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Abstract. 'We develop the theory of left-invariant generalized pseudo-Riemannian metrics on Lie
groups. Such a metric accompanied by a choice of left-invariant divergence operator gives rise to
a Ricci curvature tensor, and we study the corresponding Einstein equation. We compute the Ricci
tensor in terms of the tensors (on the sum of the Lie algebra and its dual) encoding the Courant
algebroid structure, the generalized metric, and the divergence operator. The resulting expression
is polynomial and homogeneous of degree 2 in the coefficients of the Dorfman bracket and the
divergence operator with respect to a left-invariant orthonormal basis for the generalized metric.
We determine all generalized Einstein metrics on three-dimensional Lie groups.

1 Introduction

Generalized geometry was proposed by Hitchin [H] as a framework unifying complex
and symplectic structures. The two latter can be viewed as particular instances of
the notion of a generalized complex structure, the theory of which was developed
in [Gul, Gu2] including a geometrization of Barannikov’s and Kontsevich’s extended
deformation theory.

Similarly, pseudo-Riemannian metrics have a fruitful counterpart in generalized
geometry, which can be used, for instance, to unify and geometrize the structures
involved in type II supergravity [CSW]. A generalized pseudo-Riemannian metric
together with a divergence operator is indeed sufficient to define a notion of general-
ized Ricci curvature and thus to pose a generalized Einstein equation as the vanishing
of the generalized Ricci curvature [GSt]. In the context of supergravity and string
theory, the divergence operator is related to the dilaton field, which is itself subject
to a field equation.

A generalized geometry formulation of minimal six-dimensional supergravity
has been given in [GS] with a particular case of the generalized Einstein equation
as the main bosonic equation of motion. It would be interesting to classify left-
invariant solutions on six-dimensional Lie groups using the theory developed in our
present work. We note that by taking, for instance, the product of a pair of three-
dimensional generalized Einstein Lie groups (as defined below in the introduction
and classified in our paper), we obtain a six-dimensional generalized Einstein Lie
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group. If one imposes, in addition, a self-duality condition on the three-form, one
arrives at (decomposable) solutions of the equation of motion mentioned above. Other
(indecomposable) solutions on products of three-dimensional Lie groups have been
constructed in [MS]. Examples of invariant Ricci-flat Bismut connections on compact
homogeneous Riemannian manifolds have been constructed in [GSt, PRI, PR2].
They include non-Bismut-flat examples [PR1, PR2] and give rise to invariant positive
definite solutions of the generalized Einstein equation with Riemannian divergence
operator.

In this paper, we focus on left-invariant generalized pseudo-Riemannian metrics
on Lie groups G. We develop the theory on arbitrary Lie groups in Section 2 and,
based on that theory, provide a complete classification of left-invariant solutions of
the generalized Einstein equation on three-dimensional Lie groups in Section 3.

First, we show in Proposition 2.4 that, up to an isomorphism, the generalized
metric § and the Courant algebroid structure are encoded in a pair (g, H) consisting
of a left-invariant pseudo-Riemannian metric ¢ and a left-invariant closed three-
form H on G. Then we describe the space of left-invariant torsion-free and metric
generalized connections D on (G, G,, H) as a finite-dimensional affine space modeled
on the generalized first prolongation of so(g@® g*) in Proposition 2.8, where G,
denotes the generalized metric determined by g. Such generalized connections D are
called left-invariant Levi-Civita generalized connections. As part of the proof, we
construct a canonical left-invariant Levi-Civita generalized connection D, which can
serve as an origin in the above affine space.

Aleft-invariant divergence operator on I'(TG), where TM denotes the generalized
tangent bundle of a manifold M, can be identified with an element § € E*, where E =
g @ g*. We say that a left-invariant generalized connection D has divergence operator
8 if 8p = 8, where 8p(v) = tr(Dv), v € E. Here, D is identified with an element of
E*®s0(E), E>uwr D, €s0(E). For instance, we have dpo =0 for the canonical
left-invariant Levi-Civita generalized connection D°, compare Proposition 2.15. In
Proposition 2.16, we specify for every § € E* a left-invariant Levi-Civita generalized
connection D such that §p = §. We end Section 2.4 by observing that § = 0 is not the
only canonical choice of left-invariant divergence operator on a Lie group. A more
general choice is to take & as a fixed multiple of the trace-form 7 of g. The choice 6 =
—Tome E", where 7 : E — g is the canonical projection, corresponds precisely to the
divergence operator associated with the generalized connection trivially extending
the Levi-Civita connection of any left-invariant pseudo-Riemannian metric, as shown
in Proposition 2.17. The latter choice does therefore coincide with what is called the
Riemannian divergence operator [GSt].

In Section 2.5, we define the Ricci curvature of any pseudo-Riemannian generalized
Lie group (G, G, H,§) with prescribed divergence operator § € E* as a certain
element in E* ® E* (see Definition 2.18). Then we express it in terms of the algebraic
data on the Lie algebra g. The starting point is the computation of the tensorial part of
the curvature of the canonical Levi-Civita generalized connection D° in Proposition
2.19 as a homogeneous quadratic polynomial expression in the Dorfman bracket
B =[-,-]u. The Ricci curvature of any pseudo-Riemannian generalized Lie group
(G, G4, H, 8 = 0) with zero divergence operator is then obtained as a Corollary 2.20.
These results are then generalized to arbitrary & by considering D = D® + S, where S is
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an arbitrary element of the first generalized prolongation of so(E), leading to Lemma
2.23, Proposition 2.24, and Theorem 2.25.
For illustration, we give here the explicit expression for the Ricci curvature

Rics e E*QE; ®E; QE*

of a pseudo-Riemannian generalized Lie group (G, § o H, 0 ), where E, stands for the
eigenspaces of the generalized metric. For u, € E. and using the projections pry_ :
E — E., we consider the linear maps

Ty, =prg, o B(us,")|p, : Ex > Es.

Theorem1.1 Let (G, Sy, H, &) be any pseudo-Riemannian generalized Lie group. Then
its Ricci curvature is given by

Rics(u-—,uy) =—tr (T, 0Ty, ) +8(prg, Bu-,uy)),
Rics(us,u_) =—tr (T, ol ) +0(prg B(us,u_)).

This implies that the tensor Rics is polynomial of degree 2 and homogeneous in
the pair (B, §). Note that it depends on the generalized metric and thus on g through
the projections prg, . An equivalent convenient component expression in an adapted
basis is given in Theorem 2.25, where also symmetry properties of Rics are discussed.

To derive an explicit expression for Rics in terms of the data (g, g, H) rather than
(9,4, B), it suffices to express the Dorfman bracket B in terms of the Lie bracket
and the three-form H (see Proposition 2.26). In Proposition 2.27, we show that the
underlying metric g of an Einstein generalized pseudo-Riemannian Lie group (i.e.,
a left-invariant solution of Rics = 0) can be freely rescaled without changing the
Einstein property, provided that the three-form and the divergence are appropriately
rescaled. In Proposition 2.29, we relate the Ricci curvature Rics of the pseudo-
Riemannian generalized Lie group to the Ricci curvature of the left-invariant pseudo-
Riemannian metric g. We show that (G, G4, H = 0, § = 0) is generalized Einstein if and
only if ¢ satisfies a certain gradient Ricci soliton equation (22) involving the trace-form
7 of g. In particular, in the special case when g is unimodular, the generalized Einstein
equation reduces to the Einstein (vacuum) equation for g.

Next, we describe how, building on the general results of Section 2, in Section
3, we determine all left-invariant solutions (H, G, d) to the Einstein equation on
three-dimensional Lie groups G, up to isomorphism. Here, H stands for the three-
form which, together with the Lie bracket, determines the exact Courant algebroid
structure, G stands for the generalized pseudo-Riemannian metric and § for the
divergence required to define the Ricci curvature uniquely. The data (G, H, G, §) can
be simply referred to as a generalized Einstein Lie group (three-dimensional in our
case).

Up to isomorphism, we can assume from the start that § = G, is associated with
a left-invariant pseudo-Riemannian metric ¢ on G, compare Proposition 2.4. In
the remaining part of the introduction, we will therefore simply speak of solutions
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(H, g, 9) on g, or more precisely as generalized Einstein structures on g. In particular,
we identify the left-invariant structures (H, g, ) with tensors

3
He/\g*, geSym’g® and de¢E*=(g@g*)".

As a preliminary, we explain in Section 3.1 how, using the metric g, the Lie bracket
of g can be encoded in an endomorphism L € End g. Irrespective of the signature of
g the endomorphism L happens to be g-symmetric if and only if the Lie algebra is
unimodular. This allows for the choice of an orthonormal basis of (g, ¢) in which L
takes one of five parameter-dependent normal forms, provided that g is unimodular
(see Proposition 3.2). Moreover, the Jacobi identity does not impose any constraint on
the normal form.

After these preliminaries, we give in Section 3.2, the classification of solutions with
zero divergence, that is solutions of the type (H, g, § = 0), beginning with the class of
unimodular Lie algebras. The final results can be roughly summarized as follows (see
Theorems 3.4 and 3.8 and Remark 3.6).

Theorem 1.2 Any divergence-free generalized Einstein structure on a three-
dimensional unimodular Lie algebra is isomorphic to one in the following classes
(described explicitly in Theorem 3.4).

(1) g is abelian and H = 0. The metric g is flat of any signature.

(2) g is simple, H # 0 and the metric g is of nonzero constant curvature. It is definite if
and only if g = s0(3) and indefinite if and only if g = s0(2,1).

(3) H=0, gis flat and g is one of the following metabelian Lie algebras: g = ¢(2) or
g = ¢(1,1), where e(p, q) denotes the Lie algebra of the isometry group of RP*1 (the
affine pseudo-orthogonal Lie algebra). The metric is definite on [g, g] if and only if
g=¢(2).

(4) g = beis is the Heisenberg algebra, H = 0 and g is flat and indefinite.

We note that the above list of Lie algebras,

R?,50(3),50(2,1),¢(2),¢(1,1), heis,
is precisely the list of all unimodular three-dimensional Lie algebras.

Theorem 1.3 Any divergence-free generalized Einstein structure on a three-
dimensional nonunimodular Lie algebra is of the type (H = 0, g), where g is indefinite,
nondegenerate on the unimodular kernel u = ker 7, 7 = tr o ad, and belongs to a certain
one-parameter family of metrics on the metabelian Lie algebra

1 1
RD(ARZa A:(—l 1)

The family of metrics (described in Theorem 3.8) consists of Ricci solitons which are not
of constant curvature.

The classification in the case of nonzero divergence is the content of Section 3.3.
The unimodular case is covered in Section 3.3, the nonunimodular case in Section 3.3.
To keep the introduction succinct, we do only summarize the isomorphism types of
the Lie algebras resulting from our classification without listing the detailed solutions,
which can be found in Theorem 3.12 and Propositions 3.15 and 3.16.
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Theorem 1.4  Any three-dimensional unimodular Lie algebra g admits a generalized
Einstein structure with nonzero divergence as well as a divergence-free solution (see
Theorem 3.12).

Theorem 1.5 Let (H,g,8) be a generalized Einstein structure with nonzero

divergence on a three-dimensional nonunimodular Lie algebra g. Then either:

(1) The unimodular kernel of g is nondegenerate (with respect to g) and g = R x 4 R?,
where

1 0

A—( 0 1 ), Ae(-1,1], and H+0
(see Proposition 3.15 for a complete description of (H, g, 9)).

(2) Its unimodular kernel is degenerate, H = 0 and g = R x4 R?, where A € gl(2,R) is
arbitrary with only real eigenvalues and such that tr A + 0 (see Proposition 3.16).

In Proposition 3.17, we indicate for which of the left-invariant generalized Einstein
structures the divergence § coincides with the Riemannian divergence. We find that
this is not only the case for all divergence-free solutions on unimodular Lie algebras
but also for some of the nonunimodular cases with nonzero divergence. In the latter
case, the unimodular kernel can be both degenerate or nondegenerate with respect to
the metric g.

For better overview, the results of our classification are summarized in the tables
of Section 4.

2 Generalized Einstein metrics on Lie groups

In this section, we develop a general approach for the study of left-invariant general-
ized Einstein metrics on Lie groups.

2.1 Twisted generalized tangent bundle of a Lie group

Recall that the generalized tangent bundle of a smooth manifold M is the sum
T™M=TM&T'M

of its tangent and its cotangent bundle and that any closed three-form H on M defines
on TM the structure of a Courant algebroid (see, e.g., [G, Example 2.5]). We will write
T, M for the fiber at p € M.

Here, we consider only the special case when M = G is a Lie group and the Courant
algebroid structure is left-invariant.

Let G be a Lie group with Lie algebra g and H a closed left-invariant three-form
on G. The H-twisted generalized tangent bundle of G is the vector bundle TG - G
endowed with the Courant algebroid structure (7, (-,-), [-,-]u) given by:

(1) The canonical projection 7 : TG — TG, called the anchor.
(2) The canonical symmetric bilinear pairing (-,-) € [ (Sym?*(TG)*), given by

(X+ &Y +0) = (V) +0(Y)),

called the scalar product.
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(3) The (H-twisted) Dorfman bracket [-,-]g : T(TG) x I'(TG) — I'(TG), given by
o [X+&EY+n]u=Lx(Y+1y)—wydE+H(X,Y,),

where X,Y e [(TG), &,neT(T*G), £ denotes the Lie derivative and : the
interior product.

The above data satisfy the defining axioms of a Courant algebroid:

CY) [u,[v>»w]a]lw = [[t-v]a>w]a + [v, [, W]a]H,
(C2) n(u){v,w)={([u,v]g, w)+ (v, [u,w]y), and
(C3) m(u){v,w) ={(u,[v,w]g + [w,v]n),

for all u,v,w € T(TG). It is well known that the above axioms imply the following
useful relations (compare [CD, Definition 1] and the references therein), which are
obvious from (1).

o The homomorphism of bundles 7 is a bracket-homomorphism, that is,
nlu,v]g = [7nu, nv],

where [nu, nv] = £, (nv) denotes the Lie bracket of mu, 7v € T(TG).
o The map [u, ]y : T(TG) - I'(TG) satisfies the Leibniz rule:

[, fv]u = (mu) (f)v + flu,v]m, ¥ f e CF(M).
For notational simplicity, we define
(2) u(f) = (mu)(f).

We will identify left-invariant sections of TG (by evaluation at the neutral element
e € G) with elements

3) X+¢eE=E(g)=g®g"

and use the same notation to denote them. Correspondingly, the three-form H €
T'(A*T*G) will be identified with an element H € A*g*. With these identifications,
(-,-) € Sym*E* and the Dorfman bracket of X + £and Y + e g @ g* is

(4) [(X+&EY+y]lp=[X,Y]-adyn—1ydé+ H(X,Y," )egag",

where [ X, Y] is the Lie bracket in g, ady# = 77 o adx and d denotes the restriction of
the de Rham differential to left-invariant forms, such that —iyd§ = ady €.

2.2 Generalized metrics on Lie groups

Definition 2.1 A generalized pseudo-Riemannian metric on a manifold M is a section
G e T(Sym*(TM)*) such that the endomorphism G°*¢ € I (End TM) defined by

(5) (Gm.,) =g

is an involution and Glsym2(7+py) is nondegenerate. The pair (M, G) is called a
generalized pseudo-Riemannian manifold. The prefix pseudo will be omitted when G
is positive definite.
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Note that for a generalized metric, equation (5) is equivalent to G* = G o (., ),
using the identification (TM)* ® (TM)* = Hom(TM, (TM)*) given by evaluation
in the first argument. We do also remark that the nondegeneracy of S|gym2(r+ ) is
automatic if G is positive or negative definite.

A left-invariant generalized metric on a Lie group G is identified (by evaluation at
the neutral element e € G) with a generalized metric on g = Lie G as defined in the
following definition.

Definition 2.2 Let H be a left-invariant closed three-form on a Lie group G, which
we identify (by evaluation at e € G) with an element H € A® g*. A generalized (pseudo-
Riemannian) metric on its Lie algebra g = Lie G is a symmetric bilinear form G €
Sysz* (cf. (3)) such that =™ =G 1o (-,-) is an involution and 9|5szg* is non-
degenerate. The corresponding triple (G, H, G) will be called a pseudo-Riemannian
generalized Lie group and (g, H, ) a pseudo-Riemannian generalized Lie algebra. The
prefix pseudo will be omitted when G is positive definite.

Two pseudo-Riemannian generalized Lie groups (G, H,S) and (G',H',S’) are
called isomorphic if there exists an isomorphism of Lie groups ¢ : G — G’ and an
isomorphism of bundles @ : TG — TG’ covering ¢ such that ® maps the Courant
algebroid structure (7, (-,-), [-,-]g) on G determined by H to the Courant algebroid
structure on G’ determined by H' and the generalized metric § to the generalized
metric §'. The map @ is called an isomorphism of pseudo-Riemannian generalized
Lie groups.

Similarly, two pseudo-Riemannian generalized Lie algebras (g,H,G) and
(¢, H',G") are called isomorphic if there exists an isomorphism of Lie algebras ¢ :
g — ¢’ and an isomorphism of vector spaces ¢ : E(g) — E(g') covering ¢ which maps
the data ({-,-), [-,]x, G) on g (cf. (4)) to the data ({-,-)’,[,-]n",G’) on ¢’. Here, (-,-)’
denotes the canonical symmetric pairing on E(g’) induced by the duality between g’
and (g’)*. The map ¢ is called an isomorphism of pseudo-Riemannian generalized Lie
algebras.

Example 2.3 Let g be a left-invariant pseudo-Riemannian metric on G. We denote
the corresponding bilinear form on the Lie algebra g by the same symbol: g € Sym?g*.
It extends to a generalized metric G, € Sym*E* such that

1 -
Ge(X+ &Y +m) =2 (e(X.Y) + g7 (&)
forall X + £, Y + 5 € E. The corresponding endomorphism G is
gMi-gog ' E=geg > E =g @y

Proposition 2.4 Let (G, H,G) be a pseudo-Riemannian generalized Lie group. Then
there exist a left-invariant pseudo-Riemannian metric g on G and a closed left-invariant
three-form H' € [H] € H*(g) such that (G, H, §) is isomorphic to (G, H',Gy), by an
isomorphism @ covering the identity map of G.
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Proof The decomposition E = g & g* gives rise to the following block decomposi-

tion
h A*
29:(A Y)’

where h € Sym®g, A € End(g) and y € Sym*g* is nondegenerate, as follows from the
symmetry of § and the nondegeneracy of Gy 24+ In terms of g =y~ € Sym?g, we
can write the necessary and sufficient conditions for

end _ A g_l

to be an involution as
A’+g'h=1, gA=-A%g, hA=-A"h,

where the last two equations mean that A is skew-symmetric for g and h. In particular,
we can write A = —g~' 3 for some f3 € A* g*. Solving the first equation for h, we obtain

h=g-gA’=g+pA=g-Pgp.
This implies that G = exp(B)(G,)** exp(-B), where

0 0
- o)
or equivalently, § = exp(—B)*G,. Now it suffices to check that the map

¢p=exp(-B):E—E, X+&-X+E&-X,

defines an isomorphism of pseudo-Riemannian generalized Lie algebras from
(9,H,G) to (g,H',G,) covering the identity map of g, where H' = H + df3. The
corresponding isomorphism @ of pseudo-Riemannian generalized Lie groups is also
given by exp(—B), now considered as an endomorphism of TG. [ ]

Remark 2.5 Clearly, a decomposition of the form (6) holds for any generalized
pseudo-Riemannian metric § on a manifold M. This shows that tr Gend = () since A is
skew-symmetric with respect to g.

2.3 Space of left-invariant Levi-Civita generalized connections

Let H be a closed three-form on a smooth manifold M and consider TM with the
Courant algebroid structure defined by H.

Definition 2.6 A generalized connection on M is a linear map
D:T(TM) - T((TM)*® TM), v~ Dv=_(uw~ D,v),

such that:

(1) Dy(fv) =u(f)v+ fD,v (anchored Leibniz rule), recall (2), and
(@) u(v,w) = (Duv,w)+(v,Dyw)
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forall u,v,w € T(TM). The torsion of a generalized connection D (with respect to the
Dorfman bracket [-,-]) is the section T € T(A*(TM)* ® TM) defined by

T(u,v) =Dy,v-Dyu—[u,v]g+ (Du)*v,

where (Du)* is the adjoint of Du with respect to the scalar product (cf. [G]). The
generalized connection D is called torsion-free if T = 0.

Given a generalized pseudo-Riemannian metric § on M, we say that a generalized
connection D is metric if DG = 0, where D,, : [(TM) — I'(TM) is extended to space
of sections of the tensor algebra over TM as a tensor derivation for all u € T(TM).
More explicitly, the latter condition is

uG(v,w) =G9(D,v,w) + G(v,D,w), Vu,v,we(TM).

This condition is satisfied if and only if D preserves the eigenbundles of G,

Any metric and torsion-free generalized connection on a generalized pseudo-
Riemannian manifold (M, §) (endowed with the three-form H) is called a Levi-Civita
generalized connection.

It is known [G] that the torsion of a generalized connection is totally skew, that
is, T e T(A*(TM)* ® TM) defines a section of A’(TM)* upon identification TM =
(TM)* using the scalar product.

Given a reduction of the structure group O(n, n) of TM, n = dim M, to a subgroup
L =0(n,n)s c O(n,n) defined by a tensor S € @3>, ® (R” ® (R")*), we consider
the tensor field § which in any frame of the reduction has the same coefficients as S
in the standard basis of R” & (R")*. A generalized connection D is called compatible
with the L-reduction if DS = 0. It was shown in [CD] that a torsion-free generalized
connection (on a Courant algebroid) compatible with an L-reduction exists if and only
if its intrinsic torsion (defined in [CD, Definition 15]) vanishes. In that case, it was also
shown there that the space of compatible torsion-free generalized connections is an
affine space modeled on the space of sections of the generalized first prolongation
(s0(TM)s){" (defined in [CD, Definition 16]) of so(TM)s. Note that the fiber of
the bundle so(TM)s at a point p € M is s0(T,M)s, = s0(n,n)s = [ = Lie L, so that
(50(TM)s) V], = 1D,

As a special case, we can apply the above theory to the case when § =G is a
generalized pseudo-Riemannian metric. The existence of a Levi-Civita generalized
connection shown in [G, Proposition 3.3] implies the following.

Proposition 2.7 Let (M, S) be a generalized pseudo-Riemannian manifold and H a
closed three-form on M. Then the space of Levi-Civita generalized connections (with
respect to the H-twisted Dorfman bracket) is an affine space modeled on (so(TM)g ).

A generalized connection D on a Lie group G is called left-invariant if D,v € T(TG)
isleft-invariant for all left-invariant sections u, v € T(TG). A left-invariant generalized
connection on G can be identified with an element D € E* ® so(E), where we recall
that E = g @ g*. Its torsion T is identified with an element T ¢ (A* E* ® E) n (E* ®
s0(E)) 2 A’ E*. We denote by E, and E_ the eigenspaces of 5" € End(E) for the
eigenvalues +1, respectively. Note that dim E, = dim E_ = dim G =: n by Remark 2.5.
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Proposition 2.8 Let (G, H,G) be a pseudo-Riemannian generalized Lie group. Then
the space of left-invariant Levi-Civita generalized connections on G is an affine space
modeled on s0(E)\) = £, @ X_, where £, c E* ® s0(E,,) is the kernel of the map

9:E@so(E,) > N'E*
defined by

(7) (0a)(u,v,w) = Y (auv,w) u,v,weE,
IS
and similarly for 2_ c E* ® so(E_). Here, G indicates the sum over the cyclic permuta-
tions and a,, € s0(E, ) stands for evaluation of a € EX ® s0(E,) = Hom(E,,s0(E;))
at u.
Moreover,
Sym’E, ® E,

2, =im(alt) = SymE
+

is the image of the map
alt: Sym’E} ® E} — EX ® s0(E,)
defined by
(alt(o), v, w) = o(u,v,w) — o(u, w,v)
and similarly for X_.

Proof The first part of the proposition follows easily from the existence of a left-
invariant Levi-Civita generalized connection (to be shown at the end of the proof),
Proposition 2.7 and the definition of the generalized first prolongation [CD] as the
kernel of the natural map

9:E*@s0(E)g -~ N'E*
given by the formula (7). To compute the kernel, we can first observe that so(E)g =
so(E,) ®@so(E-) 2 A*E; & A\* E*. Since 0 maps E} ® so(E,,) to E} AE}, AE}, c
A E*, &1, 6, € {~1,1}, it suffices to consider the kernels of these four restrictions. On

tensors of mixed type 0 is injective, such that ker 0 = £, @ X_. The last part of the
corollary follows from the exact sequence

(8) 0 Sym’V > Sym?Ve VIS ve A’V 25 A’V 50
that holds for any finite-dimensional vector space V and was used in [G]. Here, alty
is given by
(URV+V QU)W URVAW+VOW AU
and dy by

URSVAWRH UANV AW,

We apply the sequenceto V = E, (and similarlyto V' = E_) using the metric identifica-
tions E, = E* and s0(E, ) 2 A* E} = A* E,, which allow to identify the natural maps
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alty and dy with alt: Sym*E* ® EX - E* ® s0(E,) and 9: Ef ® so(E;) - A*E?,
respectively.

Now it suffices to show that there exists a left-invariant Levi-Civita generalized
connection. We consider the tensor B € @ E* defined by

9) B(u,v,w) ={[u,v]g,w), u,v,weE.
Lemma 2.9 B is totally skew.
Proof The skew-symmetry in (u,v) follows from axiom C3 in Section 2.1:
B(u,v,w) +B(v,u,w) = (w,[u,v]g + [v,u]ug) = w(u,v) =0,
since (u, v) is a constant function. Using axiom C2, we obtain
B(u,v,w) = {([u,v]g, w) = u(v,w) = (v, [u,w]g) = =B(u, w,v).

Now it suffices to observe that skew-symmetry in (¢, v) and (v, w) implies total skew-
symmetry.
Next, we define

1 1
DY = §3|/\3 E. ® §3|/\3E, ® Blp,onrr. @ Blpenrr,-

As an element of E* ® A2E* = E* ® s0(E), it defines a left-invariant generalized
connection. It is metric, since it takes values in the subalgebra so(E,) @ so(E_) c
s0(E). Since 0B|ps g, =3B|psg, and 0B|g.gp2E, = Blesar.ng,, the torsion TP’ =
oD° — B of D is given by

0
TP = (Blpog, @ Blap. ©®0Bl,opnre. ®0Ble opep, ) - B=B-8=0. m

Remark 2.10 Note that due to Lemma 2.9 and the Jacobi identity (axiom C1), the
tensor B together with the scalar product (-,-) defines on E(g) the structure of a
quadratic Lie algebra. Such algebras are examples of Courant algebroids with trivial
anchor. Generalized metrics, generalized connections, and curvature on quadratic Lie
algebras have been studied in [ADG]. Their formulas are consistent with ours.

2.4 Levi-Civita generalized connections with prescribed divergence

In this subsection, we show that every left-invariant divergence operator on the
generalized tangent bundle of a generalized pseudo-Riemannian Lie group admits
a compatible left-invariant Levi-Civita generalized connection. We then give an
explicit construction of such a generalized connection in the case when G is asso-
ciated with a left-invariant pseudo-Riemannian metric as in Example 2.3. In view of
Proposition 2.4, there is no loss in generality by considering this special case.

Definition 2.11 A divergence operator on TM is a first-order differential operator 6 :
I['(TM) — C* (M) which satisfies

S(fv) =v(f)+ fov,
forallv e T(TM), f € C*(M).
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Example 2.12  Let D be a generalized connection on M. Then
Spv=trDv, vel(TM),
defines a divergence operator on T M.

When M = G is a Lie group we can ask for a divergence operator § on TG to be
left-invariant, that is, for the function dv to be left-invariant (i.e., constant) for all left-
invariant sections v of TG. Such operators can can be identified with elements of E* =
(T.G)".

It was proved in [G] that there always exists a Levi-Civita generalized connection
with a prescribed divergence. We now give a proof for this in our setting.

Proposition 2.13 Let (G,H,S) be a generalized pseudo-Riemannian Lie group of
dimension dim G > 2 and 6 € E*. Then there exists a left-invariant Levi-Civita gener-
alized connection D such that §p = 6.

Proof Let D¢ E* ® s0(E) be a left-invariant Levi-Civita generalized connection.
Any other left-invariant Levi-Civita generalized connection can be written as D’ =
D + S, where S € s50(E){") c E* ® s0(E) (see Proposition 2.8). The divergence opera-
tors are related by

(10) Opv—08pv=trSv=tr(uw~ S,v), veE.
We consider the linear form Ag € E* defined by
(1) As(v) = trSv.

It suffices to show that the linear map S + Ag is surjective. Given a, 8 € E = (E_)° ¢
E*, the element S = alt(a? ® B) € =, c s0(E)) =%, ® 2_ has

(12) As = {a, BYa — (a, a)B.
Since dimE, = dim G > 2, this proves that span{Ag|S € 2,} = E}, and similarly
span{is | SeX_} = E*. ]

Note that the condition dim G > 2 is necessary. If dim G = 1, then the Levi-Civita
generalized connection D is unique and dp € E* is zero.

From now on, we assume without loss of generality (see Proposition 2.4) that G =
G, for some left-invariant pseudo-Riemannian metric g on G. We will first construct
a particular left-invariant Levi-Civita generalized connection D with 6p = 0 € E* and
later prescribe an arbitrary divergence operator by adding a suitable element of the
generalized first prolongation.

Adapted bases and notation

Let (v,) = (v1,...,v,) be a g-orthonormal basis of g and set ¢, := g(v,,v,). Then
(13) eq =V + gVq

defines a G-orthonormal basis (e, ) 4-1,...., of E; with G(e,, e,) = &, and

.....

(14) €nta =Va — gVa
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defines a G-orthonormal basis (e;)i=p+1,....2n Of E- with §(e+4, €n1q) = €,. Remem-
ber that (-,-) = +G on the summands E, of the decomposition E = E, & E_, which
is orthogonal for both the generalized metric G as well as the scalar product (-, ).
Summarizing, we have an orthonormal basis (e4) 4-1,... 2, Of E adapted to the decom-
position E = E, @& E_. Note that {e4, eg) = €405, where e, = —€,4, fora=1,...,n.
From now on the indices a, b, . . . will always range from 1to , i, j, ... will range from
n+1to2nand A, B, ... from1to2n.

A left-invariant generalized connection D is completely determined by its coefhi-
cients w$, with respect to the basis (e4):

c .
D,,eg = wyge: C,

where, from now on, we use Einstein’s summation convention, according to which the
sum over an upper and a lower repeated index is understood. Equivalently, we may
use

(15) wagc = (De,€ep,ec)

which has the advantage that it is skew-symmetric in (B, C). In fact, any tensor
(wapc) skew-symmetric in (B, C) defines a left-invariant generalized connection D
by the formula (15). We will say that (wapc) are the connection coefficients of D.

The next proposition follows from the fact that D is metric if and only if DE, c E,.

Proposition 2.14 A left-invariant generalized connection D is metric if and only if
wapc = 0 whenever Be {1,...,n}and Ce {n+1,...,2n}.

Using the orthonormal basis (e4) of E, we define

(16) Bagc = B(ea ep,ec) = {[ea>er]n, ec).

Proposition 2.15 Let (G, H,G,) be a generalized pseudo-Riemannian Lie group. The
following tensor (w apc ) defines the connection coefficients of a left-invariant Levi-Civita
generalized connection D° with zero divergence 8po:

1 1
(17) Wape = gBahc, Wik = ?Bijk: Wipe = Bipe,  Wajk = Bajks

where a,b,ce{l,...,n} and i,j,ke{n+1,...,2n} and the remaining components
are zero. The connection D° does not depend on the choice of orthonormal basis (v,) of
g, from which the orthonormal basis (ea) of E = g ® g* was constructed. It is therefore a
canonical Levi-Civita generalized connection and will be called the canonical divergence-
free Levi-Civita generalized connection.

Proof Theformulas (17) are precisely the connection coefficients of the left-invariant
Levi-Civita generalized connection D° defined in the proof of Proposition 2.8. In
particular, D° is independent of the basis (v, ). To show that the divergence & of D°
vanishes, it suffices to remark that §(ep) = “’23 vanishes due to w,jc = w;px = 0 and
the total skew-symmetry of w,;. and w; jx (with the above index ranges), implied by
Lemma 2.9. [ |

Proposition 2.16 Let (G,H,S;) be a generalized pseudo-Riemannian Lie group
endowed with the canonical divergence-free Levi-Civita generalized connection D° of
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Proposition 2.15. Fix an element § € E*. Then a left-invariant Levi-Civita generalized
connection D with divergence 8p = § can be obtained as follows. Choose, as above,' a
left-invariant orthonormal basis (e4) of E associated with an orthonormal basis of g.
Define the tensor S := S, + S_, where

n
S, = —alt (6152(e2)2 ®el + Z Sae1(e)? ® e“) €x,,
a=2
and similarly for S_ e X_. Here, (e?) denotes the basis of E* dual to (es) and
04 = 8(ea). Then the left-invariant Levi-Civita generalized connection D = DO + S has
divergence 9.

Proof From (10)-(12), we see that D = D° + S has divergence &, since
As+ = —5182/1(32)2@,@1 - Z 8a£1A(e1)2®e“ = Z 8aea = 6|E+
a=2 a=1

and similarly Ag_ = 8|g_. ]

We want to close this section by introducing a special divergence operator, the so-
called Riemannian divergence, which is considered in the literature ([GSt, Definition
2.46]). If (M, G) is a generalized pseudo-Riemannian manifold, one defines for all
veIl(TM),

89(v) = tr (Vay) = tr (T(TM) 5 Y > Vyn(v) e I(TM)),

where V is the Levi-Civita connection of the pseudo-Riemannian metric g associated
with G via Proposition 2.4. Denoting by y the Riemannian density associated with g,

we recall the well-known fact that the divergence tr (VX) of a vector field X can also
ny
u

, since

be expressed by
Lxp=Vxp—(VX) p=tu(VX)p.

The divergence operator 89 can be recovered as the divergence of a generalized
connection as in Example 2.12. For that one, first extends the Levi-Civita connection
to a connection on TM and then pulls it back to a generalized connection ¥ via the
anchor 7. Then

85 (v) = trry (VW) = trry (V(v)) = 89 (v),

since Vv|r+p = 0 and 7 o Vv|rar = V7(v). Furthermore, note that ¥ is a Levi-Civita
generalized connection of §,i1f § = §¢ and H = 0.

Proposition 2.17 Let (G, H, S) be a generalized pseudo-Riemannian Lie group. Then
the Riemannian divergence satisfies

89(v) = —1(n(v)), veE,

where T € g* is the trace-form defined by 1(X) =tradx, X € g. In particular, the
Riemannian divergence is zero, if the Lie group G is unimodular.

1Compare (13) and (14).
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Proof Letv=X+&eE and (v,) as usual a basis of g, which is orthonormal with
respect to g. Furthermore, let V be the Levi-Civita connection of g. It satisfies

1
§(VxY,2) = S (g([X. Y], 2) - g ([Y, 2], X) + g ([Z, X]. V)
for X, Y, Z € g. We can thus compute

89 (X + &) = tr(VX)
= Z ag(Vy, X, va)

e (o([ver K1)~ v ve) + (vl X))
== Zgag([X’Va]’Va)

= —trady
=—1(n(X +)). [ ]

2.5 Ricci curvatures and generalized Einstein metrics

After fixing a left-invariant section § of (TG)* over a generalized pseudo-Riemannian
Lie group (G, H,§G) we define and compute two canonical Ricci curvature tensors
Ric* e E* @ Ef and Ric™ € E] ® E*, which depend only on the data (H, G, §). A left-
invariant solution § of the system Ric* = 0, Ric™ = 0 is what we will call a generalized
Einstein metric on G with three-form H and dilaton §.

Consider the generalized tangent bundle TM of a smooth manifold endowed with
the Courant algebroid structure associated with a closed three-form H on M and a
generalized pseudo-Riemannian metric §. We denote by (TM).. the eigenbundles of
9end.

Given a Levi-Civita generalized connection D on TM and two sections u,v €
['(TM), we consider the differential operator R(u,v) : T(TM) — T'(TM) defined by

R(u,v)w = DyDyw — D,Dyw — D[y, ], W>
for all w e [(TM). It was observed in [G] that R restricts to tensor fields

Rp € T ((TM): @ (TM)” ®s0((TM),))
Rp eT((TM): ® (TM)} ®s0((TM)_)).
Hence there are tensor fields Ricj, € T((TM)* ® (TM)}) and Ricp, e T((TM); ®
(TM)*) defined by
Ricy(u,v) =tr Rh (- u)v =tr ([(TM,) >w — R(w,u)v e [(TM,)),
uel(TM_),vel(TM,),
Ricp(u,v) =tr Ry (L u)v =tr (T(TM_) 5w~ R(w,u)v e [(TM_)),
uel(TM,),vel(TM.).
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It was also shown in [G] that the tensor fields Ri cf,l and Ri cﬁz are the same for any
pair of Levi-Civita generalized connections D;, D, with the same divergence operator
0p, = Op,.

As a consequence, the following definition is meaningful.

Definition 2.18 Let (G, H, G) be a generalized pseudo-Riemannian Lie group and
0 € E*. Then the Ricci curvatures

Ric* =Ricg e E*®E]} and Ric =Rics € E; ® E”

of (G, H, 9, 8) (orof (g, H, G, §)) are defined by evaluation of Ric}, and Ricp ate € G,
where D is any left-invariant Levi-Civita generalized connection D with divergence J.
(G, H, G, 0) is called generalized Einstein if

Ric:=Ric*®Ric ' =0€¢E*®E; ®E, ® E".

We will consider Ric as a bilinear form on E vanishing on E, x E, and E_ x E_.

Next, we compute the Ricci curvatures in the case § =0 using the canonical
divergence-free Levi-Civita generalized connection of Proposition 2.15, which in the
following we denote by D°. The case of general divergence is then obtained by comput-
ing how the Ricci curvatures change under addition of an element of the generalized
first prolongation. We denote by R}, € E; ® E ® so(E,) the tensors which corre-
spond to the left-invariant tensor fields R7;, € T ((TG); ® (TG); ® s0((TG).)).

Proposition 2.19 Let D° be the canonical divergence-free Levi-Civita generalized
connection of a generalized pseudo-Riemannian Lie group (G, H, S ), defined in Propo-
sition 2.15. The components Rapcp = (R(ea,ep)ec,ep), A,B,C,D e {1,...,2n}, of
the tensors R3,, are given by

2 1 1
Rgjea = ggﬁjched + gﬁfcgead + EBﬁaBeJ'd,

2 1 1
Ripke = gB?kacz + gﬁikﬁcw + 532,35;;@,

wherea,b,c,d € {1,...,n}and i, j, k., le{n+1,...,2n}.

Proof Wedenoteby#ap = (ea, ep) the coefficients of the scalar product with respect
to the orthonormal basis (e4) and by wspc and wﬁB =>p ﬂCDwABD the connection
coefficients of D°. Here, 17AB = nap are the coefficients of the induced scalar product
on E*. Then (taking into account the agreed index ranges) we compute

Rpo(easej)ec = (a)"-l w) - a)‘a’lcw{d wDC)ef,
d d d ¢
= (w f:d waca)]d B wdc B, “’ec)ef

& Bd B - EBZCde—gBZjBf - BB ey,
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where the index f runs from 1 to #n and 353 = Bappn® C. Next, we observe that the
axiom (C1), the Jacobi identity for the Dorfman bracket, can be written in components
as

Z BiDBBPC =0,
S(4A,B,C)

where the cyclic sum is over (A, B, C). Specializing to (A,B,C,F) =(a,j,c, f),
we get

0= > BIBR= Y (BBl +BlB).
S(a,j,c) &(a,j,c)

So we obtain
1
RBO(ea) ej)ec == (Bﬁ,ﬁ{c + 3 Z chgié) ef
S (a,j,c)
200 0f Yopoaof  loe gof
_ (5%% +3BLBY, + 3 BB ey,
Taking the scalar product with e, gives the claimed formula for R,j.4. The other

formula is obtained similarly. |

Corollary 2.20 Let (G, H,S,) be a generalized pseudo-Riemannian Lie group. Then
the Ricci curvature of (G, H, Gg, 0 = 0) is symmetric, in the sense that Ric*(u,v) =
Ric™(v,u) for all ue E_, v e E,. The components R;, = Ric*(e;,e,) of Ric* are
given by

Ris =B} B

aj

wherea,be{l,...,n}andi,je{n+1,...,2n}.

Proof From Proposition 2.19, by taking the trace using the complete skew-symmetry
of Bpc (see Lemma 2.9), we get

2 1
_ _ J b ) b
R,’a = Rai = g'Bbi‘Buj + gBaiji
v i (2 1
=17 ggbijﬁaj'b' + gBab’j’Bjib
= r]bb }1” Bbijgaj’b’ = B{ngz] | |
For u, € E_, we define

(18) [, =prg, o [u+,~]H|E_ :E_—->E,, T, =prg o [u_,~]H|E+ :E, - E_.

Corollary 2.21 A necessary and sufficient condition for (G, H, G, 8 = 0) to be gener-
alized Einstein is that the subspace

I'g, c Hom(E_,E,) isperpendicularto Ty c Hom(E,,E_),
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with respect to the nondegenerate pairing Hom(E_, E, ) x Hom(E,, E_) — R given by
(A, B) — tr(AB) = tr(BA). A sufficient condition in terms of the subspaces Ty, Ex C E..
is that

(19) FE+E, 1 [E,,E,]H or Ig E, L [E+,E+]H.
Proof The necessary and sufficient condition follows immediately from
Rig = Raj = B}, B = —tr(T,, o I,).
Any of the two (nonequivalent) conditions I'z, oI's. =0 or I'y_ oIz, =0 is clearly

sufficient. These can be reformulated as (19), since, by Lemma 2.9,

(Tu,voowi) ==(v_, [us, wilg) and (T, ve,w_) = —(vy, [u_, w_]n),
forall u,,v,,wy € E.,u_,v_,w_€E_. [ |

Next, we will compute the Ricci curvature of an arbitrary left-invariant Levi-
Civita generalized connection D = D° + S on (G, H, G ), where D" is the canonical
divergence-free Levi-Civita generalized connection and S is an arbitrary element of
the first generalized prolongation of so(E).

Lemma 2.22  The curvature tensors Ry, € Hom(E, ® Ex ® E., E.) of D are given by
0
(20) R} = Rpo +d” S|p,eF.0F.

where
’s U, v, w) = d>’s u,v)w = D%(S,)w - D°(S,)w - Sry 1w, u,v,weE.
d’ u v (w1
Proof A straightforward calculation shows that
0
RE = Rpo +(d” S +[S, 8]k, 0,6,
where
[S,S](u,v,w) =[S, S](u,v)w =[Sy, Sy Jw,  u,v,we€E.

We observe that the map [S, S] : (u, v, w) — [S,, S, ]w vanisheson E, ® E_ ® E, and
onE_®E, ® E_, since SgE, c E, and Sg, E= = 0. This proves (20). [ ]

In the following, we denote by (d” ’ S)* the restriction of d” ’S to an element
(d°°$)* € Hom(E. ® E+ ® E,, E.) =~ Hom(E, ® E;,EndE,).
Lemma 2.23 We have R}, = Ry + (dDOS)i and
(dP"$)*(u,v)w = —(D°S)uw,

forall (u,v,w) € Ey x Ez x E,.
Proof The first formula is just (20). Since D°E, c E, and Sg, Es = 0, we have

(dDOS)i(u,v)w =-DY%(S,)w - Stun], W = ~(D2S),w - SpouW = Sfuv], W-
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Using that D° is torsion-free, we can write [u,v]g = DOv — D%u, since (D%u)*v = 0
for all (u,v) € E; x E+. Hence,

=Spoyw - S[u’V]HW ==Spo,w =0,
again because DE, c E, and Sg, E+ = 0. This proves the lemma. [ |

Proposition 2.24  Let 0 be a divergence operator on E and S € so(E)\") such that the
Levi-Civita generalized connection D° + S has divergence 8. Then the Ricci curvatures
Ricy of a generalized pseudo-Riemannian Lie group (G, H, Gy, 8) with arbitrary diver-
gence & € E” are related to the Ricci curvatures Ricy of (G, H, G, 0) by
(21) Rict = Rict +trg, (2" $)* = Rict - D°8|p. o,
where

(trg, a)(es ep) =tr(u — a(u, e;)ep),

forany a € EX ® E* ® E} ® E, and, similarly,

(tre_ B)(easej) = tr(u — B(u,eq)ej),
when 3 € EX ® E] ® E* ® E_. Here, we are assuming the usual index ranges for a, b and
i,j.
Proof An element S of the first generalized prolongation of so(E) such that D° + S
has divergence § exists due to Proposition 2.13. The first equation follows from Lemma
2.22 by taking traces. The formula
tl‘Ei (dDOS)i = —DO(S|1.3_T_®Ei

is a consequence of Lemma 2.23, since the trace maps trg, and trp_ are parallel for any
metric generalized connection. In fact, for instance,

tre. (d7'8)" (ei, e0) = —tra. ((D2,S)ey) = =D, (trz, S) ey = ~(DY,8) e,

where the trg, S € E* is defined by (trg, S)v = trg, (Sv) = tr(E; 2 u — S,v € E,) for
all v € E and we have used that trg, (Sv) = tr(Sv) = §(v) for all v € E,. |

Summarizing, we obtain the following theorem.

Theorem 2.25 The components R%, = Ric} (e;, eq) and RS; = Ricy (e, e;) of the Ricci
curvature tensors Ricy of a generalized pseudo-Riemannian Lie group (G, H, Gy, 8)
with arbitrary divergence § € E* are given as follows:

8 i b
Ry, = By, By, + Bi, 0.,
8 _qi qb i
Ry = fBbi‘Baj +B;0;.
In particular, the Ricci tensor Rics = Ricy @ Ricy is symmetric if and only if, § satisfies
c

the equation B¢ §C = Bzﬂ.éj. It is skew-symmetric if (G, H, g, 0) is generalized Einstein

1a
and B¢, 6. = —B’.8;. (Recall that we are always assuming the usual index ranges for a, b
and i, j.)
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In terms of the linear maps T, : Ex — E. defined in (18) for u, € E., we have

Ricg(u_,uy) = —tr(T,_oTy,) +8(prg, [u—,us]u),
Ricg(us,u_) =—tr(L,_oTy,) +8(prg [ts,u_]n).

The theorem shows that the Ricci curvature is completely determined by the one-
form ¢ and the coefficients B, jx and B, of the Dorfman bracket in the orthonormal
basis (e4) = (e, €;). For future use, we do now compute the latter coeflicients in terms
of the coefficients of the Lie bracket (the structure constants) and the coefficients of
the three-form H using (4). Recall that (v,) was a g-orthonormal basis of g. More
precisely, we have g,, = ¢(va,vp) = (€a> €p) = a5 We denote the corresponding
structure constants of the Lie algebra g by ¢, such that

[Va>Vp] = KSpVe-
Note that r,4p, = H‘;hgdc = ﬁ‘;bndc for Kape = {[Va> Vb ], ve)-

Proposition 2.26 The Dorfman coefficients Bjr, Bipe, Bape, and Bijr (a, b, c €
{1,....n},i,j,k e {n+1,...,2n}) are related to the structure constant K ,p as follows:

Bajk = % (Hajkr = Kajrkr + Kjrkra — Kkrajr) »
Bipe = % (Hirpe + Kirbe = Kpeir + Keirb) »
Babe = 5 (Have + (95)arc),

Bijk = % (Hirjrir = (0R)irjkr ) »

—

wherei' =i—n, forie{n+1,...,2n} and (0K)apc = Kabe + Kbca + Keab-
Proof Using (4),we compute
[easejlu = [Va+gvasvi = gvilu = [Var Vi lu = [Va, gvir I + [gVas vy I
= [va,vir ] + H(vasvjr,-) + ady (gvjr) - tvj,d(gva)
=[Va vyl + Hva,vjrs ) + 8(vjrs [Vas 1) + g(vas [vjrs 1)
It follows that

Bajk = ([ea>ej]u>ex) = ([easej]ms vir — gvir)

1
=5 (HOw vy vie) + g0js [vas vie]) + 8 (Vs [virs vie]) = g(vies [V v11])
1
= E (Hu]'lkl + Hak/jl + Hj’k’u — Kuj’k’)
1
= 5 (Haj’k’ — ka’aj’ + K’j’k’a - K’aj’k’) .
The proof of the second formula is similar, where now
Leirep]m = [vir, ve] + H(vir,vp,-) = g(vp, [Virs]) = g(virs [ve,]).

The remaining equations are obtained in the same way. [ ]
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The next result shows that the underlying metric g of an Einstein generalized
pseudo-Riemannian Lie group can be freely rescaled without changing the Einstein
property, provided that the three-form and the divergence are appropriately rescaled.

Proposition 2.27  Let g be a left-invariant pseudo-Riemannian metric and H a closed
left-invariant three-form on a Lie group G. Consider g’ = ey 2gand H' = eu™>H, where
e € {+1} and p > 0. Then the generalized pseudo-Riemannian Lie group (G, H, Gg) is
Einstein with divergence 8 € E* if and only if (G, H',G,) is Einstein with divergence
0" = ud.

Proof Let (v,) be a g-orthonormal basis of g. Then v/ = uv, defines a g'-
orthonormal basis (v},). The corresponding basis (e’,) of E, where e/, =v/ + ¢'v/,
and e; = v; — g'v}, is still orthonormal with respect to the scalar product: {e/;, ez) =
€(ea,ep). The structure constants /= g’([v,v,],v.) with respect to the basis
(vi)arer!, = epkapc. Similarly, H' (v;, vy, v.) = euH(va, vp, v, ). Finally, from these
formulas and Proposition 2.26, we see that B’ ;- = ([ €'y, e} |rr» ec) = euB apc. Tak-
ing into account that (¢, e}) = e(ea, ep), we conclude that (B")S, = (1') P B =
uBS ;. Now Theorem 2.25 together with Proposition 2.15 shows that the coefficients
of the Ricci curvatures Ric of (G, H, G, §) and Ric" of (G, H', G, 8") are related by

Ric'(€, ep) = p*Ric(ea, ep). [

Remark 2.28 Denote by V the Levi-Civita connection of the pseudo-Riemannian
metric g and define its coefficients with respect to the orthonormal frame (v,) as
Tape = g(Vy,Vp,vc). Then

1 1
rabc = E (g([va’ Vh]a Vc) - g([vb>VC:|’ Vﬂ) + g([VC, Vu]’ Vb)) = E(Hahc — Kpca + K:cah)
and hence the Dorfman coefficients B, jx and B, can be expressed by
1 1
Bajk = E (Haj’k’ _zruj’k’) = EHaj'k’ - raj’k”
1 1
Bipe = E (Hirpe +2Tirpc) = EHi'bc + Tirpe.
Proposition 2.29  Let g be a left-invariant pseudo-Riemannian metric on a Lie group G.
Consider the generalized pseudo-Riemannian Lie group (G, H = 0, G). Then the Ricci

curvature Ricg = Ricj|s_, of the generalized metric G is related to the Ricci curvature
Ric8 of the metric g by

l5-0

Ricg(v—gv,u+gu) =Ricy(u+ gu,v—gv)=Ric%(u,v) + (V,1)(v), u,veg,
where T € g* is the trace-form defined by 7(v) = trad,.

Proof The symmetry of the Ricci tensor of G, follows from & = 0. Therefore, it
suffices to compute R;, = Ric*(e;, e, ) from Theorem 2.25 and to compare with R‘gi, =
Ric¥(v,,vir), i’ = i — n. Note first that, by Remark 2.28, we have

k _ kK ¢ _ 1c
'Baj_raj” ib = ti'b
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since H = 0 and (e, ex) = —(ej, exr) = —g(vjr, vir ). Hence, using Lemma 2.9 and the
fact that the Levi-Civita connection has zero torsion, we obtain

_qpimb _ _pi'pb _ i b b
Ria =B} B, = -T],Tb, = -}, (T2, +Kb,).
On the other hand, we have
g _pd pf d rf d _1d of
RS, =T8T, = Tf,T), — ki, T], =T8T, + Rig.

To compute the first term, we note that since the Levi-Civita connection is metric, we
have

F){d = K;d =-15=-1(vq),
and hence
r;j,.,r]{d = T 75 = (V1) air = (Vy, T)Vir. -

Corollary 2.30 Let g be a left-invariant pseudo-Riemannian metric on a Lie group
G. Then the generalized pseudo-Riemannian Lie group (G, H = 0, G;) is Einstein with
divergence 8 = 0 if and only if g satisfies the following Ricci soliton equation

(22) Ric¥ +V1=0,

where T is the trace-form. The form 1 is always closed and, hence, the solutions of the
above equation are gradient Ricci solitons, if the first Betti number of the manifold G
vanishes.

Proof Forall u,v € g, we have
(d7)(u,v) = -7([u,v]) = ~tradp,,,) = ~tr[ad,,ad, ] = 0. [ |

Corollary 2.31 Let g be a left-invariant pseudo-Riemannian metric on a unimodular
Lie group G. Then the generalized pseudo-Riemannian Lie group (G,H =0,G,) is
Einstein with divergence 8 = 0 if and only if g is Ricci-flat.

3 Classification results in dimension 3

3.1 Preliminaries

Let G be a three-dimensional Lie group endowed with a left-invariant pseudo-
Riemannian metric ¢ and an orientation. We will identify ¢ with a nondegenerate
symmetric bilinear form g € Sym®g*. We begin by showing that the Lie bracket can
be encoded in an endomorphism L of g and study its properties.

Following Milnor [M], but allowing indefinite metrics, we denote by L € End g the
endomorphism such that

(23) [u,v]=L(uxv), VYu,veg,
where the cross-product x € A* g* ® g is defined by

(24) g(uxv,w) =volg(u,v,w),
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using the metric volume form vol,. In terms of an oriented orthonormal basis (v, ),
we have

VaXVp=€Ve, € =gWVe,Ve)s
for every cyclic permutation (a, b, ¢) of {1,2,3}. This implies that
(25) [Vavo] =€ Lve, ¥V cydic (a,b,c) € Gs.
We denote by (L, ) the matrix of L in the above basis,
Ley = L% e,,

and by L% =L% g, the coefficients of the corresponding tensor Lo g'e
Hom(g*,g) 2 g ®g.

From (25), we see that the structure constants x;, of g with respect to the basis
(v4) can be written as

c cd
Hab = Sade N

where €444 = volg(V4, vy, v4) (in particular, 153 = 1).
The following lemma is a straightforward generalization of [M, Lemma 4.1].

Lemma 3.1 The endomorphism L is symmetric with respect to g if and only if g is
unimodular.

Proof Note first that L is symmetric with respect to g if and only if the matrix (L)
is symmetric. Therefore, the calculation

trad,, = nzb = g5 LY¢

shows that L is symmetric if and only if trad,, = 0 for all g, i.e., if and only if g is
unimodular. n

Proposition 3.2 Let g be a nondegenerate symmetric bilinear form on an oriented
three-dimensional unimodular Lie algebra g. Then there exists an orthonormal basis
(va) of (g,g) such that g(vi,v1) = g(v2,v,) and such that the symmetric endomor-
phism L defined in Equation (23) is represented by one of the following matrices:

a 0 0 y 0 0
Li(wpy)=| 0 B 0 ), LiaBy)=| 0 a -f |,
0 0 y 0 B «
B 0 0 B 0 0
Lwh=[0 tra 1 | L@p=|0 -tra -1 |,
0 —% —%+0c 0 %4—06
o % 0
N |
0 —% o

where o, 3,y € R and g(vs,v3) = —g(v2,v2) for the normal forms L, ..., Ls. If g is
definite, then the orthonormal basis can be chosen such that L is represented by a
diagonal matrix L(«, B, y) and each diagonal matrix is realized in this way. If g is
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indefinite, then each of the above normal forms is realized by some unimodular Lie
bracket.

Proof It is well known that every symmetric endomorphism on a Euclidean vector
space can be diagonalized. According to [CEHL, Lemma 2.2] and the references
therein, for an indefinite scalar product on a three-dimensional vector space, there
are the five normal forms of a symmetric bilinear form, from which one easily
obtains the five normal forms Li(«, 3,v), Lo(«, B,y), Ls(a, B), Ls(a, 8), and Ls(«)
for a symmetric endomorphism. It remains to check that for each of these normal
forms (L*,), the bracket with structure constants ¢, = eapaL? satisfies the Jacobi
identity.
All the cases can be treated simultaneously by considering (L*,) of the form

o A 0
A B )
0 eepu vy

where A, p € R. For the corresponding endomorphism L, we have

Jac(vi, v2,v3) = [vi, [v2, v3]] + [va, [va, vi]] + [va, [vi,v2]] = D [Va» €alva]

= g AMvi, v2] + &2A[va, v1] + e3u[va, v3] + e3u[vs3, v2] = 0,

where we have used that ¢; = ¢,. ]

3.2 Classification in the case of zero divergence
3.2.1 Unimodular Lie groups

Proposition 3.3 If (H,G,,0 = 0) is a divergence-free generalized Einstein structure
on an oriented three-dimensional unimodular Lie group G, then there exists a g-
orthonormal basis (v, ) of g such that g(vi,v1) = g(v2,v2) and such that the symmetric
endomorphism L defined in equation (23) is either of the form Li(a, 3,y), that is L is
diagonalizable by an orthonormal basis, or of one of the forms L3(0,0) or L4(0,0). In
the nondiagonalizable case, the three-form H is zero.

Proof Inthe Euclidean case, any symmetric endomorphism is always diagonalizable
by an orthonormal basis. So we may assume that the scalar product is indefinite. By
Proposition 3.2, there is an orthonormal basis (v, ), such that the endomorphism L
takes one of the normal forms L;(«, ,y), L2(e, 8, y), Ls(a, B), La(a, B), or Ls(a)
from said proposition. As in the proof of Proposition 3.2, we can treat all cases at once
by considering the matrix

a A 0
A B
0 —u vy

Recall that we assume ¢; = &, = —¢3, where &, = g(v,,v,). Using equation (25), we
obtain the structure constants rgp. = &ck¢, of the Lie algebra in the following way.
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The bracket is given by

a
KhVa = [V, V2] = €3Lvs = e3uva + €39V = —&2Uva + £3YV3,

a
K53Va = [V2,v3] = €1Lvy = g1av; + g1Av, = g1av; + £2Av;,

a
K51Va = [V3, 1] = €2Lva = e2Av; + &2 8vy — 21V = e1Avy + &2 8va + e3v3,

and hence

_ a2 R
K121 = 0, K122 = E2K1y = —Hs K123 = €3K15 = P>
o1 2 _
K31 = €1Ky3 = &, K3 = £2K33 = A, Ka33 =0,
1 2 3
Kan = €1K3 = A, K3p = &2K3 = B, K33 = €3K3; = Y.

The remaining structure constants are determined by the skew-symmetry of x4, in
the first two components.
By Proposition 2.26, the Dorfman coeflicients are given as follows:

1

Buss = E (Huz — K2 + Kiz1 — Nzu) = K121 = 0,
1

B = 5 (H113 —Kus + K131 — /‘i311) = —R3u = -A,
1 1

Bise = 3 (Hiz3 — K123 + K231 — K312) = 3 (h-y+a-p),
1

Boss = E (H212 — Koz + K122 — H221) =Ri2 = — W

Boae = % (H213 — K213 + K132 — 11321) = % (—h +y- ﬁ + 0‘) >
Base = % (H2a3 — K223 + K23z — K322) = Kazz = A,
Bsys = % (H312 — K312 + K123 — 146231) = % (h -B+y- 06) >
Bsye = % (Hs13 — K31z + K133 — K331) = —K313 = — )
Bise = % (Hs23 — K323 + K33 — K332) = K233 = 0,

1

Ban = E (Huz + K2 — Ko + /‘?211) =—-Ki21 =0,

1
Bus = 2 (Hus + ki3 — K131 + K311) = Kan = A,

1 1
Bas = 5(H123+/‘€123—f<231+f€312) = E(h+)/—06+ﬁ),

1
Bz = 5 (H212 + K212 — Koz + 5221) = —K12 = U,

1 1
Bsiz = 5 (Hys + Ko13 — K1z + Ka21) = 5 (~h-y+B-a),

1
Bsyz = 5 (H223 + K223 — Kz32 + Hszz) = -k = —A,
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1 1

Berz = E (H312 + K312 — K1z + H231) = 5 (h +/3 -yt 06) >
1

Beis = 5 (H313 + K313 — K133 + /<6331) = K313 = U,
1

Beas = 5 (H323 + K323 — K233 + 5332) = —kp33 = 0.

Now, Theorem 2.25 allows us to compute the Ricci curvature (for zero divergence §)
with respect to the orthonormal basis (e4) = (€4, €;), €q = Vg + gVa, €; = Vir — gVir, of
E=g®g”*as

(26) Rig = Zh:BiiBﬁj = Z;Bbijﬂujb(_ej’)eb = Z};Bbijgjabfj’eb’
js i i

where we have used that (e;, e;) = —(eys, e;) = —&; and the standard index ranges
a,be{l1,2,3},i,j€{4,5,6}.

Ry1 = BrasBsineres + B3asBsizeres + BoagBeneser + BiasBezeses
= B45Bs12 — B3asBsiz — BaasBerz + B3seBeis

— - (= fry-a) (h-y+f-a)

- Chry-pra) (b foyra) -
=2t - (a2 (h- (=) + @ - (h+ (B-))
-2t - @t SR (B,

Ryz = BiasBsaier61 + B3asBsrzeres + BragBeniezer + BiaeBeazeses
=0~ B345Bsz3 + BiasBera + 0

:%)L(h—ﬁ+y—a)—%)t(h+ﬁ—y+oc)
=-A(B-y+a),

Ryz = BiasBszie261 + BaysBsszer65 + BiysBeieser + BaasBesreszer
=0 - B245Bs23 + BrasBerz + 0
= -2ul,

Rs; = BossByperer + BasyBaizeres + BaseBeraeszer + BaseBeozeses
=0+ B345Ba3 — Bas¢Bera + 0

:%)L(h—ﬁ+y—oc)—%)t(h+ﬁ—y+a)
=-A(B-y+a),

Rs; = BisaBasiere1 + BasaBarzeres + BiseBeaieser + BiseBeazeses
=0+ B3ysBazz + Bis¢Berz + 0

- U=pry-a)(hey-a+p) ey (h-y+a-p)(h+p-y+a)
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1
= (e =) =+ (h-(y-) )
1 2 1 2 1 2
= —— —h — — 5
Bk S (y-a)
Rs3 = BisaBuazie161 + BosaBuzre162 + BiseBesieser + BaseBesaezen

=0+ Bs5Byzs + BisgBeiz + 0

1 1
- Lpy-ae gy ey e p)
=-u(y-a+p),

Re1 = BasaBuizer€a + BrsaBaizeres + BassBsineres + BagsBsizezes
=0+ B346Baiz — BaseBsiz + 0
=-2Au,

Rez = BisaBunie1€1 + BasaBuazszeres + BigsBsaieaer + BagsBsazeres
=0+ B346By2s + BiseBsiz + 0

=—%#W+y—a+ﬁ)+%ﬂw—y+a—ﬂ)

=—p(y-a+p),
Re3 = BieaBunierer + BarsaBasre162 + BiesBszie261 + Bogs Bssaezer

= BrasBais + BrasBazs + BissBsiz + BaseBsas
:—)L2+i(—h+y—/3+oc)(h+y—(x+/j’)
s (h-yra=p)(ch-y+foa) -2
1
=2+ (P (h+ (B-w)’ +y = (h=(B-a))’)

1 1 1
S Lt iy 'y A
Y-S (B-a)

We see that the Einstein equations yield a system of homogeneous quadratic equations
in the real variables a, 3, 9, A, and p.

The normal form Ls(e) is excluded by equation Ry3 = 0 for any « € R.

Equation Rs3 = 0 for the normal form L, («, 3, y) reads as

0=BQ2a-y).

If B = 0, then the matrix is diagonal, so assume that y = 2«. Then Rs, = 0 yields

1 1
0——5 2+5h2+*(a—y)2
1 1
=*h2— +72
> ay 2)’
_th
2 bl
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and hence h = 0. Therefore, equation Ry; = 0 is
1
0=-282— =92,
G

which gives = y = 0. Hence, L is diagonalizable by an orthonormal basis.
If we consider the normal form L;(a, ), the equation Rs3 = 0 is

1 1 1 1
O=—la-=-f+a+=-)=-=2a-p),
2( 2 B 2) 2( A
and hence 2a = 8. Now, the equation for Ry; yields
1\ 1 1 1 1 1\’
0=—2(7) —7/32+7h2+7(0c+7—(x+7)
2 2 2 2 2 2

1 1 1 1
e R 7 R
2 2 2 2

1o 1.,
=—=fB“+=h",
2[3 2

and hence 2 = h?. Applying this to the equation Rs; = 0 gives
1(1 V1 1 1A
o= (e b (o L)

2\2 2 2 2

1(1 21 1 1\?
:—7(74-04) +fh2+7(—oc—7)
2\2 2 2 2

From that, see h = 0, and therefore & = § = 0.
A similar computation for Ly («, ) shows that the only possibility is L4(0,0) with
h=0. ]

Theorem 3.4 Let (H,SG,) be a divergence-free generalized Einstein structure on an
oriented three-dimensional unimodular Lie group G. If the endomorphism L ¢ End g
defined in (24) is diagonalizable, then there exists an oriented g-orthonormal basis (v,)
of g = Lie G and a3, ay, a3, h € R such that

27) [Vas Vo] = acecve, ¥V cyclic (a,b,c) €G3, H = hvol,

wheree, = g(vq, v, ) satisfies € = €;. The constants (ay, a2, a3, h) can take the following
values:

(1) a1 = ay = a3 = +h, in which case g is either abelian and g is flat (the case h = 0) or g
is isomorphic to 50(2,1) or 50(3). The case s0(3) occurs precisely when g is definite
(and h +0).

(2) There exists a cyclic permutation o € S5 such that

As(1) = Ag(2) 0 and h= ®g3) = 0.

In this case, g is flat and [ g, g] is abelian of dimension 2, that is, g is metabelian.
More precisely, g is isomorphic to ¢(2) (g definite on [g, g]) or e(1,1) (g indefinite on

https://doi.org/10.4153/50008414X23000056 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000056

2066 V. Cortés and D. Krusche

(9, 9]), where ¢(p, q) denotes the Lie algebra of the isometry group of the pseudo-

Euclidean space R4,

If the endomorphism is not diagonalizable (g is necessarily indefinite in this case), then

h = 0 and the Lie group G is isomorphic to the Heisenberg group.

Proof Assume first that L is diagonalizable. Note that the existence of (&, a3, a3, h)
such that (27) is an immediate consequence of the diagonalizability of L. The corre-

sponding structure constants x,. are given by
Kabe = @, ¥V cyclic (a,b,c) € Gs.

In virtue of Proposition 2.26, this implies the following:
(1) Foralla,b,ce<{1,2,3},

1
Bape = E(h +opt oy + “3)8ub5)

where 45 = volg(va, Vi, Ve ).
(2) Foralli,j, ke {4,5,6},

1
'Bijk = E(h — 01— & — 063)€i'j'k'>

where i’ =i —3foralli e {4,5,6}.
(3) Forae{1,2,3} and j, k € {4,5, 6}, the coeflicients
1
Bajk = E(Haj’k’ — Kajikt + Kjikia = Kkajt)
are given explicitly by

1 1
Bise = —Bies = E(h —azt - o) = EXla

1 1
Boes = —Bose = E(h -0+ a—a3) = EXz,

1 1
Bsys = —B3ss = E(h —a+az-a) = EX3,

with all other components equal to zero.
(4) Forie {4,5,6}and b, c € {1,2,3}, the coefficients

1
Bibc = E(Hi’bc + Kirpe — Kpeir + Hci’b)
are given explicitly by
1 1
Buzz = —Bys = E(h +az - +ay) = EYI:
1 1
Bsz1 = —Bsiz = E(h +a - +az) = EYZ’
1 1
Be1z = —Beo = E(h +ay—az+ ) = EY3’

with all other components equal to zero.

2The first two formulas are not needed for the proof. They are only included for future use.
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From these formulas and equation (26), we can now compute the components

Ria = BpiiBiavej e
i

of the Ricci curvature (for zero divergence ¢ = 0) with respect to the orthonormal basis
(ea) = (eqr€i),eq=vy + gva, €; =vy — gvir, of E = g ® g*. Explicitly, we obtain

283
Ry1 = BraeBeneser + BiusBsizeres = _T(X2Y3 +X3Y2),

183
Rsy = Bis¢Beaieser + BasaBarzeres = _T(Xl Y; + X311),
£1€2
Re3 = BrsaBasre162 + BiesBssiez61 = _T(XIYZ +Xo1),
with all other components equal to zero. We conclude that the generalized Einstein
equations reduce to a system of three homogeneous quadratic equations in the

variables X, and Y,:
Xle + XzYl = X1Y3 + X3Y1 = X2Y3 + X3Y2 =0.

A priori, we can distinguish four types of solutions depending on how many compo-
nents of the vector (Xj, X,, X3) are equal to zero: 0, 1, 2, or 3.
Solutions of type 0: X; X, X3 # 0 implies Y; = Y, = Y3 = 0 and finally

ap=ay=a3=-h=0.

In this case, the Lie algebra g is isomorphic to s0(2,1) or so(3). The latter case happens
if and only if the metric g is definite.

Solutions of type 1: assume, for example, that X; X, # 0, X3 = 0. This implies that
Y3 =0 and, hence, a3 = a1 + @, and & = 0. But then, the equation X;Y, + X,Y; =0
reduces to a;a, = 0, which is inconsistent with X;X, # 0. This shows that solutions
of type 1 do not exist.

Solutions of type 2: assume, for example, that X; # 0, X, = X3 = 0. This implies
Y, = Y3 =0 and finally & = a; = 0, a3 = a3 # 0. So the solutions of type 2 are of the
following form. There exists a cyclic permutation ¢ € &3 such that

Ag(1) = Kg(2) * 0 and h= QAg(3) = 0.

We conclude, for solutions of type 2, that g is flat (see Corollary 2.31) and g is
metabelian. [g, g] = span{v,(1), Vy(2) } is two-dimensional and ad,,,  acts on it by a
nonzero g-skew-symmetric endomorphism. This implies that g is isomorphic to ¢(2)
ore(1,1).

Solutions of type 3: assume X; = X; = X3 = 0. This implies

061:0(2:0(3zh.

In this case, g is either abelian and g is flat (the case h = 0 again by Corollary 2.31) or
g is isomorphic to s0(2,1) or s0(3), as for type 0.

If L is not diagonalizable, then g is indefinite and there exists an orthonormal basis
(Va)a with g(vi,v1) = g(v2,v2) = —g(v3,v3) such that L is either of the form L3 (0, 0)
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or L4(0,0),and h = 0 by Proposition 3.3. We consider first the case L3(0, 0). To prove
that G is isomorphic to the Heisenberg group, we show, using equation (25), that
the generators P := v;, Q = v, + v3 and R = &, (v3 — v,) of its Lie algebra g satisfy the
relations [P, Q] = Rand [P,R] = [Q,R] =0:

[P, Q] = [vi,v2 +v3] = [vi,v2] = [v3,11]
= £3LV3 - 52LV2

1 1 1 1
= 583\/2 - 5831/3 - 5821/2 + 5521’3
1 1 1 1
= —5821/2 + 5821/3 - EEZVZ + 5821/3
=& (v3 —v2)
=R,

[P,R] = [vi, &2(v3 = v2)] = —&a[v3, v1] — &2[v1, 2]
=—&y6Lvy — 565003
=—Lvy + Lvs

1 1 1 1
= —Evz + 51/3 + Evz - 51/3
=0,

[Q,R] =[v2+v3,&2(vs —v2)]
= Sz[Vz,Vs] - 52[1’3,1’2]
=2¢,[v2, v3]
=2¢&61Lv,
=0.

In the case that L takes the form L4(0,0), we see analogously that the generators
P=v;,Q =v,+v; and R = &, (v, — v3) satisfy the relations [P, Q] =R and [P, R] =
[Q,R]=0. [

3.2.2 Nonunimodular Lie groups

We assume now that the Lie group G is not unimodular. Letu := {x € g | trad, = 0} be
the unimodular kernel of g. It can be easily checked that u is a two-dimensional abelian
ideal of g, containing the commutator ideal [ g, g]. This means that the Lie algebra g is
a semidirect product of R and R?, where R is acting on R? by an endomorphism with
nonzero trace. For details on the classification of nonunimodular, three-dimensional
Lie algebras in terms of the Jordan normal form of this endomorphism, we refer to
[GOV, Chapter 7, Theorem 1.4].

We first treat the case that the restriction g|yx, of the metric g to uis nondegenerate.

Proposition 3.5 Let (H, Gy, 8 = 0) be a divergence-free generalized Einstein structure

on a three-dimensional nonunimodular Lie group G. Let u be the unimodular kernel of
the Lie algebra g and assume that g|,x, is nondegenerate. Then H = 0 and g is indefinite.
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Furthermore, there exists an orthonormal basis (v,) of (g, g) such that vi,v; € u and
g(vi,n1) = g(va,v2) = —g(v3,v3) and a positive constant 0 > 0 such that
[vi,v3] =0,
[V27V1:| = Ov; - Ovs,
[v2,v3] = Ovy + Ovs.
Proof A g-orthonormal basis (v, ), of g such that v;, v; € u exists, because gl x,, is
nondegenerate. Since u is an abelian ideal, there are A, y, v, p € R such that
[V3’ Vl] = O)
[va,v1] = &1Avy + e3v3,
[va,v3] = vy + e3pVs3,

with 0 # trad,, = ;A + e3p. Using A = Ka11, 4 = K213, V = K231 and p = Kp33, we can
compute the Dorfman coefficients

Bus = % (Hiz = Knz + K121 = Kan) = —Kau = —A,

Bus = % (H113 —Rus + K31 — /‘€311) =-k3n =0,

Bise = % (Hizs = K123 + K231 — Ka12) = % (h+ K13 + Ka31) = % (h+u+v),
Bays = % (Haz = Kaiz + K122 = Ka21) = —Kaiz = 0,

Boae = % (H213 — K23 + K132 — /€321) = (—h — K213 + stl) = —% (h + U - V) >
Bse = % (Hz3 — Ka23 + K232 — K322) = K23z = 0,

Biys = % (H3iz = K312 + K123 — Ka31) = (h — K13 — K231) = % (h—pu-v),
Bise = % (Hz1s = K313 + K133 — K331) = —Ka13 = 0,

Bise = % (Hs3 — K323 + K33 — K332) = K33 = P>

Bap = % (Huz + Kuz = K121 + Kau) = kon = A,

Bas = % (Hus + kns = K31 + K3n) = Kan = 0,

Bz = % (H123 + K123 — K31 t H312) =z (h K213 — /‘6231) =z (h u - )
Bsiz = % (Haiz + K212 — K122 + Kaz1) = Kana = 0,

Bsiz = % (Has + Ka13 — K132 + Kao1) = = ( h+ K3 = Kasr) = —% (h—u+v),
Bsas = % (H223 + K223 — Ka3p + :‘i322) =—-K32 =0,
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1 1 1

Beiz = E (H312 + K312 — Kz + H231) = E (I’l + Ka13 + /‘6231) = E (h +u+ V) >
1

Beis = 5 (H313 + K313 — K133 + ﬂ331) = k313 =0,
1

Beas = E (H323 + K323 — K233 + 5332) = —K233 = —p.

To prove that the case ¢; = €5 cannot occur, we compute using equation (26),

Rsy = BisaBuanerer + BasaBurser€3 + BiseBerieser + BaseBoaszeses
= BiasBaz — B3asBazs — BiseBeiz + BsseBers

:—/\2—i(h—y—v)z—i(h+y+v)2—pz,

where we have used that & = e5. But this can only be zero if A = p =0, which
contradicts 0 # trad,, = &4 + e3p. This proves that & = —¢5. Hence, we can assume
that the basis is chosen such that &; = £, = —¢3.

In this case, the components of the Ricci curvature are

Ry1 = BoasBsiner8 + B3usBsizeres + BoseBeneser + BissBezeses
=0 - B345Bs13 — BrasBerz + 0

:i(h—y—v)(h—‘u+v)+i(h+y—v)(h+y+v)

:i((h—y)z—v2+(h+y)2—v2)

1
2 2 2
=— (R +p*> ),
2
R4y = BiasBsyiez61 + BaysBsazeres + BrasBeaiezer + BassBerzeses
= 0’

Ryz = BrasBssie261 + BousBszaerer + BrasBesiezer + BaasBeneser
= ~BiasBsi3 + 0+ 0 + ByyeBeas

1 1
=—5A(h—y+v)+5p(h+‘u—v),
Rsi = BissBuine162 + BasaBuzere3 + BaseBenezer + BssgBeizeses
= 0’
Rsy = BisaBanere1 + BssaBuarsere3 + BiseBeaieser + BiseBeazeses
= BiasBuiz + B3asBuos + BiseBeiz + BiseBeas
1 1
:_A2+Z(h_‘l/l_v)2+2(h+”+v)2_p2
1 1 5
=Nk = (u+v) - ph
S+ uav) —p
Rs3 = BisaBasie161 + BrsaBasre162 + BiseBesiezer + BaseBesaesen
=0,
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Re1 = BreaBune162 + BreaBazer€3 + Bags Bsineres + BiesBsizezes
= ~BseBaiz + 0+ 0 + Bss6Bsi3

1 1
= A+ p=v)—op(h-p+v),
Rez = BieaBaniere1 + B3eaBursere3 + BigsBsaieae1 + Bies Bsazeres
=0,
Re3 = BieaBuzier€1 + BasaBasare162 + BiesBsziez61 + Bogs Bssaeaer
=0+ BrssBurz + BisgBsiz + 0

—i(hhu—v)(h—y—v)—i(h+y+v)(h—y+v)
:—i((h—v)z—y2+(h+v)2—y2)

:—%(hz-rvz—yz).

Imposing the Einstein condition, we see from the equations Ry; + Re3 = 0 and Ry; —
Rg3 =0, that h* =0 and u® =+* If u=-v, then Rs; =0 reads as 0=-A? - p?,
hence A = p = 0, which contradicts 0 # trad,, = &4 + &3p. Therefore, ¢ = v and, from
Rs; =0,

2ut = A2+ p.

In particular, y # 0, due to 0 # trad,, = &4 + e3p. Note now that y = v implies that
the endomorphism M € End(u), defined as the restriction of ad,, to u, is symmetric.
A simple consequence of [CEHL, Lemma 2.2] (compare Proposition 3.2) is that there
exists an orthonormal basis of u such that M is represented by one of the matrices

6 0

Ml(e,n):(o ,7), Mz(0»11)=(2 _6'7 )

1+6 1 -1+ -1
- 2 2 - 2 2
e N
in this basis. We may assume that the basis v, v3 of u is chosen such that M takes one
of these normal forms with respect to vy, vs. We see that M;(0, 1) is excluded by the
condition g # 0. Applying 2u* = A* + p? to the normal form M;(0) yields

33 (o) o) o

Hence, 6 = 0, which contradicts trad,, # 0. For the same reason, M also cannot have
the normal form M,4(6). In the remaining case M, (6, 17), the equation 2u? = A% + p?
reads as 2 (—1)* = 0% + (—0). Therefore, 5 = +6. Furthermore, 1 # 0 because y # 0.
Hence, the only two normal forms are

M2(9,9):(g ‘99), MZ(H,—G):(_QG g) 6+0.
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Replacing v; by —v; (exchanging M, (6, 8) with M,(0,-6)) and v, by —v, (replacing
0 by —0), if necessary, we obtain the claimed equations for 6 > 0. [ ]

Remark 3.6 Note that, while all the occurring Lie algebras in the previous propo-
sition are nonisomorphic as metric Lie algebras, they are isomorphic as Lie algebras.
They are a semidirect product of R? and IR, where R acts on R? by the endomorphism
ad,, |y, which has nonreal and nonimaginary eigenvalues (1+ i)60 and (1- i)6. This
corresponds to the Lie algebra t5 ; (R) in the notation of [GOV, Chapter 7, Theorem
1.4].

Proposition 3.7  There is no divergence-free generalized Einstein structure (H, G, 8 =
0) on a three-dimensional nonunimodular Lie group G such that g is degenerate on the
unimodular kernel u of g.

Proof Note first that the metric g necessarily has to be indefinite. We define ¢ := 1 if
the signature of g is (2,1) and ¢ := -1 if it is (1,2). Note that in both cases, there is a
two-dimensional subspace of g on which eg is positive definite. Taking the intersection
with u, we obtain a one-dimensional subspace generated by a vector w; such that
g(wy, wy) = e. Next, we choose a generator w, of the kernel of g,;x, and a null vector
w3 orthogonal to w such that g(w,, w3) = 5. Summarizing, we obtain a basis (w, ) of
g such that
(28)
€
gwiw) =& g(wiwz) = g(wiws) = g(wa, w2) = g(ws, ws) = 0, g(wa, ws) = 5

and wy, w; € u. Denote by 0¢, the structure constants of g in the basis (w,), [wa, wp] =
0¢,w.. Then

[wi,w2] =0,

[ws, w1] = 03wy + 05, w2,

[W3, Wz] = H;ZWI + 6§2W2,
with 0 # trad,, = 03, + 63,. The basis v; = wy, v = wy + w3,v3 = wy — w3 of g is
orthonormal with respect to g satisfying g(vi,v1) = g(v2,v2) = —g(v3,v3). If we
define A := —16}, = £, 103, v = —£,260}, and p = —£,03,, where &, = g(va,va),
then

KipVe = [Vi,va] = [wi, wa + ws] = — [ws, wi]
= —9;1W1 - 6§1W2

1 1
= =0y v — =05v2 — =03,y
3171 2312 2313

= g Avy + &V, — €31V,

K53Ve = [Va,v3] = [wa + w3, wy — w3] = =2[ws3, w;]
= 20w, - 20%,w,
= 205, - 0%, - 03,15

=&Vt E2pV) — E3PV3,
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c
R31Ve = [V3,V1] = [Wz - Ws,Wl] == [W3, W1]
2
931W1 031wz
9311/1 0311/2 0311/3
= g Avy + &V, — E3UV3,

with A + p # 0. Hence, the structure constants &, of g with respect to (v, ), are

Kia1=A, K = U, K1z =—Hl,
R231 =V, K232=p, Kz33=—p,
Kan=A, Kaz= U, K3z = —H.

Now, the Dorfman coeficients are

1
Buiss = 5 (Huz — K2 + Kiz1 — Hm) =K1 = A,
1
B = 5 (H113 —Kns + K31 — /‘6311) = —R311 = -A,
1 1 1
Bise = E(H123—/€123+f€231 K3z) = E(h+#+v—,“) = E(hJFV)’
1
Boss = E (H212 — Koz + K122 — 5221) =Rz = U
1 1 1
Boae = 5 (Hx3 — Koz + K132 — K3a1) = 5 (h—p-p+v)= 3 (h+2u-v),
1
Base = 5 (H223 — K223 + K3 — ffszz) =HRka32 =P,
1
Bays = E(Hslz—f‘f312+f€123—f€231) = *(h u- #—V) = *(h 2u - )
1
Bsge = 3 (Haz13 — K313 + K133 — K331) = —K313 = i,
1
Bsse = 5 (H323 — K323 + K233 — "6332) K233 = —P>
1
Bup = E (Huz + K2 — K1 + "6211) = -k = -1,
1
By = 2 (H113 + K3 — Kzt 11311) = K3 = A

B4232%(Hm+f€123—"€231+/‘€312):%(h—[«l—vhu):%(h—v),

Bsip = % (H212 + K12 — Koz + KZZI) = —Ki2 = — U,
8513=%(H213+/<;213—n132+/<;321)—E( h+y+y—v)——%(h—2y+v),
Bsaz = % (H223 + K223 — Ka32 + 5322) = —K232 = =P,

1 1
3612:E(H312+/€312_/€123+K231):E(h+‘l/{+‘l,t+v)=£(h+2‘u+v),
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1
Beis = E (H313 + K313 — K133 + H331) = K313 = — U,

1
Bers = 5 (Hszs + K323 — K33 + K332) = —K233 = p.
By equation (26), the components of the generalized Ricci curvature are

Ry1 = BoasBsineres + B3asBsizeres + BossBeneser + BissBezeses
= BrasBsiz — B3asBsizs — BaasBerz + B3acBeis

:—;42+i(h—z‘u—v)(h—2/,t+v)+i(h+2‘u—v)(h+2/,t—v)—y2

= —2p o ((h-2) v+ (h+ 20)” - v?)

1 1 5, 1
= 2ut+ =k + = (2u)" - =v*
WSkt u) -
1 1
— 7h2 _ 7v2,
2 2
Ryz = BiasBssier61 + B3asBsazeres + BragBeaieser + BiasBeazeses

= —BusBsiz — B3asBsaz + BiagBerz + BsasBers
:)L‘u+%p(h—Zy—v)—%)t(h+2y+v)+py
= %p(h—v)—%/\(hwtv),

R4z = BrasBssi€261 + BorusBszrerer + BrasBesiezer + BaasBeneser
= —B1asBsi3 — B2asBsoz + BiaeBeis + BrasBers

:%A(h—2y+v)+yp+/\/,t—%p(h+2‘u—v)

:%A(h+v)—%p(h—v),

Rsi = BosaBuner€s + BasaBuiser€3 + BoseBeraeser + BaseBezeses
= =BrasBuiz + B3asBuiz — BaseBerz + BiseBeis

:;,t/\+%/\(h—z‘u—v)—%p(h+2y+v)+py
=%(h—v)—%(h+v),

Rsy = BisaBaniere1 + BasaBuarsere3 + BiseBeaieser + BiseBeazeses
= BiasBuiz + B3asBuoz + BiseBerz + BiseBeas

:—)L2+i(h—2‘u—v)(h—v)+i(h+v)(h+2y+v)—p2
:—)mi(h—v)z—%y(h—v)+i(h+v)2+%y(h+v)—p2
:—)L2+%h2+%v2+‘uv—p2,

Rs3 = BisaBuzie1€1 + BosaBuzrer16, + BiseBeziezer + BasgBesa e
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= BrasBais + BaasBazs + BiseBeis + BassBers
1 1
:A2+5y(h—v)—5‘u(h+v)+p2
= AP —uv+ph,

Re1 = BosaBaner&2 + BssaBaiser€3 + Bogs Bsineren + BiesBsizezes
= ~BissBaiz + B3aeBarz — BaseBsiz + BsseBsiz

=—%/\(h+2‘u—v)+y/\+yp+%p(h—2y+v)
:—%/\(h—v)+%p(h+v),

Rez = BieaBuanie161 + B3eaBurser€3 + BigsBsaier61 + Bies Bsazeres

= BiaeBaz + B3asBazz + BiseBsiz + B3sgBsas
1 1

:A2+§y(h—v)—£‘u(h+v)+p2

=A% —uv+ph

Re3 = BieaBuniere1 + BarsaBasare162 + BiesBsziz61 + Bogs Bssaerer

= BiaeBaiz + BracBazs + BiseBsiz + BaseBsaz

:—)LZ—i(h+2y—v)(h—v)—i(h+v)(h—2y+v)—p2

:—Az—i(h—v)z—%y(h—v)—i(h+v)2+%y(h+v)—p2
1 1
:—A2—5h2—5v2+yv—p2.

If we impose the Einstein condition, we see that 0 = Rs; — Rg3 = h* + v2, hence h =
v = 0. Therefore, the equation Rg3 = 0 reads as 0 = —A% — p2. This implies A = p = 0,
which is a contradiction to A + p # 0. [ ]

We summarize this by the following theorem.
Theorem 3.8 Let (H,Gg, 8 =0) be a divergence-free generalized Einstein structure
on a three-dimensional nonunimodular Lie group G. Then H = 0 and g is indefinite.
Furthermore, there exists an orthonormal basis (v,) of (g, g) such that vi,v; € u and

g(vi,m1) = g(va,v2) = —g(v3,v3) as well as a positive constant 6 > 0 such that

[vi,v3] =0,
[Vz,V]] = 91/1 - 01/3,

[v2,v3] = Ovy + Ovs.
The metric g is a Ricci soliton which is not of constant curvature.

Proof It remains to prove the last statement. The fact that g is a Ricci soliton is a
direct consequence of Corollary 2.30. To see that the metric is nonflat, it suffices to
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check that V7 # 0. Since 7 = 26v}, where (v;) denotes the dual basis, it suffices to
compute Vv;:

g(Vv,vz, V]) = g([Vl, Vz], Vl) = —081 0.
Similarly, V,,v, = 0 shows that g is neither of nonzero constant curvature. [ ]

Corollary 3.9  Ifthe metric is definite, there are no solutions to the Ricci soliton equation
(22) in the nonunimodular case.

Remark 3.10 Note that in all our proofs in the unimodular and in the nonunimod-
ular case, we only used that the diagonal components R;;- are zero. In particular, the
Ricci tensor is zero, if R;;» = 0 for all i € {4,5,6}, in the divergence free case.

3.3 Arbitrary divergence

Recall that R?, = Ric}(ei,e,) and RS, = Ricy(eq, e;) denote the components of
the Ricci curvature tensors Rics of a generalized pseudo-Riemannian Lie group
(G, H, Gy, 8) with arbitrary divergence 8 € E*. If § = 0 we often write R;, = R}, and
R,i = RY,. By Theorem 2.25, we have

Rfa = Ria + ZBia(sc = Ria + Z chiacaw
c c

Rgi = Ra,' + ZB‘;I(S] = Ria — ZEJ'IB“,'J'(S]'.
j j

3.3.1 Unimodular Lie groups

Proposition 3.11 If (H,§ o §) is a generalized Einstein structure on an oriented three-
dimensional unimodular Lie group G, then there exists a g-orthonormal basis (v,) of g
such that g(v,v1) = g(v2, v2) and such that the symmetric endomorphism L defined in
equation (23) takes one of the following forms:

(1) Li(a, B,y), that is, L is diagonalizable by an orthonormal basis.
(2) L3(a,0) or Ly(a,0), in both cases —31%61 = —81%64 =aaswellas 8, = 83 and 85 =
56.Ifoc¢0,then82:83:85:86:0.
(3) Ls(0) with 8, =85 =0and 8, = 03 = 04 = 86 = —&1\/2, where 8, = 0(va +g(va))
and (Si = (S(Vil - g(Vi’))-
Furthermore, in the nondiagonalizable case, the three-form H is always zero (see
Proposition 3.2 for the notation of the normal forms of L).

Proof Since in the Euclidean case, any symmetric endomorphism is always diago-
nalizable by an orthonormal basis, we may assume that the scalar product is indefinite.
By Proposition 3.2, there is an orthonormal basis (v, ), such that the endomorphism
L takes one of the normal forms Ly («, 8,7), L2 (o, B, y), L3 («, 8), La(ex, B), or Ls(a)
from said proposition. As in the proof of Proposition 3.3, we can treat all these cases
at once by considering the matrix

S > R

A0
B wu
4y
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Recall that we assume ¢ = &, = —¢3, where ¢, = g(v,, v,). Using the Dorfman coef-
ficients and the coeflicients of the Ricci curvature with divergence zero from the
proof of Proposition 3.3, we can compute the components of the Ricci curvature with
divergence 6 as

R = Ryt + &2B 4120, + £3B41303
=—2u* - %oc2 + %hz + %([3 —9)? + e3M85,
RY, = Rz + e1Bun 8y + £3B423 83
:—/\(ﬁ—y+oc)+83%(h+y—oc+ﬁ)83,
RY; = Rus + 1Buz &1 + 284320,
- —2/,1/\—81/181—82% (h+y—a+p)d,
R2 = Rsy + &2B5120; + £3Bs1303
:—/\([S—y-ﬂx)+82‘u82+£3%(—h—y+ﬂ—(x)63,
RS, = Rsy + &1B5101 + £3B52303
= —%/32 + %hz + % (y - a)® — e1ud) — 3103,
RY; = Rs3 + &1B53101 + £,B53,.0,
——u (-t f) ey (hoy+f-a) b+ edd,
RY, = Re1 + 2861282 + £3Be1303
= —2/\y+82% (h+B—y+a)d,+e3uds,
RS, = Ry + &1 01 + £3B 2305
——u(y-arf)-es (h+f-yra)d,
R23 = Rgz + €1B3101 + €2Bg3262
— 24 Syt SR (B @) - by
R}, = Ryt — £B14505 — £3B14606
= —2u* - %az + %hz + %(ﬁ —9)? + e300,
RS, = Ryz — €2B24505 — £3B 24606
:_)‘(ﬁ_)’+“)+€2H55—€3%(—h+)/—ﬁ+(x)66,
R§4 = Ry — 2834505 — £3B34606

1
:—Z;M—szi(h—ﬁ+y—oc)85+£3[486,
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Ry = Rsy — &1B15404 — £3B 15606
:—A(ﬂ—y+(x)—83%(h—y+(x—[$)86,
RS = Rsy — £1Bs5404 — £3B 15606
— B (- @)’ - s - e,
RS = Rss — £1B35404 — £3B35606
——u(y-a+f)+es (h-pry-a)de
RY, = Rey — £1B16404 — £2B16505
YT +82% (h—y+a-B)os,
RS, = Rey — £1B 6404 — £,B 6505
:—y(y—oc+ﬁ)+e1%(—h+y—[3+oc)84+£2/\85,
RY, = Res — e1B 36404 — £2B 36505
1

1
- > (B- oc)2 — & udy.

1
=202~y -
2)/ 2

For the normal form L, («, B, ), the equations for Ricj read

1 1
R Ly i,
1
RS, = &5 (h+2a-1y)0;,

1
RS, = €25 (h+2a-1y)8,,

1
R(SSI = —82[;62 + 835 (—h - )/) 63,

1 1 1
R§2 = —Etxz + Ehz + > (a— y)2 + &80,
1
Ry =B (2a-y) —az (=h-y)d,
1
Rgl = 525 (h+y) 8 —e3pds,
1
Rgzzﬁ(Za—y)—sli(h+y)81,
1 1 1
R, = E(xz - Ehz -3 (a—)" + oL

Imposing now the Einstein condition, we get 0 = R, + RS, = 28 (2a — y). So either L
is diagonalizable, if = 0, or 2« = y. But then, the equation 0 = RS, — RS, is

0=-a’+h+(a-y) =K,
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Classification of generalized Einstein metrics on three-dimensional Lie groups 2079
and hence h = 0. Applying this to the equation for R, yields 0 = —282 — %yz. There-

fore, § = 0 and the endomorphism L is diagonalizable by an orthonormal basis.
If L takes the normal form L;(«, f3), the components of the Ricci tensor are

1 1
RS = —=p*+ =K,
41 Zﬁ 2

1
sz=e35(h+2¢x—/3)63,
s 1
R43 = —825 (l’l +2a — ﬁ) 62,
s 1 1
R51:€2£82+83E(—h+1—ﬁ)83,
1/1 21 1/ 1 2 1
R® :—7(74—“) +,h2+,(_,+a_ ) - &-01,
27 5\2 20 2\ 2 P !

1 1
Rg3 == (Za—ﬁ)—sli(—h+l—[)’)81,

1 1
Rg1:52*(h+1+/3)82+53*53,
1
2
1/ 1 21 1(1 2 1
R? :7(—7+oc) —7h2—7(7+(x— ) -&-0,
63 2 2 ﬁ 121
1

1 1
Ry, =e,-05 -5~ (~h—1+ ) s,
2 2
1 1
R§4 = —825(1’1 —1—ﬂ)85 + 83566,

R, = -53% (h =20+ B) 86,

1/1 21 1/ 1 2 1
RS :—7(74—“2) +fh2+f(—f+oc— ) — & =04,
37 5\2 20 2\ 2 P 1

1 1
Rgs:—E(Z(x—ﬁ)+£1£(h—1—ﬁ)84,

RS, - 52% (h -2+ B) &5,

1 1
R(256 2—5 (Z(X—ﬁ)+£1£(—h—1+ﬂ)84,
1( 1 | 1 1
Rgé = E (—5 +0£) - Ehz_ 5 (* —ﬁ) —81*84

First, equation RZ; — RS, = 0 yields &, = &4. Furthermore, due to 0= RS — Rgz =
&1 (h+ﬁ) (S] and OZRg5—Rg6:81 (l’l—/j) 64281 (I’l—/))) 81, we have 81ﬁ61
If &; =0, then we see from 0=RJ; =-1(2a—-p) that 2a = . Then 0= R63 =

%(—%+(x) - 1h? - —(E—a)zz—%hz and h = 0. Equation RS, =0 shows B =0
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and therefore « = 0. Furthermore, Rgl =0 shows &, = 85 and Rfs = 0 shows J5 = J,
because &, = —¢3. If otherwise 8 = 0, we see again from R, = 0 that & = 0 and also
8, = &3 and 85 = 86, because of R, = 0 and R = 0, respectively. Finally, 0 = ad, =
ad3 = ad; = ad3dueto0 = R, = R}; = RY; = RY;,aswellasa = —&; 281 = —&13 8, due
to RS, = RS = 0.
In a similar way, we obtain the same equations for the normal form L4 («, 3).
Finally, the equations for Ricy for the normal form Ls(e) are

1 1 1
RS =—1--a?+-h*+e5—=03,
41 2 2 3 3

V2
1 1

R, =——a+e- (h+a)ds,

NP

1 1
Rf3 =-1- 81—281 - 825 (h+a) 67,

¥

1 1
Rgl =-1+ 525 (h+a)d, +e3—=03,

V2

1 1
—a-g-(h+a)d,
ey (e
1 1 1
RS, =-1+-a®— —h?—¢g—=4,.
63 > 5 1 1

V2

From 0 = R, - RS, — RS, = -1 ((xz - hz), we see a® = h2. Therefore, €383 = \/2 by

0= Rffl =-1+ 83%53 aswell as ;67 = —\/Ebyo = R‘g3 =-1- 81%81. If now o = —h,
then 0 = RS, = —%(x and =h=0.By 0=RS = 82%82 also &, = 0. If otherwise

« = h, we have 0 = RS, + RS, = —/2a + 82%52 and thus 2« = £,0,. But at the same

s _
Rgy =~

time, 0 = RY; = —e,ad,. This is only possible, if « = 8, = 0. The equations for Ricj are
now

Rf4 = _1+€3%56,
RS, = 52%55,

R§4 = —1+£3%86,
Rfs =0,

R‘gs = —sli&; - 83%

6 >
\/E 6
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Rgs =0,

1
Ry = -1-e—=04,

V2

1
Rgﬁ = 82785,

V2

1
R§6 =-1- 81764.

V2
This finally yields 05 = 0 and &84 = —€30¢ = V2. [ ]

Theorem 3.12 Let (H,S g0 ) be a generalized Einstein structure on an oriented three-
dimensional unimodular Lie group G. If the endomorphism L € End g defined in (24) is
diagonalizable, then there exists an oriented g-orthonormal basis (v, ) of g = Lie G and
Ay, &, a3, h € R such that

[Vasvp] = acecve, ¥ cyclic (a,b,c) €G3, H = hvoly,

wheree, = g(va,v,) satisfies € = €. The constants (a1, &y, a3, h) can take the following

values.

(1) a1 =ay = a3z = h =0, in which case g is abelian. The divergence can take an arbi-
trary value in E*.

(2) ay=az=as ==xh #0, and g is isomorphic to s0(2,1) or 50(3). The case s0(3)
occurs precisely when g is definite. Furthermore 8|g, = 0.

(3) There exists a cyclic permutation o € S5 such that

Ag(1) = Ag(2) 0 and h-= Ag(3) = 0.

In this case, [g,g] is abelian of dimension 2, that is, g is metabelian. More
precisely, g is isomorphic to ¢(2) (g definite on [g,9]) or ¢(1,1) (g indefinite
on [g,a]). The components of the divergence & satisfy 8401y = 05(2) = Oo(1)+3 =
60(2)+3 =0.

If L is not diagonalizable, then h = 0.

(1) If L takes the normal form L3(0,0) or L4(0,0), then the Lie algebra g is isomorphic
to the Heisenberg algebra beis. In this case, 6; = 84 = 0, 62 = 85 and &5 = Js.

(2) If L takes the normal form L;(«,0) or Ly(a,0), a 0, then g is isomorphic to
¢(1,1). In these cases, —81%51 = —81%54 =aaswellas 8, =03 =05 = 86 = 0.

(3) If L takes the normal form Ls(0), then g is isomorphic to ¢(1,1). In this case, £,6, =
—8383 = 8184 = —8356 = —\/E and 62 = 85 =0.

Proof Assume first L is diagonalizable. To compute the components of the Ricci
curvature, we use the formulas for the Dorfman coeflicients and the notation for
variables X, and Y, from the proof of Theorem 3.4.

P
Ry = Ry + &2B 41205 + £3B 41383
= Ry,

B
Ryy = Raz + &1B 42161 + £3B 42303

1
= 583531/1,
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RY; = Rys + &1B43101 + £2B43,0;
= —%8252 Y,
R = Rs; + £B5120; + £3B51303
= —%8353 Y2,

8
R5, = Rsy + £1B52161 + £3B53683
= Rsy,

R§3 = Rs3 + £1B53161 + £2B5320,
1
= —£61Y,,
Sa0Y2
RS, = Re1 + £2B6120; + £3B61305
1
= —£0,Y3,
5820213
RS, = Rez + 1B 01 + £3B 62303
1
=——£0,Y3,
S&101Y3

R, = Res + &1B3101 + £2B6320,
= Re3,

Rf4 = Ry — €2B14505 — £3B146 06
= Ry,

RY, = Ryz — £2B 14505 — £3B 24606

1
= 58366X2)
R§4 = Ry3 — £,B34505 — €3B34606
1
= —55255)(3,
Rfs = Rs1 — 61B15404 — £3B15606
1
= _55356X1;

Rgs = Ry — €1B25464 — £3B 25606
= Rs;,

Rgs = Rs3 — £1B35404 — £3B35656
1
= 58154X3,
Rfs = Re1 — €1B16404 — £2B16505

1
= 58255X1,
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R3s = Rey — 1B26404 — £2B 16505
1
=——£04X5,
5610442

Rl = Res — 1B36404 — £2B 36505
= R63.

Note that if (H, G, §) is a generalized Einstein structure, also (H, Gy, 0) is. Therefore,
as in the proof of Theorem 3.4, we can distinguish cases depending on how many
components of the vector (X;, X,, X3) are equal to zero.

Solutions of type 0: X; X, X3 # 0 implies 04 = §5 = §¢ = 0. Furthermore, recall that
Y1:Y2:Y3:03nd

a=a,=a3=-h=#0.

In this case, the Lie algebra g is isomorphic to s0(2,1) (g indefinite) or so(3) (g
definite).

We have seen that solutions of type 1 do not exist.

Solutions of type 2: assume, for example, that X; # 0, X, = X3 = 0. This implies
85 = 8¢ = 0. Moreover, we have seenthat Y, = Y3 =0, h = «; = 0and a, = a3 # 0. This
shows Y] # 0 and thus §; = §5 = 0. So the solutions of type 2 are of the following form.
There exists a cyclic permutation o € &3 such that

®o(1) = Cg(2) #0 and  h = as3) = O6(1) = 04(2) = O5(1)43 = 04(2)+3 = 0.

As in the divergence-free case, we conclude that g is metabelian. The commutator

ideal [g, g] = span{v,(1), V,(2) } is two-dimensional and ad,, ,, acts on it by a nonzero

g-skew-symmetric endomorphism. This implies that g is isomorphic to ¢(2) or ¢(1,1).
Solutions of type 3: assume X; = X; = X3 = 0. This implies

061:0(2:0(3:]’1.

Ifh=0,then Y; =Y, =Y;=0and § € E* arbitrary, and if h # 0, then V1 =Y, = V5 =
2h # 0 and therefore §; = §, = 83 = 0.

By Proposition 3.11, if L is not diagonalizable, it is of the forms L;(«,0), L4(e,0),
or L5(0) and the divergence has the claimed properties. From Theorem 3.4, we know
that G is the Heisenberg group if L takes the normal for L3(0,0) or L4(0,0). If a # 0,
ad,, acts on [g, g] = span{v,, v3} by a symmetric endomorphism with eigenvalues a
and —a. Therefore g = ¢(1,1).

If L takes the normal form Ls(0), one can show that the only unimodular Lie
algebra whose Killing form has the same signature as the one of g, is the Lie algebra
¢(1,1). Alternatively, one can check that ad,, ,, acts on span{v,,v; — v3} a symmetric
endomorphism with eigenvalues \/2 and —/2. Therefore again g = ¢(1,1). [ ]

Remark 3.13 Except for the cases that the endomorphism L takes the normal form
L3(a,0), Ly(@,0) (a #0), and L5(0), the solutions are such that the Ricci tensor
for zero divergence and the contribution of the divergence to the Ricci tensor vanish
simultaneously.
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Corollary 3.14 Let (H,S¢,8) be a generalized Einstein structure on a three-
dimensional Lie group G. Then the left-invariant metric defined by g is bi-invariant if
and only if g is isomorphic to 50(3), s0(2,1) or R>.

Proof This follows from the fact that the only three-dimensional Lie algebras admit-
ting an ad-invariant scalar product are the above three Lie algebras together with our
classification of generalized Einstein structures on these Lie algebras. [ ]

3.3.2 Non-unimodular Lie groups

Proposition 3.15 Let (H,S,,8) be a generalized Einstein structure on a three-
dimensional nonunimodular Lie group G. Let u be the unimodular kernel of the Lie
algebra g and assume that glyx, is nondegenerate. Then there exists an orthonormal
basis (v,) of (9, ) such that vy, v € wand g(vi,v1) = g(v2,v2) = —g(v3,v3). Further-
more 8, = 8s5. If 6, = 85 = 0, then § = 0, h = 0 and one can choose v and v3 such that
there is a positive constant 0 > 0 such that
[‘Vz,Vl] = 81’1 - 61/3,
[Vz,Vg,] = 6V1 + 61/3.
If 8, = 85 # 0, M == ad,, |, is diagonalizable. We have h* = (tr M)* # 0 and 8, = &5 =
—tr M # 0. In the special case that M has a double eigenvalue, it is diagonalizable by
an orthonormal basis. That is, one can choose vy and v5 such that there exists a positive
constant 0 > 0 such that
[v2,v1] = Oy,
[Vz,V3:| = 91/3.
In this case, h* = (29)2 #+ 0and 8, = 05 = =20 # 0. Furthermore 6; = 85 = 4 = 8¢ = 0.
In the case §, = 05 # 0 and two distinct real eigenvalues of M, there are the following
families of solutions of the generalized Einstein equation:
(1) h= :i:2/\, 62 = 65 = —ZSZA and 81 = 63 = 64 = 86 =0,

M= ( 81/\ —&1U )’
&sp  —&
where A, y € R\{0} and |u| # |A|.
2A. h=pu—-v, 0, =05=¢e(—p+v), 84 = 86 =0, 8 and 85 are related by ué, — vd; =

0 and
M:( 81‘14 &1v )’
&3y &3V
where y, v € R are such that y — v # 0.
2B. h=pu—-v,8,=05=¢e(u—v), 04 =086 =0, 8 and &5 are related by ué, + vd; = 0

and
M:( —E&1U &1v )’
&3l —&3V

where y, v € R are such that y — v # 0.
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2C. h= 2[1, 62 = 85 :282[1, 61 = 63, 64 = 66 = Oand
ol )
83[4 83#
where € R\{0}.
2D. h = 2[4, 62 = 85 = —282[4, 51 = —53, 64 = 86 =0 and
(2 )
83‘[,1 —83‘11
where u € R\{0}.
3A. h=v—p, 8, =05 =e3(v—p), 81 = 83 =0, 64 and 86 are related by udy — v = 0
and
M= ( 81‘[,1 &v ),
&3y &3V

where y,v € R are such that y — v # 0.
3B. h=v—p, 8 =05=e(pu—v), 8 =083 =0, 8, and 8 are related by ud4 + vés = 0

and
M = ( —&1U &v ))
E3U —&3V
where y,v € R are such that y — v # 0.
3C. h= —2/,{, 82 = 85 = 282/4, 61 = 83 =0, 64 = 66 and

M = ( _gllu _81‘u ))
83‘1,1 83!4
where € R\{0}.
3D. h = —2[1, 52 = 85 = —282[1, 51 = 63 =0, 64 = —65 and

(i)
&3 —&U

Proof As in the proof of Proposition 3.5, there exists a g-orthonormal basis (v;),
of g such that v;,v3 euwand A, y, v, p € R such that

[vs,v1] =0,
[va,v1] = &1Avy + €313,

where € R\{0}.

[va,v3] = vy + 3pvs3,

with 0 # trad,, = ;4 + e3p. Using the Dorfman coefficients, that were computed in
the proof of Proposition 3.5, we obtain the components of the Ricci tensor.
In the case & = &3, we have

)
R3, = Rsy + &1B53161 + €3B52363

1 1
:—/\2—Z(h—y—v)z—z(h+y+v)2—p2,
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which is always nonzero due to 0 # & A + £3p. Hence, we can assume that the basis is
chosen such that ¢; = &5 = —&3.
In this case, the components of the Ricci tensor are

R} = Ry + £2B4128, + £3B41303
= % (h2 +ut - vz) + &,16,,
R, = Ryp + £1B421 01 + £3B4230
= —g Ay + 53% (h—u-v)d;s,
R23 = Ry3 + 1B43101 + £2B4320,
= A=)+ p (=) = (=),
R = Rs; + £,B5120; + £3B51305
= —83%([’1—/4+V) 03,
R}, = Rs; + &1Bs21 01 + £3B5,303
:—)L2+%h2+%(‘u+v)2—p2,
RY; = Rs3 + &1Bs3101 + 285320,
:slé(h—y+v)81,
RY = Rgy + £2B6120; + £3B61303
:%A(hﬁu—v)—%p(h—‘u+v)+szé(h+‘u+v)82,
R, = Rz + &1B 01 + £3B 303
= —81% (h+p+v)6 —e3p0s,
RY; = Re3 + &1B3101 + £2B6320,

(h2 —ut vz) +&p07,

1
2
R, = Ry — £2B14505 — £3B 14606
= % (h2 + ;42 - vz) + &,A05,
R, = Ryz — £2B 14505 — £3B 24606
:83%(h+‘u—v)86,
R§4 = Ry3 — £2B34505 — €3B 34606
:—%)L(h—‘u+v)+%p(h+y—v)—£2%(h—‘u—v)85,
R}s = Rs; — £1B15404 — £3B1s606
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= —£ 104 - 53% (h+u+v)ds,
R§5 = Rsy — 1825404 — €3B 25605
:—/12+%h2+%(y+v)2—p2,
R§5 = Rs3 — 61835404 — £3B35606
= 51% (h—u—v)38s—espds,
Rfﬁ = Re1 — &1B16404 — £2B16505
= %/\(I’H—y—v)—%p(h—‘u+v)+£2%(h+y+v)85,
Rgs = Re2 — €1B26404 — £2B26505
= —elé(th‘u—v) 04,
Rs = Res — £1B 36404 — £2B36505

(hz - vz) + &,p0s5.

1
2

2087

Note first that RS, = RS, and RS, = RS, yield e,A (8, — 85) = 0 and e2p (85 — 85) = 0.

Therefore &, = Js, because 0 # 1A + e3p. If §, = §5 = 0, we see that R?

i’ ~

R?’i = R,‘i/

forall i € {4,5,6}. So we can deduce the same way as in the proof of Proposition 3.5,
that i = 0 and there is a positive constant 6 > 0 such that /A = —e3pu = g;v = e3p = 6.
Then we see that 0 = Rgz =-06, + 663 and Rfs =—004 + 086 imply 6, = 63 and 04 =
0. Similarly, R‘gz =-606,-06; =0and R‘ss5 =-0684 — 086 = 0imply 6; = —03 and 8, =
—8s. This proves that § = 0 if §, = 85 = 0. Note that the endomorphism M € End(u),
defined as the restriction of ad,, to u, has the two complex eigenvalues 0 + if. Assume
now &, = 05 # 0. Then

(29)

0=R} —R% =h*+e,8,(A-p).

Using A — p = & (1A + e3p) # 0, wesee h # 0. From 0 = RS, — R, = h (A - p + £,85),
we see £,0; = —A + p = —¢; tr M. Then equation (29) is equivalent to h* = (A - p)2 =
(tr M)?. Since

1 1
R5:_A2 7]12 - 2 2
5 3 +2(/4+V) p
1 1
=N -pt e (A=p) e (p )’

S () S (),

the equation RS, = 0 is equivalent to

(30)

(A+p) = (u+v)".
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Note now that the discriminant A of the characteristic polynomial X — & (A — p) X —
Ap + pv of M is

A=(A-p)*+4dp —4uv

=(A+p) - 4uv
~(ur ) -4
= (u-v)",

which is never negative. Therefore, M has real eigenvalues. Hence, M is either
diagonalizable with two distinct eigenvalues, or it has a double eigenvalue. The latter
happens precisely if the discriminant is zero, that is, if y = v. But then, M is a
symmetric endomorphism and hence takes one of the normal forms

=g 0 ) wmen-(0 ).

1 1 1 1
>+0 5 ->+0 -3
= 2 2 = 2 2
N R S |
with respect to an orthonormal basis v;, v5 of 11, as in the proof of Proposition 3.5. If it
takes the normal form M; (6, ), then 0 = #, since M has a double eigenvalue. Hence,

that M is of the form
6 o0
woa=(28)

We may assume 6 is positive by replacing v, with —v,. If it takes the normal form
M, (0, 7), then we have RS, + RS, = —207. But 6 # 0, since tr M # 0. Therefore, 5 = 0
and we get the same normal form as before. The normal forms M3 (6) and M4(6) are
excluded, because in both cases RS + RS, = 26, which cannot be zero because tr M #
0. Note that in the case that M takes the normal form M;(6, 8), we have §; = §5 = §, =
8 = 0, due to RS, = RS, = R, = RS, = 0.

It remains to consider the case y — v # 0. Recall that §, = 05 = &,(-=A + p) # 0 and
h =+(A - p) # 0. We distinguish the following cases. Note that the expressions h —
y +vand h + py — v cannot both vanish simultaneously, since k # 0.

Case : h—p+v#0 and h+pu—v#0. In this case, we conclude from R?, =
RS, = R, = Ry, = 0 that &, = &3 = 84 = 85 = 0. Then from the remaining equations,
we obtain

u=A=—(p*=v?), pp-tv=0, (A+p)* = (u+v)*.

The first two equations are satisfied if and only if (4, 1) and (p,v) are nonzero
orthogonal vectors of equal length in the Minkowski plane. This implies that (y, 1) =
—(v,p), since p — v # 0. This yields the first family of solutions for which M has two
distinct real eigenvalues.

Case 2: h—y+v=0and h+pu—v#0. In this case, the equations RS, = RS, =
RY, = R, = 0 reduce to &4 = 86 = 0. Recall that R, = 0 yields equation (30) and
hence p+v=0,(1+p) for some o, € {1}. Since now h =y — v, the equation
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h* = (A -p)?yieldsy —v=0_(1 - p),o_ € {+1}. We consider four subcases depend-
ing on the signs o... In each case, we first solve the two equations y £ v = g, () £ p).

Case 2A: 0, = o_ = L. In this case, 4 = A and v = p. It turns out that the remaining
components of the generalized Ricci curvature vanish if R, does. Its vanishing is
equivalent to yé; — vd3 = 0.

Case2B: 0, = 0_ = —1. In this case, y = -1 and v = —p. The remaining components
of the generalized Ricci curvature vanish if and only if u6; + vé3 = 0.

Case2C: 0, = lando_ = -1. Then y = p, v = A and from R, = 0 we get u> — v* = 0.
We conclude that g = —v, since & = y — v # 0. The equation R, = 0 reduces to &) = J;
and the remaining components of the generalized Ricci tensor then vanish.

Case2D: 0, = -land 0_ = 1. Then y = —p, v = —A and from RS, = 0, we get again
4 =—v. In this case, the equation RS, = 0 reduces to 8, = 03 and the remaining
components of the generalized Ricci tensor vanish.

Case 3: h—y+v#0and h+p—v=0. In this case, the equations R, = RS, =
RS, = R, = 0 reduce to &), = &3 = 0. From (30) and & = v — y, we still obtain y + v =
0. (A £p) with 0,,0_ € {£1}. We consider again four subcases depending on the
values of 0.

Case3A: 0, = 0_ = 1. Asabove, 4 = A and v = p. The equation R = 0 yields 84 —
vd6 = 0 and the remaining components then vanish.

Case 3B: 0, = 0_ = —1. Here y = -1, v = —p and the equation RY; = 0 yields &4 +
v86 = 0. The remaining components then vanish.

Case3C: 0, =1land 0_ = —1. Here y = p, v = A and RS, = 0 implies y = —v. Finally,
RY = 0 yields 84 = 8 and the remaining components vanish.

Case 3D: 0, = -1 and o_ = 1. Here y = —p, v=-1 and RS, = 0 implies u = —v.
Finally, the equation R% = 0 yields 8, = —34 and all other components vanish. [ ]

Proposition 3.16 Let G be a three-dimensional nonunimodular Lie group. As any
three-dimensional nonunimodular Lie algebra, its Lie algebra g is isomorphic to a
semidirect product of R and R?, with R acting on R? by a 2 by 2 matrix M (of nonzero
trace). Then there exists a generalized Einstein structure (H, S, 8) on G, such that the
restriction of g to the unimodular kernel u is degenerate, if and only if H =0 and M
has real eigenvalues. (All such structures have § # 0 and are described at the end of the

proof.)

Proof Note first that the metric g necessarily has to be indefinite. As in the proof of
Proposition 3.7, there exists an orthonormal basis (v, ), of (g, g) such that g(v;,v;) =
g(va,v2) and A, u, v, p € R such that

[vi,v2] = &1Avy + e, — e3uv3,
[V, v3] = e1vv1 + €2pv2 — €3pV3,

[v3, 1] = &1Avs + &2V, — €3v3,

with A + p # 0. Using the Dorfman coefficients, that were computed in the proof of
Proposition 3.7, we obtain the components of the Ricci tensor

)
Ry1 = Ry + 2B4128; + e3B 41303

1 1
= Ehz - Evz - 82182 + 83A63,
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Ry, = Ryz + 1Bz 8y + £3B42305
- %p(h—v)— %A(h+v)+51A81+53%(h—v)63,
Ry, = Ry + &1Byz &1 + £2B43:0,
- %/\(thv)—%p(h—v)—51)\81—82%(}1—1/)82,
R = Rs; + £,B510; + £3B51305
= %/\(h—v)—%p(h+v)—82y82—e3%(h—2/4+v)83,
RS, = Rs; + &1B5210) + £3B5,303
=-\%4 %hz + %vz +uv —p2 + e udy — e3p63,
RY, = Rs3 + &1Bs3101 + £2B8530,
:)Lz—‘uv+p2+£1%(h—2y+v)81+82p82,
R‘gl = Re1 + £2Bg1202 + €3B61303
:—%/\(h—v)+%p(thv)+52%(h+2‘u+v)62—£3y63,
R, = Rez + &1B 62101 + £3B 62303
:)Lz—yv+p2—£1%(h+2[4+v)81+e3p53,
R23 = Re3 + &1B63101 + £2B6320,
=-)?- %hz - %vz +uv—p> + e ud — £2p08,,
R, = Ryy — £2B14505 — £3B 14606
= %hz - %vz — &,A05 + &30,
Ry, = Ryz — £2B 14505 — £3B 24606
= %p(h—v)— %/1(]’14-1/)—82[155+£3%(l’l+2‘u—v)56,
R, = Rys — £2B34505 — £3B34606
= %/\(h+v)—%p(h—v)—82%(1/1—2;4—11)65—83[486,
Rfs = Rs1 — &1B15404 — €3B156 06
= %/\(h—v)—%p(l/u—v)+51A64—e3%(h+v)86,
R§5 = Rsy — &1B25404 — 3B 25605
=-A*+ %hz + %vz + Uy —p* + ey — e3p0,

RY5 = Rs3 — £1B35404 — £3B35606
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1
:/12—yv+p2+£1E(h—2[4—v)64+e3p86,
Rfs = Re1 — €1B16404 — £2B 16595
1 1 1
= —E)L (h-v)+ Ep(h +v) - Al + &2 (h+v)6s,
Rds = Rez — 1B 16404 — £2B 16505
1
:/\2—yv+p2—815(h+2y—v)64+52p85,
R = Re3 — 1B36404 — £2B 36505
1 1
=2 - Ehz - Evz + v —p + e udy — £2p0s.
Assume now that (H ,Sg,é) is generalized Einstein. We first want to show that
h = v =0and &0, = £383. For this, consider the system of equations 0 = RS, + RS, =
~1(h-v) (€20, - €385) and 0=RE + R =1 (h+v) (€28, - &305). This implies
that either h=v =0o0r ,0, = &305. If h =v =0, then 0 = Ril =-1(&;8, — €363) and
0=RS, — R, = —p (€28, — £303), which can only be the case if €,8, = €303, since
A+ p # 0. If we otherwise assume, that £,8, = €385, then 0 = R‘g3 - Rgz =-h?-v%*and

therefore i = v = 0. Similarly, one can also show that €,85 = €306. Hence, the Einstein
condition is equivalent to the set of equations

h=v=0,
Aeldy = Aedy =0,
£,0, = €303,
(31 €05 = €306,

A2+ p2 — b +&p6 =0,
A2+ p2 — &by + €2p05 = 0.

Now, as in the proof of Proposition 3.7, there exists a basis (w,) of g, such that
Wi, W €U,

[wi, w2] =0,

[ws, w1] = —e1Awy — 2euws,
1

[w3, wy] = —£€1VW1 — &2pW2,

and g(w,,wy) satisfies equation (28). Hence, g is a semidirect product of R =
span{ws} and R? = span{wy, w, }, the former acting on the latter with the matrix

M:( —-gA —%elv )
—2e6u  —&p

Since in the Einstein case v = 0, its eigenvalues —¢;A and —&,p are real. Furthermore,
for any such matrix, with v =0, one can find & € E*, such that (H =0, G, d) is
generalized Einstein. In fact, if A # 0, then h = v = §; = §4 = 0, p # 0 and the solution
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is uniquely determined by the free parameters A # 0, p # 0 and p as 8, = 05 = —03 =
86 =—e,(A*+p*)/p#0.1f A =0,then p#0 (as A +p#0), h=v=1=0 and the
solution is uniquely determined by the free parameters y, §; and 84 as §, = -85 =
—&2(p? — &) /pand 85 = -8 = —&,(p* — e1484)/p. Note that all the solutions have
nonzero divergence and that M has rank 1 if and only if A = 0. |

3.4 Riemannian divergence

In this section, we want to determine those solutions (G, H, G, §) to the generalized
Einstein equation for which the divergence & coincides with the Riemannian diver-
gence 89 = —7o e E* (see Proposition 2.17). If the Lie group is unimodular, the
trace-form 7, and therefore the Riemannian divergence, is zero. This was covered in
Theorem 3.4. It remains to specify the results of Propositions 3.15 and 3.16 to the case
§=269.

In the case that g is nondegenerate on the unimodular kernel u, § = §9 holds if and
only if the components of § in the basis (v,) of g from Proposition 3.15 are

51 = 64 = —tradvl =0,
0, =05 = —tradvl +0,
63 = 86 = —trad,,S =0.

Therefore, the relevant solutions are those for which M = ad,, |,, is diagonalizable and
01 = 83 = 84 = 86 = 0, in virtue of Proposition 3.15.

In the case that g is degenerate on the unimodular kernel u, we compute the
components of § in the basis (v, ) of g from Proposition 3.16 as

51 = 84 = —tradvl :0,

0, =08s=-trad,, =, (A -p),
03 =0¢=—trad,, =&, (A-p).

Class of Lie algebras H g

R? =0 flat LD
50(3) +0 def LD
50(2,1) +0 indef LD

e(2) =0 flat,defon [g,g] LD
e(1,1) =0 flat, indefon [g, g] LD

heis =0 flat, indef L-D

3, (R) =0 indef &luxy nondeg

Table 1. Divergence-free solutions to the generalized Einstein equation.
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Class of Lie algebra H g )

R? =0 d € E* arbitrary LD
s0(3) 0 def Olg, =0ord|p_=0 LD
s0(2,1) 0 indef Olg, =0ordlg. =0 LD

e(2) =0 defon|g,g] 851y = 06(2) = 05(1)+3 = Og(2)+3 = 0 LD
e(1,1) =0 indefon [g,g] 3s(1) = 05(2) = O5(1)+3 = Og(2)+3 = 0 LD

Beis =0 indef 81 =04=0,8, =03,05 = 0 L-D
e(L,1) = indef 01=04%0,0,=03=05=05=0 L-D
e(1,1) = indef 81 ==084=-03=06=—-/2,8,=05 L-D
n(R)®R +0 indef 0, = 8s = —trad,, # 0, J specified in Prop. 3.15  g|,x, nondeg
i (R), A#1 +0 indef 0, = 8s = —trad,, # 0, J specified in Prop. 3.15  g|,x, nondeg
t31(R) +0 indef 04=0,A=1,3,4,6,0, =05 =—trad,, # 0 &luxy nondeg
Hn(R)®R =0 indef ) and d; arbitrary determine & # 0, cf. Prop. 3.16 gy, deg
t3(R) = indef 01=04=0,0,=05=-03=-06%0 Zluxu deg
3, (R), =0 indef 01=04=0,0,=05=-03=-06%0 Zluxu deg

Table 2. Solutions to the generalized Einstein equation with arbitrary divergence.
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From the system of equation (31), which is equivalent to the Einstein condition, we
see now that A2 + Ap = 0. Hence, A = 0, since A + p # 0. Finally, we conclude that g =
R x 4 R?, where A has one eigenvalue equal to zero and one nonzero eigenvalue.

Proposition 3.17 Let (H,G,,0) be a generalized Einstein structure on a three-
dimensional nonunimodular Lie group G, with 8 = §9¢ the Riemannian divergence of
Gg. Let u be the unimodular kernel of the Lie algebra g. If the pseudo-Riemannian
metric g is nondegenerate on u, then g = R x 4 R? for a diagonalizable matrix A, with
tr A # 0. If g is degenerate on u, then g = R x4 R? for a matrix A, whose kernel is one-
dimensional. In both cases, the matrix A can be brought to the form

1 0
A—(O s)’ se(-L1],

by an automorphism of g, where s = 0 if u is degenerate. (The precise tensors H, g, and
8 are specified in Propositions 3.15 and 3.16 by specializing to the formulas for 8 = 8%
given in this section.)

4 Tables

In this section, we want to summarize our results. For further details, we refer to
Section 3. In Tables 1 and 2, LD and L-D mean that the endomorphism L defined
in equation (23) is diagonalizable and not diagonalizable, respectively. Furthermore,
we write def, indef, deg, and nondeg instead of definite, indefinite, degenerate, and
nondegenerate. For the notations of the isomorphism classes of Lie algebras, we refer
to [GOV, Chapter 7, Theorem 1.4]. Following [GOV, Chapter 7, Theorem 1.4], we
restrict the parameter A in t3 ) (R) to 0 < [A| < L. In addition, we exclude A = -1, since
t3,_1(R) = B(l, 1)
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