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ON THE INTEGER RING OF THE COMPOSITUM OF

ALGEBRAIC NUMBER FIELDS

TOSHITAKA KATAOKA

§ 1. Statement of the results

Let k be an algebraic number field of finite degree. For a finite ex-
tension Ljk we denote by S)L/fc the different of Ljk, and by €)L the integer
ring of L. Let Kt and K2 be finite extensions of k. It is known that we
have £)KιK2 = €)Kl£>K2 if Kx and K2 are linearly disjoint over k and ^>KxKtfk

= S)*!/*®*,/* holds (see Shimura [2], 1.2).
In this paper we compute the conductor of €)Kl£>K2 with respect to £>KlK2

and the module index of ΩKIKΛ and £>KJDK2 in terms of relevant differents

and "Elements". We note that the conductor of €)Kl€)K2 with respect to
OKlK2 is the largest ideal of £>KlK2 which is contained in ΩKJDK2. For a

Dedekind domain R whose quotient field is L and JR-lattices M, N of the

same finite dimensional vector space over L, we denote by [M: N]R the

module index of M and N. We note that the index [M: N] is the absolute

norm of [M: N]B if L is a number field and R is its integer ring. For

general properties of module indices we refer to Frδlich [1]. For a finite

extension LjK of algebraic number fields of finite degree and an embedd-

ing a of L over K, we denote by eσ the element with respect to σ. We

recall that eσ is the ideal generated by x — x% x e DL.

We state our results.

THEOREM. Let k be an algebraic number field of finite degree, and Kί9

K2 its finite extensions. Then we have

(1) the conductor f of GKlΩK2 with respect to €)KlK2 is ΓUie<ri*.s>ϊϊχ./*i>

where a runs through all the non-trivial embeddings of KXK2 over Ku

(2) [ £ W GKl€)K2]lL = NKML(f) holds, where L = k, Ku K2.

COROLLARY. Let notations be as in Theorem. Then we have £)KlK2 =

£*Ar. if and only if SM a / j r i = ΓUi^i** holds.
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We note that Π**ie

σι#2 = ^κ2/k holds if Kx and K2 are linearly disjoint

over k.

We shall give another description of the conductor and some examples

in §3.

§2. Proofs

2.1. Proof of Theorem (1). Firstly we claim that there exists an ele-

ment z e £>K2 for any prime ideal p of K2 such that

( i ) k(z) = K2,

(ii) the ^-component of the conductor of £)Kl£)K2 is that of £>Kl[z]

for all prime ideals ^ of KXK2 above p.

We take z e €)K2 which satisfies
(iii) ordp/;(0) = ord, S)*,,*, and deg/2 = [K2: k].

Here fz is the minimal polynomial of z over k. We show z satisfies (ii).
We recall that the conductor of £>k[z] with respect to £>K2 is //(2)®ii/*,
where f'z is the derivative of fz. We have

Therefore the conductor of Ojfjs] contains ff/(«)©ij/fc. Since
= 0, we get the claim.

By the claim f is the greatest common divisor of the conductors of
βjΓifeL where z satisfies (i) and is contained in £)K2. The conductor of

OjfiW with respect to GKlK2 is gi(z)^>i\Ka/Kl9 where z is an element of O^2

with (i) and gz is the minimal polynomial of z over Kx. We show that

Π e,,*2 = (gί(z):zeCKt with (i)) ,

where σ runs through all the non-trivial embeddings of KXK2 over Kx into

a finite Galois extension L over k containing KXK2. Let p be a prime

ideal of K2. Let 2; be an element of £)K2 satisfying (iii). Then we have

(z — zσ) > ord $ eσ

for all the non-trivial embeddings σ of Xiiζj over Kλ into L and all prime

ideals $β of L above p, and

for all prime ideals ψ of L above p. Here the sums are taken over all
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the non-trivial embeddings a of K2 over k into L. Therefore we have

z - zσ) =

for all non-trivial embeddings σ of i^iif2 over Kx into L and all prime

ideals ^ of L above p. Using the decomposition g'z{z) = \\σΦ1 (z — zσ), we

have

- ord^ Π **\κ*

for all prime ideals ψ oΐ L above p. Thus we proved the assertion. Hence

we have (1).

2.2. Proof of Theorem (2). It suffices to prove the case L = Kx. For

a β^-lattice M of K^K2 we denote by M* the dual module of M with

respect to TrKlK2/Kl We have

(see Frόhlich [1], Proposition 4, § 3). Since O| l J Γ a = 2 ) ^ / ^ ,

holds.

From now on we compute the module index [(GKJDK2)*: €)κJDκJDκ .

LEMMA 1. Lei S be a finite set of prime ideals of KλK2. Let p be a

prime ideal of K2. We denote by n a natural number. Then there exists

an element γ of £>Kί£>Kz such that γ = 1 (mod ψn) holds for all ψ of S above

p and γ = 0 (mod ψn) for all ?β of S not above p.

Proof. We put

and

Elements of Sι U S2 are maximal ideals of €)Kl€)K2. Sί Π S2 = 0 holds.

So by Chinese remainder theorem there exists an element γ of £>KlOK2

such that γ = l (mod Έln) for all WleS1 and γ = 0 (mod SK71) for all SK e S2

hold, which proves Lemma 1.

For a Ofc-module M and a prime ideal p of β, we denote by Mp S^M^

where Sp is £)k — p.
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LEMMA 2. Let p be a prime ideal of k. Then there exist a, β e KXK2

such that

( 1 ) ord$ a = ord* β = ord* O W l ( O Z l O Z | ) *

Λo/cί /or α/Z prime ideals $β o/ ϋ^i^ above p,

( 2 ) a(€)KlGκχ C ( O r i O ^ * C

Proof. Firstly we prove the existence of a satisfying the condition.

Let p be a prime ideal of K2 above p. Let z be an element of © ^ with

(iii) in 2.1. Since the dual module of €)k[z] with respect to Tr̂ ,/*. is
^Az], we have

We take c? e ©*,/* which satisfies ordq c? = ordq S)jfϊ/fc for all prime ideals q

of if2 above p. Then we have

So we have

By taking dual, we get

We put ofp = g'z(z)~1d~ψz(z). We take ^ which satisfies the conditions in

Lemma 1, where S is the set of all prime ideals of K^K% above p and n

is sufficiently large. We put

« = Σ αpft
l

α satisfies the condition of Lemma 2. In fact, for a prime ideal $β of

KiKz and a prime ideal p of iΓ2 with Ŝ | ̂  |p, we have

ordspo: = oτά9a9γp = ord$<^ = o r d , O ^ ^ O ^ O x , ) * .

And clearly a satisfies (2), Lemma 2.

Secondly we prove the existence of β. For a prime ideal p of K2

above p we take an element z of © ^ with (iii) in 2.1. We put βp = g'z(z).

By taking dual of QKl[z] c £)Kl£)Ki, we have
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Therefore we have

Σ
\P\P

For a prime ideal p of K2 we take ^ satisfying the condition in Lemma

1, where S is the set of all prime ideals of KXK2 above p and n is suffi-

ciently large. We put

β satisfies the conditions of Lemma 2. In fact, for a prime ideal ψ of

KXK2 and a prime ideal p of K2 with $β|p|p, we have

3 ^ = -ord^ βp =

And clearly ^ satisfies (2), Lemma 2. Thus we proved Lemma 2.

Let p be a prime ideal of k and α, /3 elements of KXK2 satisfying (1),

(2) in Lemma 2. Since

= [®KlK2>P' (OjsriOjre)p]o*iP ,

we have

So we have

Hence we get

§ 3. Examples

3.1. Let k be a number field and if its finite Galois extension with
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Galois group G. Let Ku K2 be intermediate fields of K/k. We denote by

Hu H2 the subgroups of G corresponding to Ku K2 respectively. We define

Σκltκ& a subset of G, by HXΉ2 — H1 — H2, where HXH2 is \hjίi2\hx e Hl9 h2 e H2}.

Then the conductor \KuK2 of £)Kl£)χ2 with respect to €)KlK2 is U«eΣKl K2

 e*>

where etf is (x — xσ: xe €)κ). This can be proved by fundamental properties

of elements. From this fact we know that £)KlK2 = €)Kl€)K2 holds if and
only if for any prime ideal ψ of K and any σ e Σxi,xa>

 σ i s n o t contained

in the inertia group of ψ.

3.2, We give some examples.

1. G = Gal (K/k) = <(7, τ: σ2 = τ2 - (στ)2 = 1>.

Let Kl9 K2, Ks be the fixed fields of <σ>, <τ>, (στ} respectively. Then

we have

χ = &K!&K2 holds if and only if JKΓ/JSΓ3 is unramified.

2. G = Gal (jff/A) = <α, τ: σ3 = τ2 = 1, r"Vr = σ"1).

Let JK, be the fixed field of ζτσ1'1) (i = 1,2,3) and Mthe fixed field of

3.2.1 Σκuκ. = {*h

\KltK2 = ^σ — X^K/M

£)κ = £)KJDK2 holds if and only if K\M is unramified.

3.2.2 ΣκuM = {τσ,τσ2},

©* = &κi®M holds if and only if M\k is unramified.

3. G = Gal (ΛΓ/Λ) = A4 — > Aut ({α, 6, c, d}).

We put x = (α 6)(c d), y = (α c)(6 d), « = (α d)(6 c), t = (abc) and if =

{1, a, y,«}. Let Ku K2, K3, K, be the fixed fields of <ί>, <tx), (ty), <te> respec-

tively. Let LUL2,LS be the fixed fields of (x), (y), (z) respectively. Let

M b e the fixed field of H.

3.3.1 ΣKUM = {t% fy, t% tx, ty, tz).

βjε = &KI®M holds if and only if M/k is unramified.

3.3.2 ΣKUK* = {x> tz, fx, z),
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&κ = &KΪ&K2 holds if and only if K/k is unramified.

3-3.3 Σ * . . * = {ty, ty},

f —

^Λ: = &K1&L2 holds if and only if Mjk is unramified.
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