-Riemannian metrics
on Lie groups G. We develop the theory on arbitrary Lie groups in Section 2 and,
based on that theory, provide a complete classification of left-invariant solutions of
the generalized Einstein equation on three-dimensional Lie groups in Section 3.

First, we show in Proposition 2.4 that, up to an isomorphism, the generalized
metric G and the Courant algebroid structure are encoded in a pair (g , H) consisting
of a left-invariant pseudo-Riemannian metric g and a left-invariant closed three-
form H on G. Then we describe the space of left-invariant torsion-free and metric
generalized connections D on (G ,Gg , H) as a finite-dimensional affine space modeled
on the generalized first prolongation of so(g⊕ g∗) in Proposition 2.8, where Gg
denotes the generalized metric determined by g. Such generalized connections D are
called left-invariant Levi-Civita generalized connections. As part of the proof, we
construct a canonical left-invariant Levi-Civita generalized connection D0, which can
serve as an origin in the above affine space.

A left-invariant divergence operator on Γ(TG), whereTM denotes the generalized
tangent bundle of a manifold M, can be identified with an element δ ∈ E∗, where E =
g⊕ g∗. We say that a left-invariant generalized connection D has divergence operator
δ if δD = δ, where δD(v) ∶= tr(Dv), v ∈ E. Here, D is identified with an element of
E∗ ⊗ so(E), E ∋ u ↦ Du ∈ so(E). For instance, we have δD0 = 0 for the canonical
left-invariant Levi-Civita generalized connection D0, compare Proposition 2.15. In
Proposition 2.16, we specify for every δ ∈ E∗ a left-invariant Levi-Civita generalized
connection D such that δD = δ. We end Section 2.4 by observing that δ = 0 is not the
only canonical choice of left-invariant divergence operator on a Lie group. A more
general choice is to take δ as a fixed multiple of the trace-form τ of g. The choice δG =
−τ ○ π ∈ E∗, where π ∶ E → g is the canonical projection, corresponds precisely to the
divergence operator associated with the generalized connection trivially extending
the Levi-Civita connection of any left-invariant pseudo-Riemannian metric, as shown
in Proposition 2.17. The latter choice does therefore coincide with what is called the
Riemannian divergence operator [GSt].

In Section 2.5, we define the Ricci curvature of any pseudo-Riemannian generalized
Lie group (G ,Gg , H, δ) with prescribed divergence operator δ ∈ E∗ as a certain
element in E∗ ⊗ E∗ (see Definition 2.18). Then we express it in terms of the algebraic
data on the Lie algebra g. The starting point is the computation of the tensorial part of
the curvature of the canonical Levi-Civita generalized connection D0 in Proposition
2.19 as a homogeneous quadratic polynomial expression in the Dorfman bracket
B = [⋅, ⋅]H . The Ricci curvature of any pseudo-Riemannian generalized Lie group
(G ,Gg , H, δ = 0) with zero divergence operator is then obtained as a Corollary 2.20.
These results are then generalized to arbitrary δ by considering D = D0 + S, where S is
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an arbitrary element of the first generalized prolongation of so(E), leading to Lemma
2.23, Proposition 2.24, and Theorem 2.25.

For illustration, we give here the explicit expression for the Ricci curvature

Ricδ ∈ E∗− ⊗ E∗+ ⊕ E∗+ ⊗ E∗−

of a pseudo-Riemannian generalized Lie group (G ,Gg , H, δ), where E± stands for the
eigenspaces of the generalized metric. For u± ∈ E± and using the projections prE± ∶
E → E±, we consider the linear maps

Γu± ∶= prE± ○B(u± , ⋅)∣E∓ ∶ E∓ → E±.

Theorem 1.1 Let (G ,Gg , H, δ) be any pseudo-Riemannian generalized Lie group. Then
its Ricci curvature is given by

Ricδ(u−, u+) = − tr (Γu− ○ Γu+) + δ(prE+B(u− , u+)),
Ricδ(u+, u−) = − tr (Γu− ○ Γu+) + δ(prE−B(u+ , u−)).

This implies that the tensor Ricδ is polynomial of degree 2 and homogeneous in
the pair (B, δ). Note that it depends on the generalized metric and thus on g through
the projections prE± . An equivalent convenient component expression in an adapted
basis is given in Theorem 2.25, where also symmetry properties of Ricδ are discussed.

To derive an explicit expression for Ricδ in terms of the data (g, g , H) rather than
(g, g ,B), it suffices to express the Dorfman bracket B in terms of the Lie bracket
and the three-form H (see Proposition 2.26). In Proposition 2.27, we show that the
underlying metric g of an Einstein generalized pseudo-Riemannian Lie group (i.e.,
a left-invariant solution of Ricδ = 0) can be freely rescaled without changing the
Einstein property, provided that the three-form and the divergence are appropriately
rescaled. In Proposition 2.29, we relate the Ricci curvature Ricδ of the pseudo-
Riemannian generalized Lie group to the Ricci curvature of the left-invariant pseudo-
Riemannian metric g. We show that (G ,Gg , H = 0, δ = 0) is generalized Einstein if and
only if g satisfies a certain gradient Ricci soliton equation (22) involving the trace-form
τ of g. In particular, in the special case when g is unimodular, the generalized Einstein
equation reduces to the Einstein (vacuum) equation for g.

Next, we describe how, building on the general results of Section 2, in Section
3, we determine all left-invariant solutions (H,G, δ) to the Einstein equation on
three-dimensional Lie groups G, up to isomorphism. Here, H stands for the three-
form which, together with the Lie bracket, determines the exact Courant algebroid
structure, G stands for the generalized pseudo-Riemannian metric and δ for the
divergence required to define the Ricci curvature uniquely. The data (G , H,G, δ) can
be simply referred to as a generalized Einstein Lie group (three-dimensional in our
case).

Up to isomorphism, we can assume from the start that G = Gg is associated with
a left-invariant pseudo-Riemannian metric g on G, compare Proposition 2.4. In
the remaining part of the introduction, we will therefore simply speak of solutions
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(H, g , δ) on g, or more precisely as generalized Einstein structures on g. In particular,
we identify the left-invariant structures (H, g , δ) with tensors

H ∈
3
⋀g

∗, g ∈ Sym2
g
∗ and δ ∈ E∗ = (g⊕ g

∗)∗.

As a preliminary, we explain in Section 3.1 how, using the metric g, the Lie bracket
of g can be encoded in an endomorphism L ∈ Endg. Irrespective of the signature of
g, the endomorphism L happens to be g-symmetric if and only if the Lie algebra is
unimodular. This allows for the choice of an orthonormal basis of (g, g) in which L
takes one of five parameter-dependent normal forms, provided that g is unimodular
(see Proposition 3.2). Moreover, the Jacobi identity does not impose any constraint on
the normal form.

After these preliminaries, we give in Section 3.2, the classification of solutions with
zero divergence, that is solutions of the type (H, g , δ = 0), beginning with the class of
unimodular Lie algebras. The final results can be roughly summarized as follows (see
Theorems 3.4 and 3.8 and Remark 3.6).
Theorem 1.2 Any divergence-free generalized Einstein structure on a three-
dimensional unimodular Lie algebra is isomorphic to one in the following classes
(described explicitly in Theorem 3.4).
(1) g is abelian and H = 0. The metric g is flat of any signature.
(2) g is simple, H ≠ 0 and the metric g is of nonzero constant curvature. It is definite if

and only if g = so(3) and indefinite if and only if g = so(2, 1).
(3) H = 0, g is flat and g is one of the following metabelian Lie algebras: g = e(2) or

g = e(1, 1), where e(p, q) denotes the Lie algebra of the isometry group of Rp,q (the
affine pseudo-orthogonal Lie algebra). The metric is definite on [g, g] if and only if
g = e(2).

(4) g = heis is the Heisenberg algebra, H = 0 and g is flat and indefinite.
We note that the above list of Lie algebras,

R
3 , so(3), so(2, 1), e(2), e(1, 1), heis,

is precisely the list of all unimodular three-dimensional Lie algebras.
Theorem 1.3 Any divergence-free generalized Einstein structure on a three-
dimensional nonunimodular Lie algebra is of the type (H = 0, g), where g is indefinite,
nondegenerate on the unimodular kernel u = ker τ, τ = tr ○ ad, and belongs to a certain
one-parameter family of metrics on the metabelian Lie algebra

R ⋉A R
2 , A = ( 1 1

−1 1 ) .

The family of metrics (described in Theorem 3.8) consists of Ricci solitons which are not
of constant curvature.

The classification in the case of nonzero divergence is the content of Section 3.3.
The unimodular case is covered in Section 3.3, the nonunimodular case in Section 3.3.
To keep the introduction succinct, we do only summarize the isomorphism types of
the Lie algebras resulting from our classification without listing the detailed solutions,
which can be found in Theorem 3.12 and Propositions 3.15 and 3.16.
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Theorem 1.4 Any three-dimensional unimodular Lie algebra g admits a generalized
Einstein structure with nonzero divergence as well as a divergence-free solution (see
Theorem 3.12).
Theorem 1.5 Let (H, g , δ) be a generalized Einstein structure with nonzero
divergence on a three-dimensional nonunimodular Lie algebra g. Then either:
(1) The unimodular kernel of g is nondegenerate (with respect to g) and g = R ⋉A R

2,
where

A = ( 1 0
0 λ ) , λ ∈ (−1, 1], and H ≠ 0

(see Proposition 3.15 for a complete description of (H, g , δ)).
(2) Its unimodular kernel is degenerate, H = 0 and g = R ⋉A R

2, where A ∈ gl(2,R) is
arbitrary with only real eigenvalues and such that tr A ≠ 0 (see Proposition 3.16).

In Proposition 3.17, we indicate for which of the left-invariant generalized Einstein
structures the divergence δ coincides with the Riemannian divergence. We find that
this is not only the case for all divergence-free solutions on unimodular Lie algebras
but also for some of the nonunimodular cases with nonzero divergence. In the latter
case, the unimodular kernel can be both degenerate or nondegenerate with respect to
the metric g.

For better overview, the results of our classification are summarized in the tables
of Section 4.

2 Generalized Einstein metrics on Lie groups

In this section, we develop a general approach for the study of left-invariant general-
ized Einstein metrics on Lie groups.

2.1 Twisted generalized tangent bundle of a Lie group

Recall that the generalized tangent bundle of a smooth manifold M is the sum

TM ∶= TM ⊕ T∗M

of its tangent and its cotangent bundle and that any closed three-form H on M defines
on TM the structure of a Courant algebroid (see, e.g., [G, Example 2.5]). We will write
Tp M for the fiber at p ∈ M.

Here, we consider only the special case when M = G is a Lie group and the Courant
algebroid structure is left-invariant.

Let G be a Lie group with Lie algebra g and H a closed left-invariant three-form
on G. The H-twisted generalized tangent bundle of G is the vector bundle TG → G
endowed with the Courant algebroid structure (π, ⟨⋅, ⋅⟩, [⋅, ⋅]H) given by:
(1) The canonical projection π ∶ TG → TG, called the anchor.
(2) The canonical symmetric bilinear pairing ⟨⋅, ⋅⟩ ∈ Γ(Sym2(TG)∗), given by

⟨X + ξ, Y + η⟩ = 1
2
(ξ(Y) + η(Y)),

called the scalar product.
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(3) The (H-twisted) Dorfman bracket [⋅, ⋅]H ∶ Γ(TG) × Γ(TG) → Γ(TG), given by

[X + ξ, Y + η]H = LX(Y + η) − ιY dξ + H(X , Y , ⋅),(1)

where X , Y ∈ Γ(TG), ξ, η ∈ Γ(T∗G), L denotes the Lie derivative and ι the
interior product.

The above data satisfy the defining axioms of a Courant algebroid:
(C1) [u, [v , w]H]H = [[u, v]H , w]H + [v , [u, w]H]H ,
(C2) π(u)⟨v , w⟩ = ⟨[u, v]H , w⟩ + ⟨v , [u, w]H⟩, and
(C3) π(u)⟨v , w⟩ = ⟨u, [v , w]H + [w , v]H⟩,
for all u, v , w ∈ Γ(TG). It is well known that the above axioms imply the following
useful relations (compare [CD, Definition 1] and the references therein), which are
obvious from (1).
• The homomorphism of bundles π is a bracket-homomorphism, that is,

π[u, v]H = [πu, πv],

where [πu, πv] = Lπu(πv) denotes the Lie bracket of πu, πv ∈ Γ(TG).
• The map [u, ⋅]H ∶ Γ(TG) → Γ(TG) satisfies the Leibniz rule:

[u, f v]H = (πu)( f )v + f [u, v]H , ∀ f ∈ C∞(M).

For notational simplicity, we define

u( f ) ∶= (πu)( f ).(2)

We will identify left-invariant sections of TG (by evaluation at the neutral element
e ∈ G) with elements

X + ξ ∈ E = E(g) ∶= g⊕ g
∗(3)

and use the same notation to denote them. Correspondingly, the three-form H ∈
Γ(⋀3T∗G) will be identified with an element H ∈ ⋀3g∗. With these identifications,
⟨⋅, ⋅⟩ ∈ Sym2E∗ and the Dorfman bracket of X + ξ and Y + η ∈ g⊕ g∗ is

[X + ξ, Y + η]H = [X , Y] − ad∗X η − ιY dξ + H(X , Y , ⋅) ∈ g⊕ g
∗ ,(4)

where [X , Y] is the Lie bracket in g, ad∗X η = η ○ adX and d denotes the restriction of
the de Rham differential to left-invariant forms, such that −ιY dξ = ad∗Y ξ.

2.2 Generalized metrics on Lie groups

Definition 2.1 A generalized pseudo-Riemannian metric on a manifold M is a section
G ∈ Γ(Sym2(TM)∗) such that the endomorphism Gend ∈ Γ(EndTM) defined by

⟨Gend⋅, ⋅⟩ = G(5)

is an involution and G∣Sym2(T∗M) is nondegenerate. The pair (M ,G) is called a
generalized pseudo-Riemannian manifold. The prefix pseudo will be omitted when G

is positive definite.
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Note that for a generalized metric, equation (5) is equivalent to Gend = G−1 ○ ⟨⋅, ⋅⟩,
using the identification (TM)∗ ⊗ (TM)∗ = Hom(TM , (TM)∗) given by evaluation
in the first argument. We do also remark that the nondegeneracy of G∣Sym2(T∗M) is
automatic if G is positive or negative definite.

A left-invariant generalized metric on a Lie group G is identified (by evaluation at
the neutral element e ∈ G) with a generalized metric on g = Lie G as defined in the
following definition.

Definition 2.2 Let H be a left-invariant closed three-form on a Lie group G, which
we identify (by evaluation at e ∈ G) with an element H ∈ ⋀3 g∗. A generalized (pseudo-
Riemannian) metric on its Lie algebra g = Lie G is a symmetric bilinear form G ∈
Sym2E∗ (cf. (3)) such that Gend = G−1 ○ ⟨⋅, ⋅⟩ is an involution and G∣Sym2g∗ is non-
degenerate. The corresponding triple (G , H,G) will be called a pseudo-Riemannian
generalized Lie group and (g, H,G) a pseudo-Riemannian generalized Lie algebra. The
prefix pseudo will be omitted when G is positive definite.

Two pseudo-Riemannian generalized Lie groups (G , H,G) and (G′ , H′ ,G′) are
called isomorphic if there exists an isomorphism of Lie groups φ ∶ G → G′ and an
isomorphism of bundles Φ ∶ TG → TG′ covering φ such that Φ maps the Courant
algebroid structure (π, ⟨⋅, ⋅⟩, [⋅, ⋅]H) on G determined by H to the Courant algebroid
structure on G′ determined by H′ and the generalized metric G to the generalized
metric G′. The map Φ is called an isomorphism of pseudo-Riemannian generalized
Lie groups.

Similarly, two pseudo-Riemannian generalized Lie algebras (g, H,G) and
(g′ , H′ ,G′) are called isomorphic if there exists an isomorphism of Lie algebras φ ∶
g→ g′ and an isomorphism of vector spaces ϕ ∶ E(g) → E(g′) covering φ which maps
the data (⟨⋅, ⋅⟩, [⋅, ⋅]H ,G) on g (cf. (4)) to the data (⟨⋅, ⋅⟩′ , [⋅, ⋅]H′ ,G′) on g′. Here, ⟨⋅, ⋅⟩′
denotes the canonical symmetric pairing on E(g′) induced by the duality between g′

and (g′)∗. The map ϕ is called an isomorphism of pseudo-Riemannian generalized Lie
algebras.

Example 2.3 Let g be a left-invariant pseudo-Riemannian metric on G. We denote
the corresponding bilinear form on the Lie algebra g by the same symbol: g ∈ Sym2

g∗.
It extends to a generalized metric Gg ∈ Sym2E∗ such that

Gg(X + ξ, Y + η) = 1
2
(g(X , Y) + g−1(ξ, η))

for all X + ξ, Y + η ∈ E. The corresponding endomorphism Gend is

Gend = g ⊕ g−1 ∶ E = g⊕ g
∗ → E∗ = g

∗ ⊕ g.

Proposition 2.4 Let (G , H,G) be a pseudo-Riemannian generalized Lie group. Then
there exist a left-invariant pseudo-Riemannian metric g on G and a closed left-invariant
three-form H′ ∈ [H] ∈ H3(g) such that (G , H,G) is isomorphic to (G , H′ ,Gg), by an
isomorphism Φ covering the identity map of G.
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Proof The decomposition E = g⊕ g∗ gives rise to the following block decomposi-
tion

2G = (h A∗
A γ ) ,

where h ∈ Sym2
g, A ∈ End(g) and γ ∈ Sym2

g∗ is nondegenerate, as follows from the
symmetry of G and the nondegeneracy of G∣Sym2g∗ . In terms of g ∶= γ−1 ∈ Sym2

g, we
can write the necessary and sufficient conditions for

Gend = (A g−1

h A∗)(6)

to be an involution as

A2 + g−1h = 1, gA = −A∗g , hA = −A∗h,

where the last two equations mean that A is skew-symmetric for g and h. In particular,
we can write A = −g−1β for some β ∈ ⋀2 g∗. Solving the first equation for h, we obtain

h = g − gA2 = g + βA = g − βg−1β.

This implies that Gend = exp(B)(Gg)end exp(−B), where

B = (0 0
β 0) ,

or equivalently, G = exp(−B)∗Gg . Now it suffices to check that the map

ϕ = exp(−B) ∶ E → E , X + ξ ↦ X + ξ − βX ,

defines an isomorphism of pseudo-Riemannian generalized Lie algebras from
(g, H,G) to (g, H′ ,Gg) covering the identity map of g, where H′ = H + dβ. The
corresponding isomorphism Φ of pseudo-Riemannian generalized Lie groups is also
given by exp(−B), now considered as an endomorphism of TG. ∎

Remark 2.5 Clearly, a decomposition of the form (6) holds for any generalized
pseudo-Riemannian metric G on a manifold M. This shows that trGend = 0, since A is
skew-symmetric with respect to g.

2.3 Space of left-invariant Levi-Civita generalized connections

Let H be a closed three-form on a smooth manifold M and consider TM with the
Courant algebroid structure defined by H.

Definition 2.6 A generalized connection on M is a linear map

D ∶ Γ(TM) → Γ((TM)∗ ⊗TM), v ↦ Dv = (u ↦ Duv),

such that:
(1) Du( f v) = u( f )v + f Duv (anchored Leibniz rule), recall (2), and
(2) u⟨v , w⟩ = ⟨Duv , w⟩ + ⟨v , Duw⟩
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for all u, v , w ∈ Γ(TM). The torsion of a generalized connection D (with respect to the
Dorfman bracket [⋅, ⋅]H) is the section T ∈ Γ(⋀2(TM)∗ ⊗TM) defined by

T(u, v) ∶= Duv − Dvu − [u, v]H + (Du)∗v ,

where (Du)∗ is the adjoint of Du with respect to the scalar product (cf. [G]). The
generalized connection D is called torsion-free if T = 0.

Given a generalized pseudo-Riemannian metric G on M, we say that a generalized
connection D is metric if DG = 0, where Du ∶ Γ(TM) → Γ(TM) is extended to space
of sections of the tensor algebra over TM as a tensor derivation for all u ∈ Γ(TM).
More explicitly, the latter condition is

uG(v , w) = G(Duv , w) + G(v , Duw), ∀u, v , w ∈ Γ(TM).

This condition is satisfied if and only if D preserves the eigenbundles of Gend.
Any metric and torsion-free generalized connection on a generalized pseudo-

Riemannian manifold (M ,G) (endowed with the three-form H) is called a Levi-Civita
generalized connection.

It is known [G] that the torsion of a generalized connection is totally skew, that
is, T ∈ Γ(⋀2(TM)∗ ⊗TM) defines a section of ⋀3(TM)∗ upon identification TM ≅
(TM)∗ using the scalar product.

Given a reduction of the structure group O(n, n) ofTM, n = dim M, to a subgroup
L = O(n, n)S ⊂ O(n, n) defined by a tensor S ∈ ⊕∞k=0 ⊗k (Rn ⊕ (Rn)∗), we consider
the tensor field S which in any frame of the reduction has the same coefficients as S
in the standard basis of Rn ⊕ (Rn)∗. A generalized connection D is called compatible
with the L-reduction if DS = 0. It was shown in [CD] that a torsion-free generalized
connection (on a Courant algebroid) compatible with an L-reduction exists if and only
if its intrinsic torsion (defined in [CD, Definition 15]) vanishes. In that case, it was also
shown there that the space of compatible torsion-free generalized connections is an
affine space modeled on the space of sections of the generalized first prolongation
(so(TM)S)⟨1⟩ (defined in [CD, Definition 16]) of so(TM)S. Note that the fiber of
the bundle so(TM)S at a point p ∈ M is so(Tp M)Sp ≅ so(n, n)S = l = Lie L, so that
(so(TM)S)⟨1⟩∣p ≅ l⟨1⟩.

As a special case, we can apply the above theory to the case when S = G is a
generalized pseudo-Riemannian metric. The existence of a Levi-Civita generalized
connection shown in [G, Proposition 3.3] implies the following.

Proposition 2.7 Let (M ,G) be a generalized pseudo-Riemannian manifold and H a
closed three-form on M. Then the space of Levi-Civita generalized connections (with
respect to the H-twisted Dorfman bracket) is an affine space modeled on (so(TM)G)⟨1⟩.

A generalized connection D on a Lie group G is called left-invariant if Duv ∈ Γ(TG)
is left-invariant for all left-invariant sections u, v ∈ Γ(TG). A left-invariant generalized
connection on G can be identified with an element D ∈ E∗ ⊗ so(E), where we recall
that E = g⊕ g∗. Its torsion T is identified with an element T ∈ (⋀2 E∗ ⊗ E) ∩ (E∗ ⊗
so(E)) ≅ ⋀3 E∗. We denote by E+ and E− the eigenspaces of Gend ∈ End(E) for the
eigenvalues ±1, respectively. Note that dim E+ = dim E− = dim G =∶ n by Remark 2.5.
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Proposition 2.8 Let (G , H,G) be a pseudo-Riemannian generalized Lie group. Then
the space of left-invariant Levi-Civita generalized connections on G is an affine space
modeled on so(E)⟨1⟩ = Σ+ ⊕ Σ−, where Σ+ ⊂ E∗+ ⊗ so(E+) is the kernel of the map

∂ ∶ E∗+ ⊗ so(E+) →⋀3E∗

defined by

(∂α)(u, v , w) = ∑
S

⟨αuv , w⟩ u, v , w ∈ E ,(7)

and similarly for Σ− ⊂ E∗− ⊗ so(E−). Here, S indicates the sum over the cyclic permuta-
tions and αu ∈ so(E+) stands for evaluation of α ∈ E∗+ ⊗ so(E+) = Hom(E+, so(E+))
at u.

Moreover,

Σ+ = im(alt) ≅ Sym2E+ ⊗ E+
Sym3E+

is the image of the map

alt ∶ Sym2E∗+ ⊗ E∗+ → E∗+ ⊗ so(E+)
defined by

⟨alt(σ)uv , w⟩ = σ(u, v , w) − σ(u, w , v)
and similarly for Σ−.

Proof The first part of the proposition follows easily from the existence of a left-
invariant Levi-Civita generalized connection (to be shown at the end of the proof),
Proposition 2.7 and the definition of the generalized first prolongation [CD] as the
kernel of the natural map

∂ ∶ E∗ ⊗ so(E)G →⋀3E∗

given by the formula (7). To compute the kernel, we can first observe that so(E)G =
so(E+) ⊕ so(E−) ≅ ⋀2 E∗+ ⊕⋀2 E∗−. Since ∂ maps E∗ε1

⊗ so(Eε2) to E∗ε1
∧ E∗ε2

∧ E∗ε2
⊂

⋀3 E∗, ε1 , ε2 ∈ {−1, 1}, it suffices to consider the kernels of these four restrictions. On
tensors of mixed type ∂ is injective, such that ker ∂ = Σ+ ⊕ Σ−. The last part of the
corollary follows from the exact sequence

0 → Sym3V → Sym2V ⊗ V altV�→ V ⊗⋀2V ∂V�→⋀3V → 0(8)

that holds for any finite-dimensional vector space V and was used in [G]. Here, altV
is given by

(u ⊗ v + v ⊗ u) ⊗w ↦ u ⊗ v ∧w + v ⊗w ∧ u

and ∂V by

u ⊗ v ∧w ↦ u ∧ v ∧w .

We apply the sequence to V = E+ (and similarly to V = E−) using the metric identifica-
tions E+ ≅ E∗+ and so(E+) ≅ ⋀2 E∗+ ≅ ⋀2 E+, which allow to identify the natural maps
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altV and ∂V with alt ∶ Sym2E∗+ ⊗ E∗+ → E∗+ ⊗ so(E+) and ∂ ∶ E∗+ ⊗ so(E+) → ⋀3 E∗+,
respectively.

Now it suffices to show that there exists a left-invariant Levi-Civita generalized
connection. We consider the tensor B ∈ ⊗3 E∗ defined by

B(u, v , w) = ⟨[u, v]H , w⟩, u, v , w ∈ E .(9)

Lemma 2.9 B is totally skew.

Proof The skew-symmetry in (u, v) follows from axiom C3 in Section 2.1:

B(u, v , w) +B(v , u, w) = ⟨w , [u, v]H + [v , u]H⟩ = w⟨u, v⟩ = 0,

since ⟨u, v⟩ is a constant function. Using axiom C2, we obtain

B(u, v , w) = ⟨[u, v]H , w⟩ = u⟨v , w⟩ − ⟨v , [u, w]H⟩ = −B(u, w , v).

Now it suffices to observe that skew-symmetry in (u, v) and (v , w) implies total skew-
symmetry.

Next, we define

D0 ∶= 1
3
B∣⋀3 E+ ⊕

1
3
B∣⋀3 E− ⊕B∣E+⊗⋀2 E− ⊕B∣E−⊗⋀2 E+ .

As an element of E∗ ⊗⋀2 E∗ ≅ E∗ ⊗ so(E), it defines a left-invariant generalized
connection. It is metric, since it takes values in the subalgebra so(E+) ⊕ so(E−) ⊂
so(E). Since ∂B∣⋀3 E± = 3B∣⋀3 E± and ∂B∣E∓⊗⋀2 E± = B∣E∓∧E±∧E± , the torsion T D0 =
∂D0 −B of D0 is given by

T D0
= (B∣⋀3 E+ ⊕B∣⋀3 E− ⊕ ∂B∣E+⊗⋀2 E− ⊕ ∂B∣E−⊗⋀2 E+) −B = B −B = 0. ∎

Remark 2.10 Note that due to Lemma 2.9 and the Jacobi identity (axiom C1), the
tensor B together with the scalar product ⟨⋅, ⋅⟩ defines on E(g) the structure of a
quadratic Lie algebra. Such algebras are examples of Courant algebroids with trivial
anchor. Generalized metrics, generalized connections, and curvature on quadratic Lie
algebras have been studied in [ADG]. Their formulas are consistent with ours.

2.4 Levi-Civita generalized connections with prescribed divergence

In this subsection, we show that every left-invariant divergence operator on the
generalized tangent bundle of a generalized pseudo-Riemannian Lie group admits
a compatible left-invariant Levi-Civita generalized connection. We then give an
explicit construction of such a generalized connection in the case when G is asso-
ciated with a left-invariant pseudo-Riemannian metric as in Example 2.3. In view of
Proposition 2.4, there is no loss in generality by considering this special case.

Definition 2.11 A divergence operator on TM is a first-order differential operator δ ∶
Γ(TM) → C∞(M) which satisfies

δ( f v) = v( f ) + f δv ,

for all v ∈ Γ(TM), f ∈ C∞(M).
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Example 2.12 Let D be a generalized connection on M. Then

δDv = tr Dv , v ∈ Γ(TM),

defines a divergence operator on TM.

When M = G is a Lie group we can ask for a divergence operator δ on TG to be
left-invariant, that is, for the function δv to be left-invariant (i.e., constant) for all left-
invariant sections v of TG. Such operators can can be identified with elements of E∗ =
(TeG)∗.

It was proved in [G] that there always exists a Levi-Civita generalized connection
with a prescribed divergence. We now give a proof for this in our setting.

Proposition 2.13 Let (G , H,G) be a generalized pseudo-Riemannian Lie group of
dimension dim G ≥ 2 and δ ∈ E∗. Then there exists a left-invariant Levi-Civita gener-
alized connection D such that δD = δ.

Proof Let D ∈ E∗ ⊗ so(E) be a left-invariant Levi-Civita generalized connection.
Any other left-invariant Levi-Civita generalized connection can be written as D′ =
D + S, where S ∈ so(E)⟨1⟩ ⊂ E∗ ⊗ so(E) (see Proposition 2.8). The divergence opera-
tors are related by

δD′v − δDv = tr Sv = tr(u ↦ Suv), v ∈ E .(10)

We consider the linear form λS ∈ E∗ defined by

λS(v) ∶= tr Sv .(11)

It suffices to show that the linear map S ↦ λS is surjective. Given α, β ∈ E∗+ ≅ (E−)0 ⊂
E∗, the element S = alt(α2 ⊗ β) ∈ Σ+ ⊂ so(E)⟨1⟩ = Σ+ ⊕ Σ− has

λS = ⟨α, β⟩α − ⟨α, α⟩β.(12)

Since dim E+ = dim G ≥ 2, this proves that span{λS ∣ S ∈ Σ+} = E∗+, and similarly
span{λS ∣ S ∈ Σ−} = E∗−. ∎

Note that the condition dim G ≥ 2 is necessary. If dim G = 1, then the Levi-Civita
generalized connection D is unique and δD ∈ E∗ is zero.

From now on, we assume without loss of generality (see Proposition 2.4) that G =
Gg for some left-invariant pseudo-Riemannian metric g on G. We will first construct
a particular left-invariant Levi-Civita generalized connection D with δD = 0 ∈ E∗ and
later prescribe an arbitrary divergence operator by adding a suitable element of the
generalized first prolongation.

Adapted bases and notation

Let (va) = (v1 , . . . , vn) be a g-orthonormal basis of g and set εa ∶= g(va , va). Then

ea ∶= va + gva(13)

defines a G-orthonormal basis (ea)a=1, . . . ,n of E+ with G(ea , ea) = εa and

en+a ∶= va − gva(14)
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defines a G-orthonormal basis (e i)i=n+1,. . . ,2n of E− with G(en+a , en+a) = εa . Remem-
ber that ⟨⋅, ⋅⟩ = ±G on the summands E± of the decomposition E = E+ ⊕ E−, which
is orthogonal for both the generalized metric G as well as the scalar product ⟨⋅, ⋅⟩.
Summarizing, we have an orthonormal basis (eA)A=1, . . . ,2n of E adapted to the decom-
position E = E+ ⊕ E−. Note that ⟨eA, eB⟩ = εAδAB , where εa = −εn+a for a = 1, . . . , n.
From now on the indices a, b, . . . will always range from 1 to n, i , j, . . . will range from
n + 1 to 2n and A, B, . . . from 1 to 2n.

A left-invariant generalized connection D is completely determined by its coeffi-
cients ωC

AB with respect to the basis (eA):

DeA eB = ωc
AB e ∶ C ,

where, from now on, we use Einstein’s summation convention, according to which the
sum over an upper and a lower repeated index is understood. Equivalently, we may
use

ωABC ∶= ⟨DeA eB , eC⟩,(15)

which has the advantage that it is skew-symmetric in (B, C). In fact, any tensor
(ωABC) skew-symmetric in (B, C) defines a left-invariant generalized connection D
by the formula (15). We will say that (ωABC) are the connection coefficients of D.

The next proposition follows from the fact that D is metric if and only if DE± ⊂ E±.

Proposition 2.14 A left-invariant generalized connection D is metric if and only if
ωABC = 0 whenever B ∈ {1, . . . , n} and C ∈ {n + 1, . . . , 2n}.

Using the orthonormal basis (eA) of E, we define

BABC ∶= B(eA, eB , eC) = ⟨[eA, eB]H , eC⟩.(16)

Proposition 2.15 Let (G , H,Gg) be a generalized pseudo-Riemannian Lie group. The
following tensor (ωABC) defines the connection coefficients of a left-invariant Levi-Civita
generalized connection D0 with zero divergence δD0 :

ωabc ∶=
1
3
Babc , ω i jk ∶=

1
3
Bi jk , ω ibc ∶= Bibc , ωa jk ∶= Ba jk ,(17)

where a, b, c ∈ {1, . . . , n} and i , j, k ∈ {n + 1, . . . , 2n} and the remaining components
are zero. The connection D0 does not depend on the choice of orthonormal basis (va) of
g, from which the orthonormal basis (eA) of E = g⊕ g∗ was constructed. It is therefore a
canonical Levi-Civita generalized connection and will be called the canonical divergence-
free Levi-Civita generalized connection.

Proof The formulas (17) are precisely the connection coefficients of the left-invariant
Levi-Civita generalized connection D0 defined in the proof of Proposition 2.8. In
particular, D0 is independent of the basis (va). To show that the divergence δ of D0

vanishes, it suffices to remark that δ(eB) = ωA
AB vanishes due to ωa jc = ω ibk = 0 and

the total skew-symmetry of ωabc and ω i jk (with the above index ranges), implied by
Lemma 2.9. ∎

Proposition 2.16 Let (G , H,Gg) be a generalized pseudo-Riemannian Lie group
endowed with the canonical divergence-free Levi-Civita generalized connection D0 of
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Proposition 2.15. Fix an element δ ∈ E∗. Then a left-invariant Levi-Civita generalized
connection D with divergence δD = δ can be obtained as follows. Choose, as above,1 a
left-invariant orthonormal basis (eA) of E associated with an orthonormal basis of g.
Define the tensor S ∶= S+ + S−, where

S+ ∶= −alt(δ1ε2(e2)2 ⊗ e1 +
n
∑
a=2

δa ε1(e1)2 ⊗ ea) ∈ Σ+,

and similarly for S− ∈ Σ−. Here, (eA) denotes the basis of E∗ dual to (eA) and
δA = δ(eA). Then the left-invariant Levi-Civita generalized connection D = D0 + S has
divergence δ.

Proof From (10)–(12), we see that D = D0 + S has divergence δ, since

λS+ = −δ1ε2 λ(e2)2⊗e 1 −
n
∑
a=2

δa ε1 λ(e 1)2⊗e a =
n
∑
a=1

δa ea = δ∣E+

and similarly λS− = δ∣E− . ∎
We want to close this section by introducing a special divergence operator, the so-

called Riemannian divergence, which is considered in the literature ([GSt, Definition
2.46]). If (M ,G) is a generalized pseudo-Riemannian manifold, one defines for all
v ∈ Γ(TM),

δG(v) = tr (∇πv) = tr (Γ(TM) ∋ Y ↦ ∇Y π(v) ∈ Γ(TM)) ,

where ∇ is the Levi-Civita connection of the pseudo-Riemannian metric g associated
with G via Proposition 2.4. Denoting by μ the Riemannian density associated with g,
we recall the well-known fact that the divergence tr (∇X) of a vector field X can also
be expressed by LX μ

μ , since

LX μ = ∇X μ − (∇X) ⋅ μ = tr(∇X)μ.

The divergence operator δG can be recovered as the divergence of a generalized
connection as in Example 2.12. For that one, first extends the Levi-Civita connection
to a connection on TM and then pulls it back to a generalized connection ∇̃ via the
anchor π. Then

δ∇̃(v) = trTM (∇̃v) = trTM (∇π(v)) = δG(v),

since ∇̃v∣T∗M = 0 and π ○ ∇̃v∣TM = ∇π(v). Furthermore, note that ∇̃ is a Levi-Civita
generalized connection of G, if G = Gg and H = 0.

Proposition 2.17 Let (G , H,G) be a generalized pseudo-Riemannian Lie group. Then
the Riemannian divergence satisfies

δG(v) = −τ(π(v)), v ∈ E ,

where τ ∈ g∗ is the trace-form defined by τ(X) = tr adX , X ∈ g. In particular, the
Riemannian divergence is zero, if the Lie group G is unimodular.

1Compare (13) and (14).
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Proof Let v = X + ξ ∈ E and (va) as usual a basis of g, which is orthonormal with
respect to g. Furthermore, let ∇ be the Levi-Civita connection of g. It satisfies

g (∇X Y , Z) = 1
2
(g ([X , Y], Z) − g ([Y , Z], X) + g ([Z , X], Y))

for X , Y , Z ∈ g. We can thus compute

δG(X + ξ) = tr(∇X)
= ∑

a
εa g(∇va X , va)

= 1
2 ∑a

εa (g([va , X], va) − g([X , va], va) + g([va , va], X))

= −∑
a

εa g([X , va], va)

= − tr adX

= −τ(π(X + ξ)). ∎

2.5 Ricci curvatures and generalized Einstein metrics

After fixing a left-invariant section δ of (TG)∗ over a generalized pseudo-Riemannian
Lie group (G , H,G) we define and compute two canonical Ricci curvature tensors
Ric+ ∈ E∗− ⊗ E∗+ and Ric− ∈ E∗+ ⊗ E∗−, which depend only on the data (H,G, δ). A left-
invariant solution G of the system Ric+ = 0, Ric− = 0 is what we will call a generalized
Einstein metric on G with three-form H and dilaton δ.

Consider the generalized tangent bundle TM of a smooth manifold endowed with
the Courant algebroid structure associated with a closed three-form H on M and a
generalized pseudo-Riemannian metric G. We denote by (TM)± the eigenbundles of
Gend.

Given a Levi-Civita generalized connection D on TM and two sections u, v ∈
Γ(TM), we consider the differential operator R(u, v) ∶ Γ(TM) → Γ(TM) defined by

R(u, v)w ∶= Du Dvw − Dv Duw − D[u ,v]H w ,

for all w ∈ Γ(TM). It was observed in [G] that R restricts to tensor fields

R+D ∈ Γ ((TM)∗+ ⊗ (TM)∗− ⊗ so((TM)+)) ,
R−D ∈ Γ ((TM)∗− ⊗ (TM)∗+ ⊗ so((TM)−)) .

Hence there are tensor fields Ric+D ∈ Γ((TM)∗− ⊗ (TM)∗+) and Ric−D ∈ Γ((TM)∗+ ⊗
(TM)∗−) defined by

Ric+D(u, v) = tr R+D(⋅, u)v = tr (Γ(TM+) ∋ w ↦ R(w , u)v ∈ Γ(TM+)),
u ∈ Γ(TM−), v ∈ Γ(TM+),

Ric−D(u, v) = tr R−D(⋅, u)v = tr (Γ(TM−) ∋ w ↦ R(w , u)v ∈ Γ(TM−)),
u ∈ Γ(TM+), v ∈ Γ(TM−).
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It was also shown in [G] that the tensor fields Ric±D1
and Ric±D2

are the same for any
pair of Levi-Civita generalized connections D1, D2 with the same divergence operator
δD1 = δD2 .

As a consequence, the following definition is meaningful.

Definition 2.18 Let (G , H,G) be a generalized pseudo-Riemannian Lie group and
δ ∈ E∗. Then the Ricci curvatures

Ric+ = Ric+δ ∈ E∗− ⊗ E∗+ and Ric− = Ric−δ ∈ E∗+ ⊗ E∗−

of (G , H,G, δ) (or of (g, H,G, δ)) are defined by evaluation of Ric+D and Ric−D at e ∈ G,
where D is any left-invariant Levi-Civita generalized connection D with divergence δ.
(G , H,G, δ) is called generalized Einstein if

Ric ∶= Ric+ ⊕ Ric− = 0 ∈ E∗− ⊗ E∗+ ⊕ E∗+ ⊗ E∗− .

We will consider Ric as a bilinear form on E vanishing on E+ × E+ and E− × E−.

Next, we compute the Ricci curvatures in the case δ = 0 using the canonical
divergence-free Levi-Civita generalized connection of Proposition 2.15, which in the
following we denote by D0. The case of general divergence is then obtained by comput-
ing how the Ricci curvatures change under addition of an element of the generalized
first prolongation. We denote by R±D0 ∈ E∗± ⊗ E∗∓ ⊗ so(E±) the tensors which corre-
spond to the left-invariant tensor fields R±D0 ∈ Γ ((TG)∗± ⊗ (TG)∗∓ ⊗ so((TG)±)).

Proposition 2.19 Let D0 be the canonical divergence-free Levi-Civita generalized
connection of a generalized pseudo-Riemannian Lie group (G , H,Gg), defined in Propo-
sition 2.15. The components RABCD ∶= ⟨R(eA, eB)eC , eD⟩, A, B, C , D ∈ {1, . . . , 2n}, of
the tensors R±D0 are given by

Ra jcd =
2
3
B�

a jBc�d +
1
3
B�

jcB�ad +
1
3
B�

caB� jd ,

R ibk� =
2
3
Bc

ibBkc� +
1
3
Bc

bkBc i� +
1
3
Bc

kiBcb� ,

where a, b, c, d ∈ {1, . . . , n} and i , j, k, � ∈ {n + 1, . . . , 2n}.

Proof We denote by ηAB = ⟨eA, eB⟩ the coefficients of the scalar product with respect
to the orthonormal basis (eA) and by ωABC and ωC

AB = ∑D ηCD ωABD the connection
coefficients of D0. Here, ηAB = ηAB are the coefficients of the induced scalar product
on E∗. Then (taking into account the agreed index ranges) we compute

R+D0(ea , e j)ec = (ωd
jc ω f

ad − ωd
ac ω f

jd −BD
a jω

f
Dc)e f ,

= (ωd
jc ω f

ad − ωd
ac ω f

jd −Bd
a jω

f
dc −B�

a jω
f
�c)e f

= ( 1
3
Bd

jcB
f
ad −

1
3
Bd

acB
f
jd −

1
3
Bd

a jB
f
dc −B�

a jB
f
�c)e f ,
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where the index f runs from 1 to n and BC
AB = BABD ηDC . Next, we observe that the

axiom (C1), the Jacobi identity for the Dorfman bracket, can be written in components
as

∑
S(A,B ,C)

BF
ADB

D
BC = 0,

where the cyclic sum is over (A, B, C). Specializing to (A, B, C , F) = (a, j, c, f ),
we get

0 = ∑
S(a , j,c)

B
f
aDB

D
jc = ∑

S(a , j,c)
(B f

adB
d
jc +B

f
a�B

�
jc).

So we obtain

R+D0(ea , e j)ec = −
⎛
⎝
B�

a jB
f
�c +

1
3 ∑

S(a , j,c)
B�

jcB
f
a�
⎞
⎠

e f

= (2
3
B�

a jB
f
c� +

1
3
B�

jcB
f
�a +

1
3
B�

caB
f
� j) e f .

Taking the scalar product with ed gives the claimed formula for Ra jcd . The other
formula is obtained similarly. ∎
Corollary 2.20 Let (G , H,Gg) be a generalized pseudo-Riemannian Lie group. Then
the Ricci curvature of (G , H,Gg , δ = 0) is symmetric, in the sense that Ric+(u, v) =
Ric−(v , u) for all u ∈ E−, v ∈ E+. The components R ia ∶= Ric+(e i , ea) of Ric+ are
given by

R ia = B
j
b iB

b
a j ,

where a, b ∈ {1, . . . , n} and i , j ∈ {n + 1, . . . , 2n}.

Proof From Proposition 2.19, by taking the trace using the complete skew-symmetry
of BABC (see Lemma 2.9), we get

R ia = Rai =
2
3
B

j
b iB

b
a j +

1
3
B

j
abB

b
ji

= ηbb′η j j′ (2
3
Bbi jBa j′b′ +

1
3
Bab′ j′B jib)

= ηbb′η j j′Bbi jBa j′b′ = B
j
b iB

b
a j . ∎

For u± ∈ E±, we define

Γu+ ∶= prE+ ○ [u+, ⋅]H ∣E− ∶ E− → E+, Γu− ∶= prE− ○ [u−, ⋅]H ∣E+ ∶ E+ → E− .(18)

Corollary 2.21 A necessary and sufficient condition for (G , H,Gg , δ = 0) to be gener-
alized Einstein is that the subspace

ΓE+ ⊂ Hom(E−, E+) is perpendicular to ΓE− ⊂ Hom(E+, E−),
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with respect to the nondegenerate pairing Hom(E−, E+) × Hom(E+, E−) → R given by
(A, B) ↦ tr(AB) = tr(BA). A sufficient condition in terms of the subspaces ΓE±E∓ ⊂ E±
is that

ΓE+E− ⊥ [E−, E−]H or ΓE−E+ ⊥ [E+, E+]H .(19)

Proof The necessary and sufficient condition follows immediately from

R ia = Rai = B
j
b iB

b
a j = − tr(Γea ○ Γe i ).

Any of the two (nonequivalent) conditions ΓE+ ○ ΓE− = 0 or ΓE− ○ ΓE+ = 0 is clearly
sufficient. These can be reformulated as (19), since, by Lemma 2.9,

⟨Γu+v−, w+⟩ = −⟨v−, [u+ , w+]H⟩ and ⟨Γu−v+ , w−⟩ = −⟨v+ , [u− , w−]H⟩,
for all u+, v+ , w+ ∈ E+, u− , v− , w− ∈ E−. ∎

Next, we will compute the Ricci curvature of an arbitrary left-invariant Levi-
Civita generalized connection D = D0 + S on (G , H,Gg), where D0 is the canonical
divergence-free Levi-Civita generalized connection and S is an arbitrary element of
the first generalized prolongation of so(E).
Lemma 2.22 The curvature tensors R±D ∈ Hom(E± ⊗ E∓ ⊗ E±, E±) of D are given by

R±D = R±D0 + dD0
S∣E±⊗E∓⊗E± ,(20)

where

(dD0
S)(u, v , w) = (dD0

S)(u, v)w ∶= D0
u(Sv)w − D0

v(Su)w − S[u ,v]H w , u, v , w ∈ E .

Proof A straightforward calculation shows that

R±D = R±D0 + (dD0
S + [S , S])∣E±⊗E∓⊗E± ,

where

[S , S](u, v , w) = [S , S](u, v)w ∶= [Su , Sv]w , u, v , w ∈ E .

We observe that the map [S , S] ∶ (u, v , w) ↦ [Su , Sv]w vanishes on E+ ⊗ E− ⊗ E+ and
on E− ⊗ E+ ⊗ E−, since SE E± ⊂ E± and SE±E∓ = 0. This proves (20). ∎

In the following, we denote by (dD0
S)± the restriction of dD0

S to an element

(dD0
S)± ∈ Hom(E± ⊗ E∓ ⊗ E±, E±) ≅ Hom(E± ⊗ E∓, End E±).

Lemma 2.23 We have R±D = R±D0 + (dD0
S)± and

(dD0
S)±(u, v)w = −(D0

v S)uw ,

for all (u, v , w) ∈ E± × E∓ × E±.
Proof The first formula is just (20). Since D0E± ⊂ E± and SE±E∓ = 0, we have

(dD0
S)±(u, v)w = −D0

v(Su)w − S[u ,v]H w = −(D0
v S)uw − SD0

v uw − S[u ,v]H w .
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Using that D0 is torsion-free, we can write [u, v]H = D0
uv − D0

v u, since (D0u)∗v = 0
for all (u, v) ∈ E± × E∓. Hence,

−SD0
v uw − S[u ,v]H w = −SD0

u vw = 0,

again because D0E± ⊂ E± and SE±E∓ = 0. This proves the lemma. ∎

Proposition 2.24 Let δ be a divergence operator on E and S ∈ so(E)⟨1⟩ such that the
Levi-Civita generalized connection D0 + S has divergence δ. Then the Ricci curvatures
Ric±δ of a generalized pseudo-Riemannian Lie group (G , H,Gg , δ) with arbitrary diver-
gence δ ∈ E∗ are related to the Ricci curvatures Ric±0 of (G , H,Gg , 0) by

Ric±δ = Ric±0 + trE±(dD0
S)± = Ric±0 − D0δ∣E∓⊗E± ,(21)

where

(trE+ α)(e i , eb) = tr(u ↦ α(u, e i)eb),

for any α ∈ E∗+ ⊗ E∗− ⊗ E∗+ ⊗ E+ and, similarly,

(trE− β)(ea , e j) = tr(u ↦ β(u, ea)e j),

when β ∈ E∗− ⊗ E∗+ ⊗ E∗− ⊗ E−. Here, we are assuming the usual index ranges for a, b and
i , j.

Proof An element S of the first generalized prolongation of so(E) such that D0 + S
has divergence δ exists due to Proposition 2.13. The first equation follows from Lemma
2.22 by taking traces. The formula

trE±(dD0
S)± = −D0δ∣E∓⊗E±

is a consequence of Lemma 2.23, since the trace maps trE+ and trE− are parallel for any
metric generalized connection. In fact, for instance,

trE+(dD0
S)+(e i , eb) = − trE+ ((D0

e i
S)eb) = −D0

e i
(trE+ S) eb = −(D0

e i
δ)eb ,

where the trE+ S ∈ E∗ is defined by (trE+ S)v ∶= trE+(Sv) = tr(E+ ∋ u ↦ Suv ∈ E+) for
all v ∈ E and we have used that trE+(Sv) = tr(Sv) = δ(v) for all v ∈ E+. ∎

Summarizing, we obtain the following theorem.

Theorem 2.25 The components Rδ
ia = Ric+δ (e i , ea) and Rδ

ai = Ric−δ (ea , e i) of the Ricci
curvature tensors Ric±δ of a generalized pseudo-Riemannian Lie group (G , H,Gg , δ)
with arbitrary divergence δ ∈ E∗ are given as follows:

Rδ
ia = B

j
b iB

b
a j +Bc

ia δc ,

Rδ
ai = B

j
b iB

b
a j +B

j
ai δ j .

In particular, the Ricci tensor Ricδ = Ric+δ ⊕ Ric−δ is symmetric if and only if, δ satisfies
the equationBc

ia δc = B
j
ai δ j . It is skew-symmetric if (G , H,Gg , 0) is generalized Einstein

andBc
ia δc = −B j

ai δ j . (Recall that we are always assuming the usual index ranges for a, b
and i , j.)
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In terms of the linear maps Γu± ∶ E∓ → E± defined in (18) for u± ∈ E±, we have

Ric+δ (u− , u+) = − tr (Γu− ○ Γu+) + δ(prE+[u− , u+]H),
Ric−δ (u+ , u−) = − tr (Γu− ○ Γu+) + δ(prE−[u+ , u−]H).

The theorem shows that the Ricci curvature is completely determined by the one-
form δ and the coefficients Ba jk and Bibc of the Dorfman bracket in the orthonormal
basis (eA) = (ea , e i). For future use, we do now compute the latter coefficients in terms
of the coefficients of the Lie bracket (the structure constants) and the coefficients of
the three-form H using (4). Recall that (va) was a g-orthonormal basis of g. More
precisely, we have gab = g(va , vb) = ⟨ea , eb⟩ = ηab . We denote the corresponding
structure constants of the Lie algebra g by κc

ab , such that

[va , vb] = κc
abvc .

Note that κabc = κd
ab gdc = κd

ab ηdc for κabc ∶= ⟨[va , vb], vc⟩.
Proposition 2.26 The Dorfman coefficients Ba jk , Bibc , Babc , and Bi jk (a, b, c ∈
{1, . . . , n}, i , j, k ∈ {n + 1, . . . , 2n}) are related to the structure constant κabc as follows:

Ba jk =
1
2
(Ha j′k′ − κa j′k′ + κ j′k′a − κk′a j′) ,

Bibc =
1
2
(H i′bc + κi′bc − κbc i′ + κc i′b) ,

Babc =
1
2
(Habc + (∂κ)abc) ,

Bi jk =
1
2
(H i′ j′k′ − (∂κ)i′ j′k′) ,

where i′ = i − n, for i ∈ {n + 1, . . . , 2n} and (∂κ)abc = κabc + κbca + κcab .

Proof Using (4),we compute

[ea , e j]H = [va + gva , v j′ − gv j′]H = [va , v j′]H − [va , gv j′]H + [gva , v j′]H

= [va , v j′] + H(va , v j′ , ⋅) + ad∗va
(gv j′) − ιv j′

d(gva)
= [va , v j′] + H(va , v j′ , ⋅) + g(v j′ , [va , ⋅]) + g(va , [v j′ , ⋅]).

It follows that

Ba jk = ⟨[ea , e j]H , ek⟩ = ⟨[ea , e j]H , vk′ − gvk′⟩

= 1
2
(H(va , v j′ , vk′) + g(v j′ , [va , vk′]) + g(va , [v j′ , vk′]) − g(vk′ , [va , v j′]))

= 1
2
(Ha j′k′ + κak′ j′ + κ j′k′a − κa j′k′)

= 1
2
(Ha j′k′ − κk′a j′ + κ j′k′a − κa j′k′) .

The proof of the second formula is similar, where now

[e i , eb]H = [v i′ , vb] + H(v i′ , vb , ⋅) − g(vb , [v i′ , ⋅]) − g(v i′ , [vb , ⋅]).

The remaining equations are obtained in the same way. ∎
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The next result shows that the underlying metric g of an Einstein generalized
pseudo-Riemannian Lie group can be freely rescaled without changing the Einstein
property, provided that the three-form and the divergence are appropriately rescaled.

Proposition 2.27 Let g be a left-invariant pseudo-Riemannian metric and H a closed
left-invariant three-form on a Lie group G. Consider g′ = εμ−2 g and H′ = εμ−2H, where
ε ∈ {±1} and μ > 0. Then the generalized pseudo-Riemannian Lie group (G , H,Gg) is
Einstein with divergence δ ∈ E∗ if and only if (G , H′ ,Gg′) is Einstein with divergence
δ′ = μδ.

Proof Let (va) be a g-orthonormal basis of g. Then v′a = μva defines a g′-
orthonormal basis (v′a). The corresponding basis (e′A) of E, where e′a = v′a + g′v′a
and e i = v i − g′v′i , is still orthonormal with respect to the scalar product: ⟨e′A, e′B⟩ =
ε⟨eA, eB⟩. The structure constants κ′abc ∶= g′([v′a , v′b], v′c) with respect to the basis
(v′a) areκ′abc = εμκabc . Similarly, H′(v′a , v′b , v′c) = εμH(va , vb , vc). Finally, from these
formulas and Proposition 2.26, we see that B′ABC ∶= ⟨[e′A, e′B]H′ , e′C⟩ = εμBABC . Tak-
ing into account that ⟨e′A, e′B⟩ = ε⟨eA, eB⟩, we conclude that (B′)C

AB ∶= (η′)CDB′ABD =
μBC

AB . Now Theorem 2.25 together with Proposition 2.15 shows that the coefficients
of the Ricci curvatures Ric of (G , H,Gg , δ) and Ric′ of (G , H′ ,Gg′ , δ′) are related by
Ric′(e′A, e′B) = μ2Ric(eA, eB). ∎

Remark 2.28 Denote by ∇ the Levi-Civita connection of the pseudo-Riemannian
metric g and define its coefficients with respect to the orthonormal frame (va) as
Γabc ∶= g(∇va vb , vc). Then

Γabc =
1
2
(g([va , vb], vc) − g([vb , vc], va) + g([vc , va], vb)) =

1
2
(κabc − κbca + κcab)

and hence the Dorfman coefficients Ba jk and Bibc can be expressed by

Ba jk =
1
2
(Ha j′k′ − 2Γa j′k′) =

1
2

Ha j′k′ − Γa j′k′ ,

Bibc =
1
2
(H i′bc + 2Γi′bc) =

1
2

H i′bc + Γi′bc .

Proposition 2.29 Let g be a left-invariant pseudo-Riemannian metric on a Lie group G.
Consider the generalized pseudo-Riemannian Lie group (G , H = 0,Gg). Then the Ricci
curvature Ric+0 = Ric±δ ∣δ=0 of the generalized metric Gg is related to the Ricci curvature
Ricg of the metric g by

Ric+0 (v − gv , u + gu) = Ric−0 (u + gu, v − gv) = Ricg(u, v) + (∇u τ)(v), u, v ∈ g,

where τ ∈ g∗ is the trace-form defined by τ(v) = tr adv .

Proof The symmetry of the Ricci tensor of Gg follows from δ = 0. Therefore, it
suffices to compute R ia = Ric+(e i , ea) from Theorem 2.25 and to compare with Rg

ai′ =
Ricg(va , v i′), i′ = i − n. Note first that, by Remark 2.28, we have

Bk
a j = Γk′

a j′ , Bc
ib = Γc

i′b ,
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since H = 0 and ⟨e j , ek⟩ = −⟨e j′ , ek′⟩ = −g(v j′ , vk′). Hence, using Lemma 2.9 and the
fact that the Levi-Civita connection has zero torsion, we obtain

R ia = B
j
b iB

b
a j = −Γ j′

bi′Γ
b
j′a = −Γ j′

bi′(Γb
a j′ + κb

j′a).

On the other hand, we have

Rg
ai′ = Γd

ai′Γ
f
f d − Γd

f i′Γ
f
ad − κd

f a Γ f
d i′ = Γd

ai′Γ
f
f d + R ia .

To compute the first term, we note that since the Levi-Civita connection is metric, we
have

Γ f
f d = κ

f
f d = −τd = −τ(vd),

and hence

Γd
ai′Γ

f
f d = −Γd

ai′τd = (∇τ)ai′ = (∇va τ)v i′ . ∎

Corollary 2.30 Let g be a left-invariant pseudo-Riemannian metric on a Lie group
G. Then the generalized pseudo-Riemannian Lie group (G , H = 0,Gg) is Einstein with
divergence δ = 0 if and only if g satisfies the following Ricci soliton equation

Ricg +∇τ = 0,(22)

where τ is the trace-form. The form τ is always closed and, hence, the solutions of the
above equation are gradient Ricci solitons, if the first Betti number of the manifold G
vanishes.

Proof For all u, v ∈ g, we have

(dτ)(u, v) = −τ([u, v]) = −tr ad[u ,v] = −tr [adu , adv] = 0. ∎

Corollary 2.31 Let g be a left-invariant pseudo-Riemannian metric on a unimodular
Lie group G. Then the generalized pseudo-Riemannian Lie group (G , H = 0,Gg) is
Einstein with divergence δ = 0 if and only if g is Ricci-flat.

3 Classification results in dimension 3

3.1 Preliminaries

Let G be a three-dimensional Lie group endowed with a left-invariant pseudo-
Riemannian metric g and an orientation. We will identify g with a nondegenerate
symmetric bilinear form g ∈ Sym2

g∗. We begin by showing that the Lie bracket can
be encoded in an endomorphism L of g and study its properties.

Following Milnor [M], but allowing indefinite metrics, we denote by L ∈ Endg the
endomorphism such that

[u, v] = L(u × v), ∀u, v ∈ g,(23)

where the cross-product × ∈ ⋀2 g∗ ⊗ g is defined by

g(u × v , w) = volg(u, v , w),(24)
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using the metric volume form volg . In terms of an oriented orthonormal basis (va),
we have

va × vb = εcvc , εc = g(vc , vc),

for every cyclic permutation (a, b, c) of {1, 2, 3}. This implies that

[va , vb] = εc Lvc , ∀ cyclic (a, b, c) ∈S3 .(25)

We denote by (La
b) the matrix of L in the above basis,

Leb = La
b ea ,

and by Lab = La
c g cb , the coefficients of the corresponding tensor L ○ g−1 ∈

Hom(g∗, g) ≅ g⊗ g.
From (25), we see that the structure constants κc

ab of g with respect to the basis
(va) can be written as

κc
ab = εabd Lcd ,

where εabd = volg(va , vb , vd) (in particular, ε123 = 1).
The following lemma is a straightforward generalization of [M, Lemma 4.1].

Lemma 3.1 The endomorphism L is symmetric with respect to g if and only if g is
unimodular.

Proof Note first that L is symmetric with respect to g if and only if the matrix (Lab)
is symmetric. Therefore, the calculation

tr adva = κb
ab = εabc Lbc

shows that L is symmetric if and only if tr adva = 0 for all a, i.e., if and only if g is
unimodular. ∎
Proposition 3.2 Let g be a nondegenerate symmetric bilinear form on an oriented
three-dimensional unimodular Lie algebra g. Then there exists an orthonormal basis
(va) of (g, g) such that g(v1 , v1) = g(v2 , v2) and such that the symmetric endomor-
phism L defined in Equation (23) is represented by one of the following matrices:

L1(α, β, γ) =
⎛
⎜
⎝

α 0 0
0 β 0
0 0 γ

⎞
⎟
⎠

, L2(α, β, γ) =
⎛
⎜
⎝

γ 0 0
0 α −β
0 β α

⎞
⎟
⎠

,

L3(α, β) =
⎛
⎜
⎝

β 0 0
0 1

2 + α 1
2

0 − 1
2 − 1

2 + α

⎞
⎟
⎠

, L4(α, β) =
⎛
⎜
⎝

β 0 0
0 − 1

2 + α − 1
2

0 1
2

1
2 + α

⎞
⎟
⎠

,

L5(α) =
⎛
⎜⎜
⎝

α 1√
2 0

1√
2 α 1√

2
0 − 1√

2 α

⎞
⎟⎟
⎠

,

where α, β, γ ∈ R and g(v3 , v3) = −g(v2 , v2) for the normal forms L2 , . . . , L5. If g is
definite, then the orthonormal basis can be chosen such that L is represented by a
diagonal matrix L1(α, β, γ) and each diagonal matrix is realized in this way. If g is
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indefinite, then each of the above normal forms is realized by some unimodular Lie
bracket.

Proof It is well known that every symmetric endomorphism on a Euclidean vector
space can be diagonalized. According to [CEHL, Lemma 2.2] and the references
therein, for an indefinite scalar product on a three-dimensional vector space, there
are the five normal forms of a symmetric bilinear form, from which one easily
obtains the five normal forms L1(α, β, γ), L2(α, β, γ), L3(α, β), L4(α, β), and L5(α)
for a symmetric endomorphism. It remains to check that for each of these normal
forms (La

b), the bracket with structure constants κc
ab = εabd Lcd satisfies the Jacobi

identity.
All the cases can be treated simultaneously by considering (La

b) of the form

⎛
⎜
⎝

α λ 0
λ β μ
0 ε2ε3 μ γ

⎞
⎟
⎠

,

where λ, μ ∈ R. For the corresponding endomorphism L, we have

Jac(v1 , v2 , v3) ∶= [v1 , [v2 , v3]] + [v2 , [v3 , v1]] + [v3 , [v1 , v2]] = ∑[va , εa Lva]
= ε1 λ[v1 , v2] + ε2 λ[v2 , v1] + ε3 μ[v2 , v3] + ε3 μ[v3 , v2] = 0,

where we have used that ε1 = ε2. ∎

3.2 Classification in the case of zero divergence

3.2.1 Unimodular Lie groups

Proposition 3.3 If (H,Gg , δ = 0) is a divergence-free generalized Einstein structure
on an oriented three-dimensional unimodular Lie group G, then there exists a g-
orthonormal basis (va) of g such that g(v1 , v1) = g(v2 , v2) and such that the symmetric
endomorphism L defined in equation (23) is either of the form L1(α, β, γ), that is L is
diagonalizable by an orthonormal basis, or of one of the forms L3(0, 0) or L4(0, 0). In
the nondiagonalizable case, the three-form H is zero.

Proof In the Euclidean case, any symmetric endomorphism is always diagonalizable
by an orthonormal basis. So we may assume that the scalar product is indefinite. By
Proposition 3.2, there is an orthonormal basis (va), such that the endomorphism L
takes one of the normal forms L1(α, β, γ), L2(α, β, γ), L3(α, β), L4(α, β), or L5(α)
from said proposition. As in the proof of Proposition 3.2, we can treat all cases at once
by considering the matrix

⎛
⎜
⎝

α λ 0
λ β μ
0 −μ γ

⎞
⎟
⎠

.

Recall that we assume ε1 = ε2 = −ε3, where εa = g(va , va). Using equation (25), we
obtain the structure constants κabc = εcκ

c
ab of the Lie algebra in the following way.
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The bracket is given by

κa
12va = [v1 , v2] = ε3Lv3 = ε3 μv2 + ε3γv3 = −ε2 μv2 + ε3γv3 ,

κa
23va = [v2 , v3] = ε1Lv1 = ε1αv1 + ε1 λv2 = ε1αv1 + ε2 λv2 ,
κa

31va = [v3 , v1] = ε2Lv2 = ε2 λv1 + ε2βv2 − ε2 μv3 = ε1 λv1 + ε2βv2 + ε3 μv3 ,

and hence

κ121 = 0, κ122 = ε2κ
2
12 = −μ, κ123 = ε3κ

3
12 = γ,

κ231 = ε1κ
1
23 = α, κ232 = ε2κ

2
23 = λ, κ233 = 0,

κ311 = ε1κ
1
31 = λ, κ312 = ε2κ

2
31 = β, κ313 = ε3κ

3
31 = μ.

The remaining structure constants are determined by the skew-symmetry of κabc in
the first two components.

By Proposition 2.26, the Dorfman coefficients are given as follows:

B145 =
1
2
(H112 − κ112 + κ121 − κ211) = κ121 = 0,

B146 =
1
2
(H113 − κ113 + κ131 − κ311) = −κ311 = −λ,

B156 =
1
2
(H123 − κ123 + κ231 − κ312) =

1
2
(h − γ + α − β) ,

B245 =
1
2
(H212 − κ212 + κ122 − κ221) = κ122 = −μ,

B246 =
1
2
(H213 − κ213 + κ132 − κ321) =

1
2
(−h + γ − β + α) ,

B256 =
1
2
(H223 − κ223 + κ232 − κ322) = κ232 = λ,

B345 =
1
2
(H312 − κ312 + κ123 − κ231) =

1
2
(h − β + γ − α) ,

B346 =
1
2
(H313 − κ313 + κ133 − κ331) = −κ313 = −μ,

B356 =
1
2
(H323 − κ323 + κ233 − κ332) = κ233 = 0,

B412 =
1
2
(H112 + κ112 − κ121 + κ211) = −κ121 = 0,

B413 =
1
2
(H113 + κ113 − κ131 + κ311) = κ311 = λ,

B423 =
1
2
(H123 + κ123 − κ231 + κ312) =

1
2
(h + γ − α + β) ,

B512 =
1
2
(H212 + κ212 − κ122 + κ221) = −κ122 = μ,

B513 =
1
2
(H213 + κ213 − κ132 + κ321) =

1
2
(−h − γ + β − α) ,

B523 =
1
2
(H223 + κ223 − κ232 + κ322) = −κ232 = −λ,
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B612 =
1
2
(H312 + κ312 − κ123 + κ231) =

1
2
(h + β − γ + α) ,

B613 =
1
2
(H313 + κ313 − κ133 + κ331) = κ313 = μ,

B623 =
1
2
(H323 + κ323 − κ233 + κ332) = −κ233 = 0.

Now, Theorem 2.25 allows us to compute the Ricci curvature (for zero divergence δ)
with respect to the orthonormal basis (eA) = (ea , e i), ea = va + gva , e i = v i′ − gv i′ , of
E = g⊕ g∗ as

R ia = ∑
j,b

B
j
b iB

b
a j = ∑

j,b
Bbi jBa jb(−ε j′)εb = ∑

j,b
Bbi jB jab ε j′ εb ,(26)

where we have used that ⟨e i , e i⟩ = −⟨e i′ , e i′⟩ = −ε i′ and the standard index ranges
a, b ∈ {1, 2, 3}, i , j ∈ {4, 5, 6}.

R41 = B245B512ε2ε2 +B345B513ε2ε3 +B246B612ε3ε2 +B346B613ε3ε3

= B245B512 −B345B513 −B246B612 +B346B613

= −μ2 − 1
4
(h − β + γ − α) (−h − γ + β − α)

− 1
4
(−h + γ − β + α) (h + β − γ + α) − μ2

= −2μ2 − 1
4
(α2 − (h − (β − γ))2 + α2 − (h + (β − γ))2)

= −2μ2 − 1
2

α2 + 1
2

h2 + 1
2
(β − γ)2 ,

R42 = B145B521ε2ε1 +B345B523ε2ε3 +B146B621ε3ε1 +B346B623ε3ε3

= 0 −B345B523 +B146B612 + 0

= 1
2

λ (h − β + γ − α) − 1
2

λ (h + β − γ + α)

= −λ (β − γ + α) ,
R43 = B145B531ε2ε1 +B245B532ε2ε2 +B146B631ε3ε1 +B246B632ε3ε2

= 0 −B245B523 +B146B613 + 0
= −2μλ,

R51 = B254B412ε1ε2 +B354B413ε1ε3 +B256B612ε3ε2 +B356B613ε3ε3

= 0 +B345B413 −B256B612 + 0

= 1
2

λ (h − β + γ − α) − 1
2

λ (h + β − γ + α)

= −λ (β − γ + α) ,
R52 = B154B421ε1ε1 +B354B423ε1ε3 +B156B621ε3ε1 +B356B623ε3ε3

= 0 +B345B423 +B156B612 + 0

= 1
4
(h − β + γ − α) (h + γ − α + β) + 1

4
(h − γ + α − β) (h + β − γ + α)
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= 1
4
((h + (γ − α))2 − β2 + (h − (γ − α))2 − β2)

= − 1
2

β2 + 1
2

h2 + 1
2
(γ − α)2 ,

R53 = B154B431ε1ε1 +B254B432ε1ε2 +B156B631ε3ε1 +B256B632ε3ε2

= 0 +B245B423 +B156B613 + 0

= − 1
2

μ (h + γ − α + β) + 1
2

μ (h − γ + α − β)

= −μ (γ − α + β) ,
R61 = B264B412ε1ε2 +B364B413ε1ε3 +B265B512ε2ε2 +B365B513ε2ε3

= 0 +B346B413 −B256B512 + 0
= −2λμ,

R62 = B164B421ε1ε1 +B364B423ε1ε3 +B165B521ε2ε1 +B365B523ε2ε3

= 0 +B346B423 +B156B512 + 0

= − 1
2

μ (h + γ − α + β) + 1
2

μ (h − γ + α − β)

= −μ (γ − α + β) ,
R63 = B164B431ε1ε1 +B264B432ε1ε2 +B165B531ε2ε1 +B265B532ε2ε2

= B146B413 +B246B423 +B156B513 +B256B523

= −λ2 + 1
4
(−h + γ − β + α) (h + γ − α + β)

+ 1
4
(h − γ + α − β) (−h − γ + β − α) − λ2

= −2λ2 + 1
4
(γ2 − (h + (β − α))2 + γ2 − (h − (β − α))2)

= −2λ2 + 1
2

γ2 − 1
2

h2 − 1
2
(β − α)2 .

We see that the Einstein equations yield a system of homogeneous quadratic equations
in the real variables α, β, γ, λ, and μ.

The normal form L5(α) is excluded by equation R43 = 0 for any α ∈ R.
Equation R53 = 0 for the normal form L2(α, β, γ) reads as

0 = β (2α − γ) .

If β = 0, then the matrix is diagonal, so assume that γ = 2α. Then R52 = 0 yields

0 = − 1
2

α2 + 1
2

h2 + 1
2
(α − γ)2

= 1
2

h2 − αγ + 1
2

γ2

= 1
2

h2 ,

https://doi.org/10.4153/S0008414X23000056 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000056


Classification of generalized Einstein metrics on three-dimensional Lie groups 2065

and hence h = 0. Therefore, equation R41 = 0 is

0 = −2β2 − 1
2

γ2 ,

which gives β = γ = 0. Hence, L is diagonalizable by an orthonormal basis.
If we consider the normal form L3(α, β), the equation R53 = 0 is

0 = − 1
2
(α − 1

2
− β + α + 1

2
) = − 1

2
(2α − β) ,

and hence 2α = β. Now, the equation for R41 yields

0 = −2( 1
2
)

2
− 1

2
β2 + 1

2
h2 + 1

2
(α + 1

2
− α + 1

2
)

2

= − 1
2
− 1

2
β2 + 1

2
h2 + 1

2

= − 1
2

β2 + 1
2

h2 ,

and hence β2 = h2. Applying this to the equation R52 = 0 gives

0 = − 1
2
( 1

2
+ α)

2
+ 1

2
h2 + 1

2
(α − 1

2
− β)

2

= − 1
2
( 1

2
+ α)

2
+ 1

2
h2 + 1

2
(−α − 1

2
)

2

= 1
2

h2 .

From that, see h = 0, and therefore α = β = 0.
A similar computation for L4(α, β) shows that the only possibility is L4(0, 0) with

h = 0. ∎

Theorem 3.4 Let (H,Gg) be a divergence-free generalized Einstein structure on an
oriented three-dimensional unimodular Lie group G. If the endomorphism L ∈ Endg
defined in (24) is diagonalizable, then there exists an oriented g-orthonormal basis (va)
of g = Lie G and α1 , α2 , α3 , h ∈ R such that

[va , vb] = αc εcvc , ∀ cyclic (a, b, c) ∈S3 , H = hvolg ,(27)

where εa = g(va , va) satisfies ε1 = ε2. The constants (α1 , α2 , α3 , h) can take the following
values:
(1) α1 = α2 = α3 = ±h, in which case g is either abelian and g is flat (the case h = 0) or g

is isomorphic to so(2, 1) or so(3). The case so(3) occurs precisely when g is definite
(and h ≠ 0).

(2) There exists a cyclic permutation σ ∈S3 such that

ασ(1) = ασ(2) ≠ 0 and h = ασ(3) = 0.

In this case, g is flat and [g, g] is abelian of dimension 2, that is, g is metabelian.
More precisely, g is isomorphic to e(2) (g definite on [g, g]) or e(1, 1) (g indefinite on
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[g, g]), where e(p, q) denotes the Lie algebra of the isometry group of the pseudo-
Euclidean space Rp,q .

If the endomorphism is not diagonalizable (g is necessarily indefinite in this case), then
h = 0 and the Lie group G is isomorphic to the Heisenberg group.

Proof Assume first that L is diagonalizable. Note that the existence of (α1 , α2 , α3 , h)
such that (27) is an immediate consequence of the diagonalizability of L. The corre-
sponding structure constants κabc are given by

κabc = αc , ∀ cyclic (a, b, c) ∈S3 .

In virtue of Proposition 2.26, this implies the following:2

(1) For all a, b, c ∈ {1, 2, 3},

Babc =
1
2
(h + α1 + α2 + α3)εabc ,

where εabc = volg(va , vb , vc).
(2) For all i , j, k ∈ {4, 5, 6},

Bi jk =
1
2
(h − α1 − α2 − α3)ε i′ j′k′ ,

where i′ = i − 3 for all i ∈ {4, 5, 6}.
(3) For a ∈ {1, 2, 3} and j, k ∈ {4, 5, 6}, the coefficients

Ba jk =
1
2
(Ha j′k′ − κa j′k′ + κ j′k′a − κk′a j′)

are given explicitly by

B156 = −B165 =
1
2
(h − α3 + α1 − α2) =∶

1
2

X1 ,

B264 = −B246 =
1
2
(h − α1 + α2 − α3) =∶

1
2

X2 ,

B345 = −B354 =
1
2
(h − α2 + α3 − α1) =∶

1
2

X3 ,

with all other components equal to zero.
(4) For i ∈ {4, 5, 6} and b, c ∈ {1, 2, 3}, the coefficients

Bibc =
1
2
(H i′bc + κi′bc − κbc i′ + κc i′b)

are given explicitly by

B423 = −B432 =
1
2
(h + α3 − α1 + α2) =∶

1
2

Y1 ,

B531 = −B513 =
1
2
(h + α1 − α2 + α3) =∶

1
2

Y2 ,

B612 = −B621 =
1
2
(h + α2 − α3 + α1) =∶

1
2

Y3 ,

with all other components equal to zero.

2The first two formulas are not needed for the proof. They are only included for future use.
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From these formulas and equation (26), we can now compute the components

R ia = ∑
j,b

Bbi jB jab ε j′ εb

of the Ricci curvature (for zero divergence δ = 0) with respect to the orthonormal basis
(eA) = (ea , e i), ea = va + gva , e i = v i′ − gv i′ , of E = g⊕ g∗. Explicitly, we obtain

R41 = B246B612ε3ε2 +B345B513ε2ε3 = −
ε2ε3

4
(X2Y3 + X3Y2),

R52 = B156B621ε3ε1 +B354B423ε1ε3 = −
ε1ε3

4
(X1Y3 + X3Y1),

R63 = B264B432ε1ε2 +B165B531ε2ε1 = −
ε1ε2

4
(X1Y2 + X2Y1),

with all other components equal to zero. We conclude that the generalized Einstein
equations reduce to a system of three homogeneous quadratic equations in the
variables Xa and Ya :

X1Y2 + X2Y1 = X1Y3 + X3Y1 = X2Y3 + X3Y2 = 0.

A priori, we can distinguish four types of solutions depending on how many compo-
nents of the vector (X1 , X2 , X3) are equal to zero: 0, 1, 2, or 3.

Solutions of type 0: X1 X2 X3 ≠ 0 implies Y1 = Y2 = Y3 = 0 and finally

α1 = α2 = α3 = −h ≠ 0.

In this case, the Lie algebra g is isomorphic to so(2, 1) or so(3). The latter case happens
if and only if the metric g is definite.

Solutions of type 1: assume, for example, that X1 X2 ≠ 0, X3 = 0. This implies that
Y3 = 0 and, hence, α3 = α1 + α2 and h = 0. But then, the equation X1Y2 + X2Y1 = 0
reduces to α1α2 = 0, which is inconsistent with X1 X2 ≠ 0. This shows that solutions
of type 1 do not exist.

Solutions of type 2: assume, for example, that X1 ≠ 0, X2 = X3 = 0. This implies
Y2 = Y3 = 0 and finally h = α1 = 0, α2 = α3 ≠ 0. So the solutions of type 2 are of the
following form. There exists a cyclic permutation σ ∈S3 such that

ασ(1) = ασ(2) ≠ 0 and h = ασ(3) = 0.

We conclude, for solutions of type 2, that g is flat (see Corollary 2.31) and g is
metabelian. [g, g] = span{vσ(1) , vσ(2)} is two-dimensional and advσ(3) acts on it by a
nonzero g-skew-symmetric endomorphism. This implies that g is isomorphic to e(2)
or e(1, 1).

Solutions of type 3: assume X1 = X2 = X3 = 0. This implies

α1 = α2 = α3 = h.

In this case, g is either abelian and g is flat (the case h = 0 again by Corollary 2.31) or
g is isomorphic to so(2, 1) or so(3), as for type 0.

If L is not diagonalizable, then g is indefinite and there exists an orthonormal basis
(va)a with g(v1 , v1) = g(v2 , v2) = −g(v3 , v3) such that L is either of the form L3(0, 0)
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or L4(0, 0), and h = 0 by Proposition 3.3. We consider first the case L3(0, 0). To prove
that G is isomorphic to the Heisenberg group, we show, using equation (25), that
the generators P ∶= v1 , Q ∶= v2 + v3 and R ∶= ε2(v3 − v2) of its Lie algebra g satisfy the
relations [P, Q] = R and [P, R] = [Q , R] = 0:

[P, Q] = [v1 , v2 + v3] = [v1 , v2] − [v3 , v1]
= ε3Lv3 − ε2Lv2

= 1
2

ε3v2 −
1
2

ε3v3 −
1
2

ε2v2 +
1
2

ε2v3

= − 1
2

ε2v2 +
1
2

ε2v3 −
1
2

ε2v2 +
1
2

ε2v3

= ε2(v3 − v2)
= R,

[P, R] = [v1 , ε2(v3 − v2)] = −ε2[v3 , v1] − ε2[v1 , v2]
= −ε2ε2Lv2 − ε2ε3Lv3

= −Lv2 + Lv3

= − 1
2

v2 +
1
2

v3 +
1
2

v2 −
1
2

v3

= 0,
[Q , R] = [v2 + v3 , ε2(v3 − v2)]

= ε2[v2 , v3] − ε2[v3 , v2]
= 2ε2[v2 , v3]
= 2ε2ε1Lv1

= 0.

In the case that L takes the form L4(0, 0), we see analogously that the generators
P = v1 , Q = v2 + v3 and R = ε2(v2 − v3) satisfy the relations [P, Q] = R and [P, R] =
[Q , R] = 0. ∎

3.2.2 Nonunimodular Lie groups

We assume now that the Lie group G is not unimodular. Let u ∶= {x ∈ g ∣ tr adx = 0} be
the unimodular kernel of g. It can be easily checked that u is a two-dimensional abelian
ideal of g, containing the commutator ideal [g, g]. This means that the Lie algebra g is
a semidirect product of R and R

2, where R is acting on R
2 by an endomorphism with

nonzero trace. For details on the classification of nonunimodular, three-dimensional
Lie algebras in terms of the Jordan normal form of this endomorphism, we refer to
[GOV, Chapter 7, Theorem 1.4].

We first treat the case that the restriction g∣u×u of the metric g to u is nondegenerate.

Proposition 3.5 Let (H,Gg , δ = 0) be a divergence-free generalized Einstein structure
on a three-dimensional nonunimodular Lie group G. Let u be the unimodular kernel of
the Lie algebra g and assume that g∣u×u is nondegenerate. Then H = 0 and g is indefinite.
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Furthermore, there exists an orthonormal basis (va) of (g, g) such that v1 , v3 ∈ u and
g(v1 , v1) = g(v2 , v2) = −g(v3 , v3) and a positive constant θ > 0 such that

[v1 , v3] = 0,
[v2 , v1] = θv1 − θv3 ,
[v2 , v3] = θv1 + θv3 .

Proof A g-orthonormal basis (va)a of g such that v1 , v3 ∈ u exists, because g∣u×u is
nondegenerate. Since u is an abelian ideal, there are λ, μ, ν, ρ ∈ R such that

[v3 , v1] = 0,
[v2 , v1] = ε1 λv1 + ε3 μv3 ,
[v2 , v3] = ε1νv1 + ε3ρv3 ,

with 0 ≠ tr adv2 = ε1 λ + ε3ρ. Using λ = κ211 , μ = κ213 , ν = κ231 and ρ = κ233, we can
compute the Dorfman coefficients

B145 =
1
2
(H112 − κ112 + κ121 − κ211) = −κ211 = −λ,

B146 =
1
2
(H113 − κ113 + κ131 − κ311) = −κ311 = 0,

B156 =
1
2
(H123 − κ123 + κ231 − κ312) =

1
2
(h + κ213 + κ231) =

1
2
(h + μ + ν) ,

B245 =
1
2
(H212 − κ212 + κ122 − κ221) = −κ212 = 0,

B246 =
1
2
(H213 − κ213 + κ132 − κ321) =

1
2
(−h − κ213 + κ231) = −

1
2
(h + μ − ν) ,

B256 =
1
2
(H223 − κ223 + κ232 − κ322) = κ232 = 0,

B345 =
1
2
(H312 − κ312 + κ123 − κ231) =

1
2
(h − κ213 − κ231) =

1
2
(h − μ − ν) ,

B346 =
1
2
(H313 − κ313 + κ133 − κ331) = −κ313 = 0,

B356 =
1
2
(H323 − κ323 + κ233 − κ332) = κ233 = ρ,

B412 =
1
2
(H112 + κ112 − κ121 + κ211) = κ211 = λ,

B413 =
1
2
(H113 + κ113 − κ131 + κ311) = κ311 = 0,

B423 =
1
2
(H123 + κ123 − κ231 + κ312) =

1
2
(h − κ213 − κ231) =

1
2
(h − μ − ν) ,

B512 =
1
2
(H212 + κ212 − κ122 + κ221) = κ212 = 0,

B513 =
1
2
(H213 + κ213 − κ132 + κ321) =

1
2
(−h + κ213 − κ231) = −

1
2
(h − μ + ν) ,

B523 =
1
2
(H223 + κ223 − κ232 + κ322) = −κ232 = 0,
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B612 =
1
2
(H312 + κ312 − κ123 + κ231) =

1
2
(h + κ213 + κ231) =

1
2
(h + μ + ν) ,

B613 =
1
2
(H313 + κ313 − κ133 + κ331) = κ313 = 0,

B623 =
1
2
(H323 + κ323 − κ233 + κ332) = −κ233 = −ρ.

To prove that the case ε1 = ε3 cannot occur, we compute using equation (26),

R52 = B154B421ε1ε1 +B354B423ε1ε3 +B156B621ε3ε1 +B356B623ε3ε3

= B145B412 −B345B423 −B156B612 +B356B623

= −λ2 − 1
4
(h − μ − ν)2 − 1

4
(h + μ + ν)2 − ρ2 ,

where we have used that ε1 = ε3. But this can only be zero if λ = ρ = 0, which
contradicts 0 ≠ tr adv2 = ε1 λ + ε3ρ. This proves that ε1 = −ε3. Hence, we can assume
that the basis is chosen such that ε1 = ε2 = −ε3.

In this case, the components of the Ricci curvature are

R41 = B245B512ε2ε2 +B345B513ε2ε3 +B246B612ε3ε2 +B346B613ε3ε3

= 0 −B345B513 −B246B612 + 0

= 1
4
(h − μ − ν) (h − μ + ν) + 1

4
(h + μ − ν) (h + μ + ν)

= 1
4
((h − μ)2 − ν2 + (h + μ)2 − ν2)

= 1
2
(h2 + μ2 − ν2) ,

R42 = B145B521ε2ε1 +B345B523ε2ε3 +B146B621ε3ε1 +B346B623ε3ε3

= 0,
R43 = B145B531ε2ε1 +B245B532ε2ε2 +B146B631ε3ε1 +B246B632ε3ε2

= −B145B513 + 0 + 0 +B246B623

= − 1
2

λ (h − μ + ν) + 1
2

ρ (h + μ − ν) ,

R51 = B254B412ε1ε2 +B354B413ε1ε3 +B256B612ε3ε2 +B356B613ε3ε3

= 0,
R52 = B154B421ε1ε1 +B354B423ε1ε3 +B156B621ε3ε1 +B356B623ε3ε3

= B145B412 +B345B423 +B156B612 +B356B623

= −λ2 + 1
4
(h − μ − ν)2 + 1

4
(h + μ + ν)2 − ρ2

= −λ2 + 1
2

h2 + 1
2
(μ + ν)2 − ρ2 ,

R53 = B154B431ε1ε1 +B254B432ε1ε2 +B156B631ε3ε1 +B256B632ε3ε2

= 0,
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R61 = B264B412ε1ε2 +B364B413ε1ε3 +B265B512ε2ε2 +B365B513ε2ε3

= −B246B412 + 0 + 0 +B356B513

= 1
2

λ (h + μ − ν) − 1
2

ρ (h − μ + ν) ,

R62 = B164B421ε1ε1 +B364B423ε1ε3 +B165B521ε2ε1 +B365B523ε2ε3

= 0,
R63 = B164B431ε1ε1 +B264B432ε1ε2 +B165B531ε2ε1 +B265B532ε2ε2

= 0 +B246B423 +B156B513 + 0

= − 1
4
(h + μ − ν) (h − μ − ν) − 1

4
(h + μ + ν) (h − μ + ν)

= − 1
4
((h − ν)2 − μ2 + (h + ν)2 − μ2)

= − 1
2
(h2 + ν2 − μ2) .

Imposing the Einstein condition, we see from the equations R41 + R63 = 0 and R41 −
R63 = 0, that h2 = 0 and μ2 = ν2. If μ = −ν, then R52 = 0 reads as 0 = −λ2 − ρ2,
hence λ = ρ = 0, which contradicts 0 ≠ tr adv2 = ε1 λ + ε3ρ. Therefore, μ = ν and, from
R52 = 0,

2μ2 = λ2 + ρ2 .

In particular, μ ≠ 0, due to 0 ≠ tr adv2 = ε1 λ + ε3ρ. Note now that μ = ν implies that
the endomorphism M ∈ End(u), defined as the restriction of adv2 to u, is symmetric.
A simple consequence of [CEHL, Lemma 2.2] (compare Proposition 3.2) is that there
exists an orthonormal basis of u such that M is represented by one of the matrices

M1(θ , η) = ( θ 0
0 η ) , M2(θ , η) = ( θ −η

η θ ) ,

M3(θ) = (
1
2 + θ 1

2
− 1

2 − 1
2 + θ ) , M4(θ) = ( − 1

2 + θ − 1
21

2
1
2 + θ ) ,

in this basis. We may assume that the basis v1 , v3 of u is chosen such that M takes one
of these normal forms with respect to v1 , v3. We see that M1(θ , η) is excluded by the
condition μ ≠ 0. Applying 2μ2 = λ2 + ρ2 to the normal form M3(θ) yields

2( 1
2
)

2
= ( 1

2
+ θ)

2
+ (− 1

2
+ θ)

2
= 2( 1

2
)

2
+ θ2 .

Hence, θ = 0, which contradicts tr adv2 ≠ 0. For the same reason, M also cannot have
the normal form M4(θ). In the remaining case M2(θ , η), the equation 2μ2 = λ2 + ρ2

reads as 2 (−η)2 = θ2 + (−θ)2. Therefore, η = ±θ. Furthermore, η ≠ 0 because μ ≠ 0.
Hence, the only two normal forms are

M2(θ , θ) = ( θ −θ
θ θ ) , M2(θ ,−θ) = ( θ θ

−θ θ ) , θ ≠ 0.
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Replacing v1 by −v1 (exchanging M2(θ , θ) with M2(θ ,−θ)) and v2 by −v2 (replacing
θ by −θ), if necessary, we obtain the claimed equations for θ > 0. ∎

Remark 3.6 Note that, while all the occurring Lie algebras in the previous propo-
sition are nonisomorphic as metric Lie algebras, they are isomorphic as Lie algebras.
They are a semidirect product of R2 and R, where R acts on R

2 by the endomorphism
adv2 ∣u, which has nonreal and nonimaginary eigenvalues (1 + i)θ and (1 − i)θ. This
corresponds to the Lie algebra r′3,1(R) in the notation of [GOV, Chapter 7, Theorem
1.4].

Proposition 3.7 There is no divergence-free generalized Einstein structure (H,Gg , δ =
0) on a three-dimensional nonunimodular Lie group G such that g is degenerate on the
unimodular kernel u of g.

Proof Note first that the metric g necessarily has to be indefinite. We define ε ∶= 1 if
the signature of g is (2, 1) and ε ∶= −1 if it is (1, 2). Note that in both cases, there is a
two-dimensional subspace of g on which εg is positive definite. Taking the intersection
with u, we obtain a one-dimensional subspace generated by a vector w1 such that
g(w1 , w1) = ε. Next, we choose a generator w2 of the kernel of g∣u×u and a null vector
w3 orthogonal to w1 such that g(w2 , w3) = ε

2 . Summarizing, we obtain a basis (wa) of
g such that

g(w1 , w1) = ε, g(w1 , w2) = g(w1 , w3) = g(w2 , w2) = g(w3 , w3) = 0, g(w2 , w3) =
ε
2

(28)

and w1 , w2 ∈ u. Denote by θ c
ab the structure constants of g in the basis (wa), [wa , wb] =

θ c
abwc . Then

[w1 , w2] = 0,
[w3 , w1] = θ1

31w1 + θ2
31w2 ,

[w3 , w2] = θ1
32w1 + θ2

32w2 ,

with 0 ≠ tr adw3 = θ1
31 + θ2

32 . The basis v1 ∶= w1 , v2 ∶= w2 +w3 , v3 ∶= w2 −w3 of g is
orthonormal with respect to g satisfying g(v1 , v1) = g(v2 , v2) = −g(v3 , v3). If we
define λ ∶= −ε1θ1

31 , μ ∶= −ε2
1
2 θ2

31 , ν ∶= −ε12θ1
32 and ρ ∶= −ε2θ2

32, where εa = g(va , va),
then

κc
12vc = [v1 , v2] = [w1 , w2 +w3] = − [w3 , w1]

= −θ1
31w1 − θ2

31w2

= −θ1
31v1 −

1
2

θ2
31v2 −

1
2

θ2
31v3

= ε1 λv1 + ε2 μv2 − ε3 μv3 ,
κc

23vc = [v2 , v3] = [w2 +w3 , w2 −w3] = −2 [w3 , w2]
= −2θ1

32w1 − 2θ2
32w2

= −2θ1
32v1 − θ2

32v2 − θ2
32v3

= ε1νv1 + ε2ρv2 − ε3ρv3 ,
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κc
31vc = [v3 , v1] = [w2 −w3 , w1] = − [w3 , w1]

= −θ1
31w1 − θ2

31w2

= −θ1
31v1 −

1
2

θ2
31v2 −

1
2

θ2
31v3

= ε1 λv1 + ε2 μv2 − ε3 μv3 ,

with λ + ρ ≠ 0. Hence, the structure constants κabc of g with respect to (va)a are

κ121 = λ, κ122 = μ, κ123 = −μ,
κ231 = ν, κ232 = ρ, κ233 = −ρ,
κ311 = λ, κ312 = μ, κ313 = −μ.

Now, the Dorfman coefficients are

B145 =
1
2
(H112 − κ112 + κ121 − κ211) = κ121 = λ,

B146 =
1
2
(H113 − κ113 + κ131 − κ311) = −κ311 = −λ,

B156 =
1
2
(H123 − κ123 + κ231 − κ312) =

1
2
(h + μ + ν − μ) = 1

2
(h + ν) ,

B245 =
1
2
(H212 − κ212 + κ122 − κ221) = κ122 = μ,

B246 =
1
2
(H213 − κ213 + κ132 − κ321) =

1
2
(−h − μ − μ + ν) = − 1

2
(h + 2μ − ν) ,

B256 =
1
2
(H223 − κ223 + κ232 − κ322) = κ232 = ρ,

B345 =
1
2
(H312 − κ312 + κ123 − κ231) =

1
2
(h − μ − μ − ν) = 1

2
(h − 2μ − ν) ,

B346 =
1
2
(H313 − κ313 + κ133 − κ331) = −κ313 = μ,

B356 =
1
2
(H323 − κ323 + κ233 − κ332) = κ233 = −ρ,

B412 =
1
2
(H112 + κ112 − κ121 + κ211) = −κ121 = −λ,

B413 =
1
2
(H113 + κ113 − κ131 + κ311) = κ311 = λ,

B423 =
1
2
(H123 + κ123 − κ231 + κ312) =

1
2
(h − μ − ν + μ) = 1

2
(h − ν) ,

B512 =
1
2
(H212 + κ212 − κ122 + κ221) = −κ122 = −μ,

B513 =
1
2
(H213 + κ213 − κ132 + κ321) =

1
2
(−h + μ + μ − ν) = − 1

2
(h − 2μ + ν) ,

B523 =
1
2
(H223 + κ223 − κ232 + κ322) = −κ232 = −ρ,

B612 =
1
2
(H312 + κ312 − κ123 + κ231) =

1
2
(h + μ + μ + ν) = 1

2
(h + 2μ + ν) ,
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B613 =
1
2
(H313 + κ313 − κ133 + κ331) = κ313 = −μ,

B623 =
1
2
(H323 + κ323 − κ233 + κ332) = −κ233 = ρ.

By equation (26), the components of the generalized Ricci curvature are

R41 = B245B512ε2ε2 +B345B513ε2ε3 +B246B612ε3ε2 +B346B613ε3ε3

= B245B512 −B345B513 −B246B612 +B346B613

= −μ2 + 1
4
(h − 2μ − ν) (h − 2μ + ν) + 1

4
(h + 2μ − ν) (h + 2μ − ν) − μ2

= −2μ2 + 1
4
((h − 2μ)2 − ν2 + (h + 2μ)2 − ν2)

= −2μ2 + 1
2

h2 + 1
2
(2μ)2 − 1

2
ν2

= 1
2

h2 − 1
2

ν2 ,

R42 = B145B521ε2ε1 +B345B523ε2ε3 +B146B621ε3ε1 +B346B623ε3ε3

= −B145B512 −B345B523 +B146B612 +B346B623

= λμ + 1
2

ρ (h − 2μ − ν) − 1
2

λ (h + 2μ + ν) + ρμ

= 1
2

ρ (h − ν) − 1
2

λ (h + ν) ,

R43 = B145B531ε2ε1 +B245B532ε2ε2 +B146B631ε3ε1 +B246B632ε3ε2

= −B145B513 −B245B523 +B146B613 +B246B623

= 1
2

λ (h − 2μ + ν) + μρ + λμ − 1
2

ρ (h + 2μ − ν)

= 1
2

λ (h + ν) − 1
2

ρ (h − ν) ,

R51 = B254B412ε1ε2 +B354B413ε1ε3 +B256B612ε3ε2 +B356B613ε3ε3

= −B245B412 +B345B413 −B256B612 +B356B613

= μλ + 1
2

λ (h − 2μ − ν) − 1
2

ρ (h + 2μ + ν) + ρμ

= 1
2
(h − ν) − 1

2
(h + ν) ,

R52 = B154B421ε1ε1 +B354B423ε1ε3 +B156B621ε3ε1 +B356B623ε3ε3

= B145B412 +B345B423 +B156B612 +B356B623

= −λ2 + 1
4
(h − 2μ − ν) (h − ν) + 1

4
(h + ν) (h + 2μ + ν) − ρ2

= −λ2 + 1
4
(h − ν)2 − 1

2
μ (h − ν) + 1

4
(h + ν)2 + 1

2
μ (h + ν) − ρ2

= −λ2 + 1
2

h2 + 1
2

ν2 + μν − ρ2 ,

R53 = B154B431ε1ε1 +B254B432ε1ε2 +B156B631ε3ε1 +B256B632ε3ε2
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= B145B413 +B245B423 +B156B613 +B256B623

= λ2 + 1
2

μ (h − ν) − 1
2

μ (h + ν) + ρ2

= λ2 − μν + ρ2 ,
R61 = B264B412ε1ε2 +B364B413ε1ε3 +B265B512ε2ε2 +B365B513ε2ε3

= −B246B412 +B346B413 −B256B512 +B356B513

= − 1
2

λ (h + 2μ − ν) + μλ + μρ + 1
2

ρ (h − 2μ + ν)

= − 1
2

λ (h − ν) + 1
2

ρ (h + ν) ,

R62 = B164B421ε1ε1 +B364B423ε1ε3 +B165B521ε2ε1 +B365B523ε2ε3

= B146B412 +B346B423 +B156B512 +B356B523

= λ2 + 1
2

μ (h − ν) − 1
2

μ (h + ν) + ρ2

= λ2 − μν + ρ2 ,
R63 = B164B431ε1ε1 +B264B432ε1ε2 +B165B531ε2ε1 +B265B532ε2ε2

= B146B413 +B246B423 +B156B513 +B256B523

= −λ2 − 1
4
(h + 2μ − ν) (h − ν) − 1

4
(h + ν) (h − 2μ + ν) − ρ2

= −λ2 − 1
4
(h − ν)2 − 1

2
μ (h − ν) − 1

4
(h + ν)2 + 1

2
μ (h + ν) − ρ2

= −λ2 − 1
2

h2 − 1
2

ν2 + μν − ρ2 .

If we impose the Einstein condition, we see that 0 = R52 − R63 = h2 + ν2, hence h =
ν = 0. Therefore, the equation R63 = 0 reads as 0 = −λ2 − ρ2. This implies λ = ρ = 0,
which is a contradiction to λ + ρ ≠ 0. ∎

We summarize this by the following theorem.

Theorem 3.8 Let (H,Gg , δ = 0) be a divergence-free generalized Einstein structure
on a three-dimensional nonunimodular Lie group G. Then H = 0 and g is indefinite.
Furthermore, there exists an orthonormal basis (va) of (g, g) such that v1 , v3 ∈ u and
g(v1 , v1) = g(v2 , v2) = −g(v3 , v3) as well as a positive constant θ > 0 such that

[v1 , v3] = 0,
[v2 , v1] = θv1 − θv3 ,
[v2 , v3] = θv1 + θv3 .

The metric g is a Ricci soliton which is not of constant curvature.

Proof It remains to prove the last statement. The fact that g is a Ricci soliton is a
direct consequence of Corollary 2.30. To see that the metric is nonflat, it suffices to
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check that ∇τ ≠ 0. Since τ = 2θv∗2 , where (v∗a) denotes the dual basis, it suffices to
compute ∇v2:

g(∇v1 v2 , v1) = g([v1 , v2], v1) = −θε1 ≠ 0.

Similarly, ∇v2 v2 = 0 shows that g is neither of nonzero constant curvature. ∎

Corollary 3.9 If the metric is definite, there are no solutions to the Ricci soliton equation
(22) in the nonunimodular case.

Remark 3.10 Note that in all our proofs in the unimodular and in the nonunimod-
ular case, we only used that the diagonal components R i i′ are zero. In particular, the
Ricci tensor is zero, if R i i′ = 0 for all i ∈ {4, 5, 6}, in the divergence free case.

3.3 Arbitrary divergence

Recall that Rδ
ia = Ric+δ (e i , ea) and Rδ

ai = Ric−δ (ea , e i) denote the components of
the Ricci curvature tensors Ric±δ of a generalized pseudo-Riemannian Lie group
(G , H,Gg , δ) with arbitrary divergence δ ∈ E∗. If δ = 0 we often write R ia = R0

ia and
Rai = R0

ai . By Theorem 2.25, we have
Rδ

ia = R ia +∑
c

Bc
ia δc = R ia +∑

c
εc B iac δc ,

Rδ
ai = Rai +∑

j
B j

ai δ j = R ia −∑
j

ε j′Bai jδ j .

3.3.1 Unimodular Lie groups

Proposition 3.11 If (H,Gg , δ) is a generalized Einstein structure on an oriented three-
dimensional unimodular Lie group G, then there exists a g-orthonormal basis (va) of g
such that g(v1 , v1) = g(v2 , v2) and such that the symmetric endomorphism L defined in
equation (23) takes one of the following forms:
(1) L1(α, β, γ), that is, L is diagonalizable by an orthonormal basis.
(2) L3(α, 0) or L4(α, 0), in both cases−ε1

1
2 δ1 = −ε1

1
2 δ4 = α as well as δ2 = δ3 and δ5 =

δ6. If α ≠ 0, then δ2 = δ3 = δ5 = δ6 = 0.
(3) L5(0) with δ2 = δ5 = 0 and δ1 = δ3 = δ4 = δ6 = −ε1

√
2, where δa = δ(va + g(va))

and δ i = δ(v i′ − g(v i′)).
Furthermore, in the nondiagonalizable case, the three-form H is always zero (see

Proposition 3.2 for the notation of the normal forms of L).

Proof Since in the Euclidean case, any symmetric endomorphism is always diago-
nalizable by an orthonormal basis, we may assume that the scalar product is indefinite.
By Proposition 3.2, there is an orthonormal basis (va), such that the endomorphism
L takes one of the normal forms L1(α, β, γ), L2(α, β, γ), L3(α, β), L4(α, β), or L5(α)
from said proposition. As in the proof of Proposition 3.3, we can treat all these cases
at once by considering the matrix

⎛
⎜
⎝

α λ 0
λ β μ
0 −μ γ

⎞
⎟
⎠

.
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Recall that we assume ε1 = ε2 = −ε3, where εa = g(va , va). Using the Dorfman coef-
ficients and the coefficients of the Ricci curvature with divergence zero from the
proof of Proposition 3.3, we can compute the components of the Ricci curvature with
divergence δ as

Rδ
41 = R41 + ε2B412δ2 + ε3B413δ3

= −2μ2 − 1
2

α2 + 1
2

h2 + 1
2
(β − γ)2 + ε3 λδ3 ,

Rδ
42 = R42 + ε1B421δ1 + ε3B423δ3

= −λ (β − γ + α) + ε3
1
2
(h + γ − α + β) δ3 ,

Rδ
43 = R43 + ε1B431δ1 + ε2B432δ2

= −2μλ − ε1 λδ1 − ε2
1
2
(h + γ − α + β) δ2 ,

Rδ
51 = R51 + ε2B512δ2 + ε3B513δ3

= −λ (β − γ + α) + ε2 μδ2 + ε3
1
2
(−h − γ + β − α) δ3 ,

Rδ
52 = R52 + ε1B521δ1 + ε3B523δ3

= − 1
2

β2 + 1
2

h2 + 1
2
(γ − α)2 − ε1 μδ1 − ε3 λδ3 ,

Rδ
53 = R53 + ε1B531δ1 + ε2B532δ2

= −μ (γ − α + β) − ε1
1
2
(−h − γ + β − α) δ1 + ε2 λδ2 ,

Rδ
61 = R61 + ε2B612δ2 + ε3B613δ3

= −2λμ + ε2
1
2
(h + β − γ + α) δ2 + ε3 μδ3 ,

Rδ
62 = R62 + ε1B621δ1 + ε3B623δ3

= −μ (γ − α + β) − ε1
1
2
(h + β − γ + α) δ1 ,

Rδ
63 = R63 + ε1B631δ1 + ε2B632δ2

= −2λ2 + 1
2

γ2 − 1
2

h2 − 1
2
(β − α)2 − ε1 μδ1 ,

Rδ
14 = R41 − ε2B145δ5 − ε3B146δ6

= −2μ2 − 1
2

α2 + 1
2

h2 + 1
2
(β − γ)2 + ε3 λδ6 ,

Rδ
24 = R42 − ε2B245δ5 − ε3B246δ6

= −λ (β − γ + α) + ε2 μδ5 − ε3
1
2
(−h + γ − β + α) δ6 ,

Rδ
34 = R43 − ε2B345δ5 − ε3B346δ6

= −2μλ − ε2
1
2
(h − β + γ − α) δ5 + ε3 μδ6 ,
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Rδ
15 = R51 − ε1B154δ4 − ε3B156δ6

= −λ (β − γ + α) − ε3
1
2
(h − γ + α − β) δ6 ,

Rδ
25 = R52 − ε1B254δ4 − ε3B256δ6

= − 1
2

β2 + 1
2

h2 + 1
2
(γ − α)2 − ε1 μδ4 − ε3 λδ6 ,

Rδ
35 = R53 − ε1B354δ4 − ε3B356δ6

= −μ (γ − α + β) + ε1
1
2
(h − β + γ − α) δ4 ,

Rδ
16 = R61 − ε1B164δ4 − ε2B165δ5

= −2λμ − ε1 λδ4 + ε2
1
2
(h − γ + α − β) δ5 ,

Rδ
26 = R62 − ε1B264δ4 − ε2B265δ5

= −μ (γ − α + β) + ε1
1
2
(−h + γ − β + α) δ4 + ε2 λδ5 ,

Rδ
36 = R63 − ε1B364δ4 − ε2B365δ5

= −2λ2 + 1
2

γ2 − 1
2

h2 − 1
2
(β − α)2 − ε1 μδ4 .

For the normal form L2(α, β, γ), the equations for Ric+δ read

Rδ
41 = −2β2 − 1

2
γ2 + 1

2
h2 ,

Rδ
42 = ε3

1
2
(h + 2α − γ) δ3 ,

Rδ
43 = −ε2

1
2
(h + 2α − γ) δ2 ,

Rδ
51 = −ε2βδ2 + ε3

1
2
(−h − γ) δ3 ,

Rδ
52 = −

1
2

α2 + 1
2

h2 + 1
2
(α − γ)2 + ε1βδ1 ,

Rδ
53 = β (2α − γ) − ε1

1
2
(−h − γ) δ1 ,

Rδ
61 = ε2

1
2
(h + γ) δ2 − ε3βδ3 ,

Rδ
62 = β (2α − γ) − ε1

1
2
(h + γ) δ1 ,

Rδ
63 =

1
2

α2 − 1
2

h2 − 1
2
(α − γ)2 + ε1βδ1 .

Imposing now the Einstein condition, we get 0 = Rδ
53 + Rδ

62 = 2β (2α − γ). So either L
is diagonalizable, if β = 0, or 2α = γ. But then, the equation 0 = Rδ

52 − Rδ
63 is

0 = −α2 + h2 + (α − γ)2 = h2 ,
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and hence h = 0. Applying this to the equation for Rδ
41 yields 0 = −2β2 − 1

2 γ2. There-
fore, β = 0 and the endomorphism L is diagonalizable by an orthonormal basis.

If L takes the normal form L3(α, β), the components of the Ricci tensor are

Rδ
41 = −

1
2

β2 + 1
2

h2 ,

Rδ
42 = ε3

1
2
(h + 2α − β) δ3 ,

Rδ
43 = −ε2

1
2
(h + 2α − β) δ2 ,

Rδ
51 = ε2

1
2

δ2 + ε3
1
2
(−h + 1 − β) δ3 ,

Rδ
52 = −

1
2
( 1

2
+ α)

2
+ 1

2
h2 + 1

2
(− 1

2
+ α − β)

2
− ε1

1
2

δ1 ,

Rδ
53 = −

1
2
(2α − β) − ε1

1
2
(−h + 1 − β) δ1 ,

Rδ
61 = ε2

1
2
(h + 1 + β) δ2 + ε3

1
2

δ3 ,

Rδ
62 = −

1
2
(2α − β) − ε1

1
2
(h + 1 + β) δ1 ,

Rδ
63 =

1
2
(− 1

2
+ α)

2
− 1

2
h2 − 1

2
( 1

2
+ α − β)

2
− ε1

1
2

δ1 ,

Rδ
14 = −

1
2

β2 + 1
2

h2 ,

Rδ
24 = ε2

1
2

δ5 − ε3
1
2
(−h − 1 + β) δ6 ,

Rδ
34 = −ε2

1
2
(h − 1 − β)δ5 + ε3

1
2

δ6 ,

Rδ
15 = −ε3

1
2
(h − 2α + β) δ6 ,

Rδ
25 = −

1
2
( 1

2
+ α2)

2
+ 1

2
h2 + 1

2
(− 1

2
+ α − β)

2
− ε1

1
2

δ4 ,

Rδ
35 = −

1
2
(2α − β) + ε1

1
2
(h − 1 − β) δ4 ,

Rδ
16 = ε2

1
2
(h − 2α + β) δ5 ,

Rδ
26 = −

1
2
(2α − β) + ε1

1
2
(−h − 1 + β) δ4 ,

Rδ
36 =

1
2
(− 1

2
+ α)

2
− 1

2
h2 − 1

2
( 1

2
+ α − β)

2
− ε1

1
2

δ4 .

First, equation Rδ
63 − Rδ

36 = 0 yields δ1 = δ4. Furthermore, due to 0 = Rδ
53 − Rδ

62 =
ε1 (h + β) δ1 and 0 = Rδ

35 − Rδ
26 = ε1 (h − β) δ4 = ε1 (h − β) δ1, we have ε1βδ1 = 0.

If δ1 = 0, then we see from 0 = Rδ
53 = − 1

2 (2α − β) that 2α = β. Then 0 = Rδ
63 =

1
2 (−

1
2 + α)2 − 1

2 h2 − 1
2 (

1
2 − α)2 = − 1

2 h2 and h = 0. Equation Rδ
41 = 0 shows β = 0
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and therefore α = 0. Furthermore, Rδ
51 = 0 shows δ2 = δ3 and Rδ

15 = 0 shows δ5 = δ6,
because ε2 = −ε3. If otherwise β = 0, we see again from Rδ

41 = 0 that h = 0 and also
δ2 = δ3 and δ5 = δ6, because of Rδ

51 = 0 and Rδ
15 = 0, respectively. Finally, 0 = αδ2 =

αδ3 = αδ2 = αδ3 due to 0 = Rδ
42 = Rδ

43 = Rδ
15 = Rδ

16, as well as α = −ε1
1
2 δ1 = −ε1

1
2 δ4 due

to Rδ
62 = Rδ

26 = 0.
In a similar way, we obtain the same equations for the normal form L4(α, β).
Finally, the equations for Ric+δ for the normal form L5(α) are

Rδ
41 = −1 − 1

2
α2 + 1

2
h2 + ε3

1√
2

δ3 ,

Rδ
42 = −

1√
2

α + ε3
1
2
(h + α) δ3 ,

Rδ
43 = −1 − ε1

1√
2

δ1 − ε2
1
2
(h + α) δ2 ,

Rδ
51 = −

1√
2

α + ε2
1√
2

δ2 + ε3
1
2
(−h − α) δ3 ,

Rδ
52 = −

1
2

α2 + 1
2

h2 − ε1
1√
2

δ1 − ε3
1√
2

δ3 ,

Rδ
53 = −

1√
2

α − ε1
1
2
(−h − α) δ1 + ε2

1√
2

δ2 ,

Rδ
61 = −1 + ε2

1
2
(h + α) δ2 + ε3

1√
2

δ3 ,

Rδ
62 = −

1√
2

α − ε1
1
2
(h + α) δ1 ,

Rδ
63 = −1 + 1

2
α2 − 1

2
h2 − ε1

1√
2

δ1 .

From 0 = Rδ
41 − Rδ

52 − Rδ
63 = − 1

2 (α2 − h2) , we see α2 = h2. Therefore, ε3δ3 =
√

2 by
0 = Rδ

41 = −1 + ε3
1√
2 δ3 as well as ε1δ1 = −

√
2 by 0 = Rδ

63 = −1 − ε1
1√
2 δ1. If now α = −h,

then 0 = Rδ
42 = − 1√

2 α and α = h = 0. By 0 = Rδ
53 = ε2

1√
2 δ2 also δ2 = 0. If otherwise

α = h, we have 0 = Rδ
42 + Rδ

51 = −
√

2α + ε2
1√
2 δ2 and thus 2α = ε2δ2. But at the same

time, 0 = Rδ
43 = −ε2αδ2. This is only possible, if α = δ2 = 0. The equations for Ric−δ are

now

Rδ
14 = −1 + ε3

1√
2

δ6 ,

Rδ
24 = ε2

1√
2

δ5 ,

Rδ
34 = −1 + ε3

1√
2

δ6 ,

Rδ
15 = 0,

Rδ
25 = −ε1

1√
2

δ4 − ε3
1√
2

δ6 ,
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Rδ
35 = 0,

Rδ
16 = −1 − ε1

1√
2

δ4 ,

Rδ
26 = ε2

1√
2

δ5 ,

Rδ
36 = −1 − ε1

1√
2

δ4 .

This finally yields δ5 = 0 and ε1δ4 = −ε3δ6 = −
√

2. ∎
Theorem 3.12 Let (H,Gg , δ) be a generalized Einstein structure on an oriented three-
dimensional unimodular Lie group G. If the endomorphism L ∈ Endg defined in (24) is
diagonalizable, then there exists an oriented g-orthonormal basis (va) of g = Lie G and
α1 , α2 , α3 , h ∈ R such that

[va , vb] = αc εcvc , ∀ cyclic (a, b, c) ∈S3 , H = hvolg ,

where εa = g(va , va) satisfies ε1 = ε2. The constants (α1 , α2 , α3 , h) can take the following
values.
(1) α1 = α2 = α3 = h = 0, in which case g is abelian. The divergence can take an arbi-

trary value in E∗.
(2) α1 = α2 = α3 = ±h ≠ 0, and g is isomorphic to so(2, 1) or so(3). The case so(3)

occurs precisely when g is definite. Furthermore δ∣E± = 0.
(3) There exists a cyclic permutation σ ∈S3 such that

ασ(1) = ασ(2) ≠ 0 and h = ασ(3) = 0.

In this case, [g, g] is abelian of dimension 2, that is, g is metabelian. More
precisely, g is isomorphic to e(2) (g definite on [g, g]) or e(1, 1) (g indefinite
on [g, g]). The components of the divergence δ satisfy δσ(1) = δσ(2) = δσ(1)+3 =
δσ(2)+3 = 0.

If L is not diagonalizable, then h = 0.
(1) If L takes the normal form L3(0, 0) or L4(0, 0), then the Lie algebra g is isomorphic

to the Heisenberg algebra heis. In this case, δ1 = δ4 = 0, δ2 = δ3 and δ5 = δ6.
(2) If L takes the normal form L3(α, 0) or L4(α, 0), α ≠ 0, then g is isomorphic to

e(1, 1). In these cases, −ε1
1
2 δ1 = −ε1

1
2 δ4 = α as well as δ2 = δ3 = δ5 = δ6 = 0.

(3) If L takes the normal form L5(0), then g is isomorphic to e(1, 1). In this case, ε1δ1 =
−ε3δ3 = ε1δ4 = −ε3δ6 = −

√
2 and δ2 = δ5 = 0.

Proof Assume first L is diagonalizable. To compute the components of the Ricci
curvature, we use the formulas for the Dorfman coefficients and the notation for
variables Xa and Ya from the proof of Theorem 3.4.

Rδ
41 = R41 + ε2B412δ2 + ε3B413δ3

= R41,

Rδ
42 = R42 + ε1B421δ1 + ε3B423δ3

= 1
2

ε3δ3Y1 ,
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Rδ
43 = R43 + ε1B431δ1 + ε2B432δ2

= − 1
2

ε2δ2Y1 ,

Rδ
51 = R51 + ε2B512δ2 + ε3B513δ3

= − 1
2

ε3δ3Y2 ,

Rδ
52 = R52 + ε1B521δ1 + ε3B523δ3

= R52,

Rδ
53 = R53 + ε1B531δ1 + ε2B532δ2

= 1
2

ε1δ1Y2 ,

Rδ
61 = R61 + ε2B612δ2 + ε3B613δ3

= 1
2

ε2δ2Y3 ,

Rδ
62 = R62 + ε1B621δ1 + ε3B623δ3

= − 1
2

ε1δ1Y3 ,

Rδ
63 = R63 + ε1B631δ1 + ε2B632δ2

= R63,

Rδ
14 = R41 − ε2B145δ5 − ε3B146δ6

= R41,

Rδ
24 = R42 − ε2B245δ5 − ε3B246δ6

= 1
2

ε3δ6 X2 ,

Rδ
34 = R43 − ε2B345δ5 − ε3B346δ6

= − 1
2

ε2δ5 X3 ,

Rδ
15 = R51 − ε1B154δ4 − ε3B156δ6

= − 1
2

ε3δ6 X1 ,

Rδ
25 = R52 − ε1B254δ4 − ε3B256δ6

= R52,

Rδ
35 = R53 − ε1B354δ4 − ε3B356δ6

= 1
2

ε1δ4 X3 ,

Rδ
16 = R61 − ε1B164δ4 − ε2B165δ5

= 1
2

ε2δ5 X1 ,
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Rδ
26 = R62 − ε1B264δ4 − ε2B265δ5

= − 1
2

ε1δ4 X2 ,

Rδ
36 = R63 − ε1B364δ4 − ε2B365δ5

= R63 .

Note that if (H,Gg , δ) is a generalized Einstein structure, also (H,Gg , 0) is. Therefore,
as in the proof of Theorem 3.4, we can distinguish cases depending on how many
components of the vector (X1 , X2 , X3) are equal to zero.

Solutions of type 0: X1 X2 X3 ≠ 0 implies δ4 = δ5 = δ6 = 0. Furthermore, recall that
Y1 = Y2 = Y3 = 0 and

α1 = α2 = α3 = −h ≠ 0.

In this case, the Lie algebra g is isomorphic to so(2, 1) (g indefinite) or so(3) (g
definite).

We have seen that solutions of type 1 do not exist.
Solutions of type 2: assume, for example, that X1 ≠ 0, X2 = X3 = 0. This implies

δ5 = δ6 = 0. Moreover, we have seen that Y2 = Y3 = 0, h = α1 = 0 and α2 = α3 ≠ 0. This
shows Y1 ≠ 0 and thus δ2 = δ3 = 0. So the solutions of type 2 are of the following form.
There exists a cyclic permutation σ ∈S3 such that

ασ(1) = ασ(2) ≠ 0 and h = ασ(3) = δσ(1) = δσ(2) = δσ(1)+3 = δσ(2)+3 = 0.

As in the divergence-free case, we conclude that g is metabelian. The commutator
ideal [g, g] = span{vσ(1) , vσ(2)} is two-dimensional and advσ(3) acts on it by a nonzero
g-skew-symmetric endomorphism. This implies that g is isomorphic to e(2) or e(1, 1).

Solutions of type 3: assume X1 = X2 = X3 = 0. This implies

α1 = α2 = α3 = h.

If h = 0, then Y1 = Y2 = Y3 = 0 and δ ∈ E∗ arbitrary, and if h ≠ 0, then Y1 = Y2 = Y3 =
2h ≠ 0 and therefore δ1 = δ2 = δ3 = 0.

By Proposition 3.11, if L is not diagonalizable, it is of the forms L3(α, 0), L4(α, 0),
or L5(0) and the divergence has the claimed properties. From Theorem 3.4, we know
that G is the Heisenberg group if L takes the normal for L3(0, 0) or L4(0, 0). If α ≠ 0,
adv1 acts on [g, g] = span{v2 , v3} by a symmetric endomorphism with eigenvalues α
and −α. Therefore g ≅ e(1, 1).

If L takes the normal form L5(0), one can show that the only unimodular Lie
algebra whose Killing form has the same signature as the one of g, is the Lie algebra
e(1, 1). Alternatively, one can check that adv1+v3 acts on span{v2 , v1 − v3} a symmetric
endomorphism with eigenvalues

√
2 and −

√
2. Therefore again g ≅ e(1, 1). ∎

Remark 3.13 Except for the cases that the endomorphism L takes the normal form
L3(α, 0), L4(α, 0) (α ≠ 0), and L5(0), the solutions are such that the Ricci tensor
for zero divergence and the contribution of the divergence to the Ricci tensor vanish
simultaneously.
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Corollary 3.14 Let (H,Gg , δ) be a generalized Einstein structure on a three-
dimensional Lie group G. Then the left-invariant metric defined by g is bi-invariant if
and only if g is isomorphic to so(3), so(2, 1) or R3.
Proof This follows from the fact that the only three-dimensional Lie algebras admit-
ting an ad-invariant scalar product are the above three Lie algebras together with our
classification of generalized Einstein structures on these Lie algebras. ∎

3.3.2 Non-unimodular Lie groups

Proposition 3.15 Let (H,Gg , δ) be a generalized Einstein structure on a three-
dimensional nonunimodular Lie group G. Let u be the unimodular kernel of the Lie
algebra g and assume that g∣u×u is nondegenerate. Then there exists an orthonormal
basis (va) of (g, g) such that v1 , v3 ∈ u and g(v1 , v1) = g(v2 , v2) = −g(v3 , v3). Further-
more δ2 = δ5. If δ2 = δ5 = 0, then δ = 0, h = 0 and one can choose v1 and v3 such that
there is a positive constant θ > 0 such that

[v2 , v1] = θv1 − θv3 ,
[v2 , v3] = θv1 + θv3 .

If δ2 = δ5 ≠ 0, M ∶= adv2 ∣u is diagonalizable. We have h2 = (tr M)2 ≠ 0 and δ2 = δ5 =
− tr M ≠ 0. In the special case that M has a double eigenvalue, it is diagonalizable by
an orthonormal basis. That is, one can choose v1 and v3 such that there exists a positive
constant θ > 0 such that

[v2 , v1] = θv1 ,
[v2 , v3] = θv3 .

In this case, h2 = (2θ)2 ≠ 0 and δ2 = δ5 = −2θ ≠ 0. Furthermore δ1 = δ3 = δ4 = δ6 = 0.
In the case δ2 = δ5 ≠ 0 and two distinct real eigenvalues of M , there are the following
families of solutions of the generalized Einstein equation:
(1) h = ±2λ, δ2 = δ5 = −2ε2 λ and δ1 = δ3 = δ4 = δ6 = 0,

M = ( ε1 λ −ε1 μ
ε3 μ −ε3 λ ) ,

where λ, μ ∈ R/{0} and ∣μ∣ ≠ ∣λ∣.
2A. h = μ − ν, δ2 = δ5 = ε2(−μ + ν), δ4 = δ6 = 0, δ1 and δ3 are related by μδ1 − νδ3 =

0 and

M = ( ε1 μ ε1ν
ε3 μ ε3ν ) ,

where μ, ν ∈ R are such that μ − ν ≠ 0.
2B. h = μ − ν, δ2 = δ5 = ε2(μ − ν), δ4 = δ6 = 0, δ1 and δ3 are related by μδ1 + νδ3 = 0

and

M = ( −ε1 μ ε1ν
ε3 μ −ε3ν ) ,

where μ, ν ∈ R are such that μ − ν ≠ 0.
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2C. h = 2μ, δ2 = δ5 = 2ε2 μ, δ1 = δ3, δ4 = δ6 = 0 and

M = ( −ε1 μ −ε1 μ
ε3 μ ε3 μ ) ,

where μ ∈ R/{0}.
2D. h = 2μ, δ2 = δ5 = −2ε2 μ, δ1 = −δ3, δ4 = δ6 = 0 and

M = ( ε1 μ −ε1 μ
ε3 μ −ε3 μ ) ,

where μ ∈ R/{0}.
3A. h = ν − μ, δ2 = δ5 = ε2(ν − μ), δ1 = δ3 = 0, δ4 and δ6 are related by μδ4 − νδ6 = 0

and

M = ( ε1 μ ε1ν
ε3 μ ε3ν ) ,

where μ, ν ∈ R are such that μ − ν ≠ 0.
3B. h = ν − μ, δ2 = δ5 = ε2(μ − ν), δ1 = δ3 = 0, δ4 and δ6 are related by μδ4 + νδ6 = 0

and

M = ( −ε1 μ ε1ν
ε3 μ −ε3ν ) ,

where μ, ν ∈ R are such that μ − ν ≠ 0.
3C. h = −2μ, δ2 = δ5 = 2ε2 μ, δ1 = δ3 = 0, δ4 = δ6 and

M = ( −ε1 μ −ε1 μ
ε3 μ ε3 μ ) ,

where μ ∈ R/{0}.
3D. h = −2μ, δ2 = δ5 = −2ε2 μ, δ1 = δ3 = 0, δ4 = −δ6 and

M = ( ε1 μ −ε1 μ
ε3 μ −ε3 μ ) ,

where μ ∈ R/{0}.

Proof As in the proof of Proposition 3.5, there exists a g-orthonormal basis (va)a
of g such that v1 , v3 ∈ u and λ, μ, ν, ρ ∈ R such that

[v3 , v1] = 0,
[v2 , v1] = ε1 λv1 + ε3 μv3 ,
[v2 , v3] = ε1νv1 + ε3ρv3 ,

with 0 ≠ tr adv2 = ε1 λ + ε3ρ. Using the Dorfman coefficients, that were computed in
the proof of Proposition 3.5, we obtain the components of the Ricci tensor.

In the case ε1 = ε3, we have

Rδ
52 = R52 + ε1B521δ1 + ε3B523δ3

= −λ2 − 1
4
(h − μ − ν)2 − 1

4
(h + μ + ν)2 − ρ2 ,
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which is always nonzero due to 0 ≠ ε1 λ + ε3ρ. Hence, we can assume that the basis is
chosen such that ε1 = ε2 = −ε3.

In this case, the components of the Ricci tensor are

Rδ
41 = R41 + ε2B412δ2 + ε3B413δ3

= 1
2
(h2 + μ2 − ν2) + ε2 λδ2 ,

Rδ
42 = R42 + ε1B421δ1 + ε3B423δ3

= −ε1 λδ1 + ε3
1
2
(h − μ − ν) δ3 ,

Rδ
43 = R43 + ε1B431δ1 + ε2B432δ2

= − 1
2

λ (h − μ + ν) + 1
2

ρ (h + μ − ν) − ε2
1
2
(h − μ − ν) δ2 ,

Rδ
51 = R51 + ε2B512δ2 + ε3B513δ3

= −ε3
1
2
(h − μ + ν) δ3 ,

Rδ
52 = R52 + ε1B521δ1 + ε3B523δ3

= −λ2 + 1
2

h2 + 1
2
(μ + ν)2 − ρ2 ,

Rδ
53 = R53 + ε1B531δ1 + ε2B532δ2

= ε1
1
2
(h − μ + ν) δ1 ,

Rδ
61 = R61 + ε2B612δ2 + ε3B613δ3

= 1
2

λ (h + μ − ν) − 1
2

ρ (h − μ + ν) + ε2
1
2
(h + μ + ν) δ2 ,

Rδ
62 = R62 + ε1B621δ1 + ε3B623δ3

= −ε1
1
2
(h + μ + ν) δ1 − ε3ρδ3 ,

Rδ
63 = R63 + ε1B631δ1 + ε2B632δ2

= − 1
2
(h2 − μ2 + ν2) + ε2ρδ2 ,

Rδ
14 = R41 − ε2B145δ5 − ε3B146δ6

= 1
2
(h2 + μ2 − ν2) + ε2 λδ5 ,

Rδ
24 = R42 − ε2B245δ5 − ε3B246δ6

= ε3
1
2
(h + μ − ν) δ6 ,

Rδ
34 = R43 − ε2B345δ5 − ε3B346δ6

= − 1
2

λ (h − μ + ν) + 1
2

ρ (h + μ − ν) − ε2
1
2
(h − μ − ν) δ5 ,

Rδ
15 = R51 − ε1B154δ4 − ε3B156δ6
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= −ε1 λδ4 − ε3
1
2
(h + μ + ν) δ6 ,

Rδ
25 = R52 − ε1B254δ4 − ε3B256δ6

= −λ2 + 1
2

h2 + 1
2
(μ + ν)2 − ρ2 ,

Rδ
35 = R53 − ε1B354δ4 − ε3B356δ6

= ε1
1
2
(h − μ − ν) δ4 − ε3ρδ6 ,

Rδ
16 = R61 − ε1B164δ4 − ε2B165δ5

= 1
2

λ (h + μ − ν) − 1
2

ρ (h − μ + ν) + ε2
1
2
(h + μ + ν) δ5 ,

Rδ
26 = R62 − ε1B264δ4 − ε2B265δ5

= −ε1
1
2
(h + μ − ν) δ4 ,

Rδ
36 = R63 − ε1B364δ4 − ε2B365δ5

= − 1
2
(h2 − μ2 + ν2) + ε2ρδ5 .

Note first that Rδ
41 = Rδ

14 and Rδ
63 = Rδ

36 yield ε2 λ (δ2 − δ5) = 0 and ε2ρ (δ2 − δ5) = 0.
Therefore δ2 = δ5, because 0 ≠ ε1 λ + ε3ρ. If δ2 = δ5 = 0, we see that Rδ

i i′ = Rδ
i′ i = R i i′

for all i ∈ {4, 5, 6}. So we can deduce the same way as in the proof of Proposition 3.5,
that h = 0 and there is a positive constant θ > 0 such that ε1 λ = −ε3 μ = ε1ν = ε3ρ = θ.
Then we see that 0 = Rδ

42 = −θδ1 + θδ3 and Rδ
15 = −θδ4 + θδ6 imply δ1 = δ3 and δ4 =

δ6. Similarly, Rδ
62 = −θδ1 − θδ3 = 0 and Rδ

35 = −θδ4 − θδ6 = 0 imply δ1 = −δ3 and δ4 =
−δ6. This proves that δ = 0 if δ2 = δ5 = 0. Note that the endomorphism M ∈ End(u),
defined as the restriction of adv2 to u, has the two complex eigenvalues θ ± iθ. Assume
now δ2 = δ5 ≠ 0. Then

0 = Rδ
41 − Rδ

63 = h2 + ε2δ2 (λ − ρ) .(29)

Using λ − ρ = ε1 (ε1 λ + ε3ρ) ≠ 0, we see h ≠ 0. From 0 = Rδ
61 − Rδ

43 = h (λ − ρ + ε2δ2),
we see ε2δ2 = −λ + ρ = −ε2 tr M. Then equation (29) is equivalent to h2 = (λ − ρ)2 =
(tr M)2. Since

Rδ
52 = −λ2 + 1

2
h2 + 1

2
(μ + ν)2 − ρ2

= −λ2 − ρ2 + 1
2
(λ − ρ)2 + 1

2
(μ + ν)2

= − 1
2
(λ + ρ)2 + 1

2
(μ + ν)2 ,

the equation Rδ
52 = 0 is equivalent to

(λ + ρ)2 = (μ + ν)2 .(30)
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Note now that the discriminant Δ of the characteristic polynomial X2 − ε1 (λ − ρ)X −
λρ + μν of M is

Δ = (λ − ρ)2 + 4λρ − 4μν

= (λ + ρ)2 − 4μν

= (μ + ν)2 − 4μν

= (μ − ν)2 ,

which is never negative. Therefore, M has real eigenvalues. Hence, M is either
diagonalizable with two distinct eigenvalues, or it has a double eigenvalue. The latter
happens precisely if the discriminant is zero, that is, if μ = ν. But then, M is a
symmetric endomorphism and hence takes one of the normal forms

M1(θ , η) = ( θ 0
0 η ) , M2(θ , η) = ( θ −η

η θ ) ,

M3(θ) = (
1
2 + θ 1

2
− 1

2 − 1
2 + θ ) , M4(θ) = ( − 1

2 + θ − 1
21

2
1
2 + θ ) ,

with respect to an orthonormal basis v1 , v3 of u, as in the proof of Proposition 3.5. If it
takes the normal form M1(θ , η), then θ = η, since M has a double eigenvalue. Hence,
that M is of the form

M1(θ , θ) = ( θ 0
0 θ ) .

We may assume θ is positive by replacing v2 with −v2. If it takes the normal form
M2(θ , η), then we have Rδ

43 + Rδ
61 = −2θη. But θ ≠ 0, since tr M ≠ 0. Therefore, η = 0

and we get the same normal form as before. The normal forms M3(θ) and M4(θ) are
excluded, because in both cases Rδ

43 + Rδ
61 = 2θ, which cannot be zero because tr M ≠

0. Note that in the case that M takes the normal form M1(θ , θ), we have δ1 = δ3 = δ4 =
δ6 = 0, due to Rδ

53 = Rδ
51 = Rδ

26 = Rδ
24 = 0.

It remains to consider the case μ − ν ≠ 0. Recall that δ2 = δ5 = ε2(−λ + ρ) ≠ 0 and
h = ±(λ − ρ) ≠ 0. We distinguish the following cases. Note that the expressions h −
μ + ν and h + μ − ν cannot both vanish simultaneously, since h ≠ 0.

Case 1: h − μ + ν ≠ 0 and h + μ − ν ≠ 0. In this case, we conclude from Rδ
51 =

Rδ
53 = Rδ

24 = Rδ
26 = 0 that δ1 = δ3 = δ4 = δ6 = 0. Then from the remaining equations,

we obtain

μ2 − λ2 = −(ρ2 − ν2), ρμ − λν = 0, (λ + ρ)2 = (μ + ν)2 .

The first two equations are satisfied if and only if (μ, λ) and (ρ, ν) are nonzero
orthogonal vectors of equal length in the Minkowski plane. This implies that (μ, λ) =
−(ν, ρ), since μ − ν ≠ 0. This yields the first family of solutions for which M has two
distinct real eigenvalues.

Case 2: h − μ + ν = 0 and h + μ − ν ≠ 0. In this case, the equations Rδ
51 = Rδ

53 =
Rδ

24 = Rδ
26 = 0 reduce to δ4 = δ6 = 0. Recall that Rδ

52 = 0 yields equation (30) and
hence μ + ν = σ+(λ + ρ) for some σ+ ∈ {±1}. Since now h = μ − ν, the equation
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h2 = (λ − ρ)2 yields μ − ν = σ−(λ − ρ), σ− ∈ {±1}. We consider four subcases depend-
ing on the signs σ±. In each case, we first solve the two equations μ ± ν = σ±(λ ± ρ).

Case 2A: σ+ = σ− = 1. In this case, μ = λ and ν = ρ. It turns out that the remaining
components of the generalized Ricci curvature vanish if Rδ

42 does. Its vanishing is
equivalent to μδ1 − νδ3 = 0.

Case 2B: σ+ = σ− = −1. In this case, μ = −λ and ν = −ρ. The remaining components
of the generalized Ricci curvature vanish if and only if μδ1 + νδ3 = 0.

Case 2C: σ+ = 1 and σ− = −1. Then μ = ρ, ν = λ and from Rδ
41 = 0 we get μ2 − ν2 = 0.

We conclude that μ = −ν, since h = μ − ν ≠ 0. The equation Rδ
42 = 0 reduces to δ1 = δ3

and the remaining components of the generalized Ricci tensor then vanish.
Case 2D: σ+ = −1 and σ− = 1. Then μ = −ρ, ν = −λ and from Rδ

41 = 0, we get again
μ = −ν. In this case, the equation Rδ

42 = 0 reduces to δ1 = −δ3 and the remaining
components of the generalized Ricci tensor vanish.

Case 3: h − μ + ν ≠ 0 and h + μ − ν = 0. In this case, the equations Rδ
51 = Rδ

53 =
Rδ

24 = Rδ
26 = 0 reduce to δ1 = δ3 = 0. From (30) and h = ν − μ, we still obtain μ ± ν =

σ±(λ ± ρ) with σ+, σ− ∈ {±1}. We consider again four subcases depending on the
values of σ±.

Case 3A: σ+ = σ− = 1. As above, μ = λ and ν = ρ. The equation Rδ
15 = 0 yields μδ4 −

νδ6 = 0 and the remaining components then vanish.
Case 3B: σ+ = σ− = −1. Here μ = −λ, ν = −ρ and the equation Rδ

15 = 0 yields μδ4 +
νδ6 = 0. The remaining components then vanish.

Case 3C: σ+ = 1 and σ− = −1. Here μ = ρ, ν = λ and Rδ
41 = 0 implies μ = −ν. Finally,

Rδ
15 = 0 yields δ4 = δ6 and the remaining components vanish.

Case 3D: σ+ = −1 and σ− = 1. Here μ = −ρ, ν = −λ and Rδ
41 = 0 implies μ = −ν.

Finally, the equation Rδ
15 = 0 yields δ4 = −δ6 and all other components vanish. ∎

Proposition 3.16 Let G be a three-dimensional nonunimodular Lie group. As any
three-dimensional nonunimodular Lie algebra, its Lie algebra g is isomorphic to a
semidirect product of R and R

2, with R acting on R
2 by a 2 by 2 matrix M (of nonzero

trace). Then there exists a generalized Einstein structure (H,Gg , δ) on G, such that the
restriction of g to the unimodular kernel u is degenerate, if and only if H = 0 and M
has real eigenvalues. (All such structures have δ ≠ 0 and are described at the end of the
proof.)

Proof Note first that the metric g necessarily has to be indefinite. As in the proof of
Proposition 3.7, there exists an orthonormal basis (va)a of (g, g) such that g(v1 , v1) =
g(v2 , v2) and λ, μ, ν, ρ ∈ R such that

[v1 , v2] = ε1 λv1 + ε2 μv2 − ε3 μv3 ,
[v2 , v3] = ε1νv1 + ε2ρv2 − ε3ρv3 ,
[v3 , v1] = ε1 λv1 + ε2 μv2 − ε3 μv3 ,

with λ + ρ ≠ 0. Using the Dorfman coefficients, that were computed in the proof of
Proposition 3.7, we obtain the components of the Ricci tensor

Rδ
41 = R41 + ε2B412δ2 + ε3B413δ3

= 1
2

h2 − 1
2

ν2 − ε2 λδ2 + ε3 λδ3 ,
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Rδ
42 = R42 + ε1B421δ1 + ε3B423δ3

= 1
2

ρ (h − ν) − 1
2

λ (h + ν) + ε1 λδ1 + ε3
1
2
(h − ν) δ3 ,

Rδ
43 = R43 + ε1B431δ1 + ε2B432δ2

= 1
2

λ (h + ν) − 1
2

ρ (h − ν) − ε1 λδ1 − ε2
1
2
(h − ν) δ2 ,

Rδ
51 = R51 + ε2B512δ2 + ε3B513δ3

= 1
2

λ (h − ν) − 1
2

ρ (h + ν) − ε2 μδ2 − ε3
1
2
(h − 2μ + ν) δ3 ,

Rδ
52 = R52 + ε1B521δ1 + ε3B523δ3

= −λ2 + 1
2

h2 + 1
2

ν2 + μν − ρ2 + ε1 μδ1 − ε3ρδ3 ,

Rδ
53 = R53 + ε1B531δ1 + ε2B532δ2

= λ2 − μν + ρ2 + ε1
1
2
(h − 2μ + ν) δ1 + ε2ρδ2 ,

Rδ
61 = R61 + ε2B612δ2 + ε3B613δ3

= − 1
2

λ (h − ν) + 1
2

ρ (h + ν) + ε2
1
2
(h + 2μ + ν) δ2 − ε3 μδ3 ,

Rδ
62 = R62 + ε1B621δ1 + ε3B623δ3

= λ2 − μν + ρ2 − ε1
1
2
(h + 2μ + ν) δ1 + ε3ρδ3 ,

Rδ
63 = R63 + ε1B631δ1 + ε2B632δ2

= −λ2 − 1
2

h2 − 1
2

ν2 + μν − ρ2 + ε1 μδ1 − ε2ρδ2 ,

Rδ
14 = R41 − ε2B145δ5 − ε3B146δ6

= 1
2

h2 − 1
2

ν2 − ε2 λδ5 + ε3 λδ6 ,

Rδ
24 = R42 − ε2B245δ5 − ε3B246δ6

= 1
2

ρ (h − ν) − 1
2

λ (h + ν) − ε2 μδ5 + ε3
1
2
(h + 2μ − ν) δ6 ,

Rδ
34 = R43 − ε2B345δ5 − ε3B346δ6

= 1
2

λ (h + ν) − 1
2

ρ (h − ν) − ε2
1
2
(h − 2μ − ν) δ5 − ε3 μδ6 ,

Rδ
15 = R51 − ε1B154δ4 − ε3B156δ6

= 1
2

λ (h − ν) − 1
2

ρ (h + ν) + ε1 λδ4 − ε3
1
2
(h + ν) δ6 ,

Rδ
25 = R52 − ε1B254δ4 − ε3B256δ6

= −λ2 + 1
2

h2 + 1
2

ν2 + μν − ρ2 + ε1 μδ4 − ε3ρδ6 ,

Rδ
35 = R53 − ε1B354δ4 − ε3B356δ6
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= λ2 − μν + ρ2 + ε1
1
2
(h − 2μ − ν) δ4 + ε3ρδ6 ,

Rδ
16 = R61 − ε1B164δ4 − ε2B165δ5

= − 1
2

λ (h − ν) + 1
2

ρ (h + ν) − ε1 λδ4 + ε2
1
2
(h + ν) δ5 ,

Rδ
26 = R62 − ε1B264δ4 − ε2B265δ5

= λ2 − μν + ρ2 − ε1
1
2
(h + 2μ − ν) δ4 + ε2ρδ5 ,

Rδ
36 = R63 − ε1B364δ4 − ε2B365δ5

= −λ2 − 1
2

h2 − 1
2

ν2 + μν − ρ2 + ε1 μδ4 − ε2ρδ5 .

Assume now that (H,Gg , δ) is generalized Einstein. We first want to show that
h = ν = 0 and ε2δ2 = ε3δ3. For this, consider the system of equations 0 = Rδ

42 + Rδ
43 =

− 1
2 (h − ν) (ε2δ2 − ε3δ3) and 0 = Rδ

51 + Rδ
61 = 1

2 (h + ν) (ε2δ2 − ε3δ3). This implies
that either h = ν = 0 or ε2δ2 = ε3δ3. If h = ν = 0, then 0 = Rδ

41 = −λ (ε2δ2 − ε3δ3) and
0 = Rδ

63 − Rδ
52 = −ρ (ε2δ2 − ε3δ3), which can only be the case if ε2δ2 = ε3δ3, since

λ + ρ ≠ 0. If we otherwise assume, that ε2δ2 = ε3δ3, then 0 = Rδ
63 − Rδ

52 = −h2 − ν2 and
therefore h = ν = 0. Similarly, one can also show that ε2δ5 = ε3δ6. Hence, the Einstein
condition is equivalent to the set of equations

h = ν = 0,
λε1δ1 = λε1δ4 = 0,

ε2δ2 = ε3δ3 ,
ε2δ5 = ε3δ6 ,

λ2 + ρ2 − ε1 μδ1 + ε2ρδ2 = 0,
λ2 + ρ2 − ε1 μδ4 + ε2ρδ5 = 0.

(31)

Now, as in the proof of Proposition 3.7, there exists a basis (wa) of g, such that
w1 , w2 ∈ u,

[w1 , w2] = 0,
[w3 , w1] = −ε1 λw1 − 2ε2 μw2 ,

[w3 , w2] = −
1
2

ε1νw1 − ε2ρw2 ,

and g(wa , wb) satisfies equation (28). Hence, g is a semidirect product of R ≅
span{w3} and R

2 ≅ span{w1 , w2}, the former acting on the latter with the matrix

M = ( −ε1 λ − 1
2 ε1ν

−2ε2 μ −ε2ρ ) .

Since in the Einstein case ν = 0, its eigenvalues −ε1 λ and −ε2ρ are real. Furthermore,
for any such matrix, with ν = 0, one can find δ ∈ E∗, such that (H = 0,Gg , δ) is
generalized Einstein. In fact, if λ ≠ 0, then h = ν = δ1 = δ4 = 0, ρ ≠ 0 and the solution
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is uniquely determined by the free parameters λ ≠ 0, ρ ≠ 0 and μ as δ2 = δ5 = −δ3 =
−δ6 = −ε2(λ2 + ρ2)/ρ ≠ 0. If λ = 0, then ρ ≠ 0 (as λ + ρ ≠ 0), h = ν = λ = 0 and the
solution is uniquely determined by the free parameters μ, δ1 and δ4 as δ2 = −δ3 =
−ε2(ρ2 − ε1 μδ1)/ρ and δ5 = −δ6 = −ε2(ρ2 − ε1 μδ4)/ρ. Note that all the solutions have
nonzero divergence and that M has rank 1 if and only if λ = 0. ∎

3.4 Riemannian divergence

In this section, we want to determine those solutions (G , H,G, δ) to the generalized
Einstein equation for which the divergence δ coincides with the Riemannian diver-
gence δG = −τ ○ π ∈ E∗ (see Proposition 2.17). If the Lie group is unimodular, the
trace-form τ, and therefore the Riemannian divergence, is zero. This was covered in
Theorem 3.4. It remains to specify the results of Propositions 3.15 and 3.16 to the case
δ = δG.

In the case that g is nondegenerate on the unimodular kernel u, δ = δG holds if and
only if the components of δ in the basis (va) of g from Proposition 3.15 are

δ1 = δ4 = − tr adv1 = 0,
δ2 = δ5 = − tr adv2 ≠ 0,
δ3 = δ6 = − tr adv3 = 0.

Therefore, the relevant solutions are those for which M = adv2 ∣u is diagonalizable and
δ1 = δ3 = δ4 = δ6 = 0, in virtue of Proposition 3.15.

In the case that g is degenerate on the unimodular kernel u, we compute the
components of δ in the basis (va) of g from Proposition 3.16 as

δ1 = δ4 = − tr adv1 = 0,
δ2 = δ5 = − tr adv2 = ε1 (λ − ρ) ,
δ3 = δ6 = − tr adv3 = −ε1 (λ − ρ) .

Class of Lie algebras H g

R
3 = 0 flat LD

so(3) ≠ 0 def LD

so(2, 1) ≠ 0 indef LD

e(2) = 0 flat, def on [g, g] LD

e(1, 1) = 0 flat, indef on [g, g] LD

heis = 0 flat, indef L¬D
r′3,1(R) = 0 indef g∣u×u nondeg

Table 1. Divergence-free solutions to the generalized Einstein equation.
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Class of Lie algebra H g δ

R
3 = 0 δ ∈ E∗ arbitrary LD

so(3) ≠ 0 def δ∣E+ = 0 or δ∣E− = 0 LD

so(2, 1) ≠ 0 indef δ∣E+ = 0 or δ∣E− = 0 LD

e(2) = 0 def on [g, g] δσ(1) = δσ(2) = δσ(1)+3 = δσ(2)+3 = 0 LD

e(1, 1) = 0 indef on [g, g] δσ(1) = δσ(2) = δσ(1)+3 = δσ(2)+3 = 0 LD

heis = 0 indef δ1 = δ4 = 0, δ2 = δ3 , δ5 = δ6 L¬D
e(1, 1) = 0 indef δ1 = δ4 ≠ 0, δ2 = δ3 = δ5 = δ6 = 0 L¬D
e(1, 1) = 0 indef δ1 = −δ4 = −δ3 = δ6 = −

√
2, δ2 = δ5 L¬D

r2(R) ⊕R ≠ 0 indef δ2 = δ5 = − tr adv2 ≠ 0, δ specified in Prop. 3.15 g∣u×u nondeg

r3,λ(R), λ ≠ 1 ≠ 0 indef δ2 = δ5 = − tr adv2 ≠ 0, δ specified in Prop. 3.15 g∣u×u nondeg

r3,1(R) ≠ 0 indef δA = 0, A = 1, 3, 4, 6, δ2 = δ5 = − tr adv2 ≠ 0 g∣u×u nondeg

r2(R) ⊕R = 0 indef δ1 and δ4 arbitrary determine δ ≠ 0, cf. Prop. 3.16 g∣u×u deg

r3(R) = 0 indef δ1 = δ4 = 0, δ2 = δ5 = −δ3 = −δ6 ≠ 0 g∣u×u deg

r3,λ(R), = 0 indef δ1 = δ4 = 0, δ2 = δ5 = −δ3 = −δ6 ≠ 0 g∣u×u deg

Table 2. Solutions to the generalized Einstein equation with arbitrary divergence.
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From the system of equation (31), which is equivalent to the Einstein condition, we
see now that λ2 + λρ = 0. Hence, λ = 0, since λ + ρ ≠ 0. Finally, we conclude that g ≅
R ⋉A R

2, where A has one eigenvalue equal to zero and one nonzero eigenvalue.
Proposition 3.17 Let (H,Gg , δ) be a generalized Einstein structure on a three-
dimensional nonunimodular Lie group G, with δ = δGg the Riemannian divergence of
Gg . Let u be the unimodular kernel of the Lie algebra g. If the pseudo-Riemannian
metric g is nondegenerate on u, then g ≅ R ⋉A R

2 for a diagonalizable matrix A, with
tr A ≠ 0. If g is degenerate on u, then g ≅ R ⋉A R

2 for a matrix A, whose kernel is one-
dimensional. In both cases, the matrix A can be brought to the form

A = ( 1 0
0 s ) , s ∈ (−1, 1],

by an automorphism of g, where s = 0 if u is degenerate. (The precise tensors H, g , and
δ are specified in Propositions 3.15 and 3.16 by specializing to the formulas for δ = δGg

given in this section.)

4 Tables

In this section, we want to summarize our results. For further details, we refer to
Section 3. In Tables 1 and 2, LD and L¬D mean that the endomorphism L defined
in equation (23) is diagonalizable and not diagonalizable, respectively. Furthermore,
we write def, indef, deg, and nondeg instead of definite, indefinite, degenerate, and
nondegenerate. For the notations of the isomorphism classes of Lie algebras, we refer
to [GOV, Chapter 7, Theorem 1.4]. Following [GOV, Chapter 7, Theorem 1.4], we
restrict the parameter λ in r3,λ(R) to 0 < ∣λ∣ ≤ 1. In addition, we exclude λ = −1, since
r3,−1(R) ≅ e(1, 1).
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