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On Harmonic Theory in Flows

Hong Kyung Pak

Abstract. Recently [8], a harmonic theory was developed for a compact contact manifold from the
viewpoint of the transversal geometry of contact flow. A contact flow is a typical example of geodesi-
ble flow. As a natural generalization of the contact flow, the present paper develops a harmonic theory
for various flows on compact manifolds. We introduce the notions of H-harmonic and H*-harmonic
spaces associated to a Hormander flow. We also introduce the notions of basic harmonic spaces asso-
ciated to a weak basic flow. One of our main results is to show that in the special case of isometric flow
these harmonic spaces are isomorphic to the cohomology spaces of certain complexes. Moreover, we
find an obstruction for a geodesible flow to be isometric.

1 Introduction

Let JF be a geodesible flow on a manifold M of dimension m = 1 + g generated by
a nonsingular vector field T. Then there exists a Riemannian metric ¢ on M with
respect to which JF is geodesic, that is, the dual 1-form w to T satisfies

(1.1) trw =1, Lrw =0,

where ¢y (resp. L) denotes the interior product (resp. the Lie derivative) with respect
to T. The contact form w on a contact manifold (M, w) satisfies

(1.2) w A (dw)i? £ 0.

The contact flow F,, generated by w is a typical example of geodesible flows. Another
important example of geodesible flows is an isometric flow which is defined by a
nonsingular Killing vector field.

There have been extensively studied harmonic theory on a compact Sasakian man-
ifold by many mathematicians since Sasaki introduced contact metric structures [13].
For instance, Tachibana [14] and Ogawa [7] considered special harmonic spaces,
so-called C-harmonic and C*-harmonic spaces, which seem to be closely associated
with the contact structure. In the compact Sasakian case, they showed that such C-
harmonic and C*-harmonic spaces have nice relationships with the harmonic spaces
on the manifold and moreover, satisfy several nice properties like decomposition the-
orem.

On the other hand, Rumin [10], [11] constructed a new De Rham complex on a
compact contact manifold of dimension 21 + 1 whose cohomology is isomorphic to
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the De Rham cohomology on the manifold. Furthermore, he obtained a certain van-
ishing theorem of the k-th De Rham cohomology on a compact pseudo-Hermitian
manifold where k < n.

Recently [8], a harmonic theory on various harmonic forms, such as basic har-
monic, C-harmonic and C*-harmonic forms and so on, was studied in a situation of
a compact contact manifold. The results obtained in [8] extend those established in
the K-contact or Sasakian case.

In the present paper, we develop a harmonic theory for various flows on a com-
pact manifold. As a natural generalization of the case of contact flows, we introduce
the notions of H-harmonic and H*-harmonic spaces associated to a Hormander
flow. We also introduce the notions of basic harmonic spaces associated to a weak
basic flow. One of our main results is to show that in the special case of isomet-
ric flow these harmonic spaces are isomorphic to the cohomology spaces of certain
complexes. Moreover, we find an obstruction for a geodesible flow to be isometric.

The author would like to thank the referee for his useful suggestions.

2 Fundamental Materials for a Flow

Let J be a flow on a Riemannian manifold (M, g) of dimension m = 1 + q gener-
ated by a unit vector field T. Let w be the dual 1-form to T, which will be called a
flow form. A pair (F,w) is denoted by a flow F whose flow form is w. There is an
orthogonal decomposition of the tangent bundle TM

T™ =D @ E,

where D := ker w and E is the tangent bundle to F. This gives rise to the associated
bigrading of the graded algebra * of all differential forms on M

(2.1) O = EB Qkt

k+l=u

where Q5 := T'( /\k D*® /\Z E*). Correspondingly, the exterior differential operator
d is also decomposed into

d=d""+d" " +d* ' = dp+dp+d-,

where each d"7 is the bihomogeneous differential of bidegree (i, j).

And let § := 6% + 610 + 6271 =: 65 + dp + %! be the decomposition of the
codifferential operator ¢ corresponding to the decomposition of d with respect to g.
The following relations hold on ¢ € Q7

6E¢ _ (_l)m(s+r+l)+1 *dE * ¢7
6B¢ _ (_l)m(s+r+1)+1 *dB " (b,

62,71(25 _ (_1)m(s+r+1)+1 % d2.7l *¢

)
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where * is the Hodge star operator defined by the Riemannian metric induced from

g. Note that x¢ € Q175! for ¢ € QF0,
Let e(w) be the formal adjoint of ¢1 with respect to the metric g defined by

e(w)p:=wA o.

Since dim F = 1, we have:

Lemma 2.1 Let (F,w) be a flow on a Riemannian manifold (M, g). Then for any k the
operator e(w): QY — QFis an isomorphism with inverse 1p: Q51 — QFO,

Proof Let ¢ € Q%0 satisfy e(w)é = 0. Then t7¢ = 0, so that
¢ = re(w)e +e(w)erd = 0.
Thus e(w) is injective.

Now for 1) € Q! take 79 € QF0. Since e(w)ir1p = 1, we conclude that e(w) is
surjective. ]

The metric g is decomposed into ¢ = gp +gp. We say that a flow (F, w) is geodesic
with respect to g if Lxgg = 0 for all X € I'(D). Or equivalently, w satisfies (1.1). The
following observation is immediate.

Lemma 2.2 Let (M, g, F,w) be as in Lemma 2.1. Then F is geodesic if and only if
dw = d*'w € Q¥

It is useful to introduce operators L, A on Ok
(2.2) Lo :=dw ¢, Ap:=(—1)"FD 4T e,
and the spaces J and J.
(2.3) JFi=ker ANQK0, &= ker L N QKL

These spaces were discussed in [11] for the contact flow case. Note that L is the formal
adjoint of A with respect to g and that x¢ € J"* for ¢ € J*.

Lemma 2.3 Let (M,g,F,w) be as in Lemma 2.1. Then L (resp. A) commutes with
operators e(w) and d (resp. vy and §). Moreover,

L =e(w)d+de(w), A=y +170.

In particular, if F is geodesic then L (resp. A) commutes with vr (resp. e(w)).
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Proof It can be easily seen that L commutes with e(w), d and L = e(w)d + de(w). In
particular, when J is geodesic we have from (1.1)

Lir¢p =dw N\ ir¢p = vrLo
for ¢ € QF, ]
Furthermore, we find useful operator identities. These are only due to the fact that

(F,w) is a flow.

Lemma 2.4 Let (M, g,F,w) be as in Lemma 2.1. Then we have

2,—1 _ k1
Ao =L on Q%

> =e(w)A  on QF°.

3 Harmonic Spaces for a Hormander Flow

Let (F,w) be a flow on a Riemannian manifold (M, g) of dimension m = 1 + g. It
should be noted that the condition d*~'w = 0 on M if and only if the distribution D
is integrable. On the contrary, d>~'w # 0 on M means that D satisfies a Hormander
condition, that is, I'(D) generates I'(TM) as a Lie algebra. In this sense:

Definition A flow (F,w) is a Hormander flow on a manifold M if the distribution
D := ker w satisfies a Hérmander condition.

A contact flow is an example of a Hérmander flow. In what follows we consider
a Hormander flow (F,w). Then dw # 0 on M. Such a 2-form dw is called the
fundamental form associated to a Hormander flow (F, w).

From now on M is supposed to be compact. Let (-, -) be the global inner product
on M

@)= [ onsw,
M
Introduce on Q* Laplacians A and Ag defined as
A:=dd+ 5617 AB = dB(SB + 53613.
Ap is called the basic Laplacian. A form ¢ € Q* is said to be harmonic if A¢ = 0.

Let J(* be the space of all harmonic forms on (M, g). Observe that bigrading (2.1)
gives rise to

(3.1) A= A% ¢ A-LLy AL-T
where A = didg + 6pdg + dpdp + Opdp + d> 1651 + 6%~ 1d> . Tt is obvious that
on QK¢

(3.2) ker A% = ker A.
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Set H*' := ker A% on Q% In view of (3.2) we have an orthogonal decomposition
g{k _ g_ck,O ® g_(k*l,l.

Tachibana [14] established notions of C-harmonic and C*-harmonic forms on
a compact Sasakian manifold which seem to be closely associated with the contact
structure. Since a contact flow is a geodesible Hormander flow, it is natural to extend
these notions to the case of a Hérmander flow by considering the operators given in
(2.2).

Definition Let (F,w) be a Hormander flow on a compact Riemannian manifold
(M, g). Ak-form ¢ € QK is a H-harmonic (resp. H*-harmonic) form if it satisfies

trp =0, dp =0, 0 = e(w)A¢ (resp. e(w)p =0, dop = t7Lp, d¢ = 0).

Let fJ'CIki (resp. Hk.) be the space of all H-harmonic (resp. H*-harmonic) k-forms for
(F,w).

In case of the contact flow, the spaces Hy and Hpy~ coincide with CH and C*H
respectively [8]. Then we obtain:

Theorem 3.1 Let (F,w) be a Hormander flow on a compact Riemannian manifold
(M, g) of dimension m = 1 + q. Then for any k

g_(:k,O _ j_(:l[({ N ]k’ g_ckﬁl — g_qc—;—*l N ]>]E+1~
Proof Let ¢ € F(*°. By definition, ¢ satisfies
dEgb = dB(b = (Sng = 62"_1¢ =0.
From Lemma 2.4, this means that ¢ € H¥ and 6> !¢ = 0. On the other hand, ob-
serve that the operator A restricted to Q2% sends to Q¥~2°, This, combined with
Lemma 2.1, says that ker 6>~! = ker A on Q%°. Therefore, we deduce 3*° =

3k gk
Similarly, for 1) € H*! we find

dgp = d* 1) = Op = Opp = 0.

This means that ¢» € H5' and d>~'¢) = 0. In this case the operator L restricted to
Qk! sends to QK21 so that HR! = KK 0 R+ ]

From the definition the following duality holds:

Corollary 3.2 Under the same situation as in Theorem 3.1, we have for any k

k m—k
Hk = Hmk,
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Remarks (a) We may define looser notions than the above definition (c¢f. [7]). A

k-form ¢ € QF is called a H-harmonic (resp. H*-harmonic) form for a Hormander
flow (F, w) if

dp =0, ¢ = e(w)Aop (resp.dp = 7L, d¢ = 0).

Let }Cg (resp. ng*) be the space of all H-harmonic (resp. H*-harmonic) k-forms.
Considering bigrading gives rise to an orthogonal decomposition

3 = HE @ 3,

where U{ka = iH]kqﬂQk*O and Hgl = U{qu“ MOk, It is immediate from the definition
that ("' = J*~11, so that

(3.3) 3E = 3k @ g1

Similarly if we set f]{g(z = U{qu* N QK0 and U{Zl = iHqut} N Q1) then we have a
corresponding orthogonal decomposition

k k0 k=11 ark, k
(3.4) Hge = Hpo @ Hw = H @ He.
From (3.3) and (3.4) observe that for any k
k k k k k k k

(b) The Hormander condition imposed in Theorem 3.1 ensures L # 0 on M. It
may be helpful to consider another extreme case where the distribution D = kerw
for (F, w) is integrable. In this case, we easily find that for any k

(3.6) JE=Qk0 k= k1

so that
k k0 ko qrk—1,1
Hy=HY", Hp. =X

and
3, = 3* = 3.

It follows from this observation that if we drop the Hérmander condition in Theo-
rem 3.1 then 3% (and %) varies according to L (and A) vanishes or not.

On the other hand, it should be noted that (3.6) does not hold in general. For
example, if F, is a contact flow of codimension 2# then foranyk=1,...,n

]2k ?é QZk,O.
Indeed, we have the following formula [8]

(ALP — LPA)p = 2p[(2n+2 — 2p — 2DLP ' + 2e(w)erLP ' ¢)
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for any I-form ¢ € ), where p is any non-negatve integer and L~! = 0. Then we see
that
A(dw)* = 2k(2n + 2 — 2k) (dw)* .

Therefore, A(dw)* # 0 on M because k < n.
Since J¥ = Qk0 for k = 0, 1, we deduce:

Corollary 3.3 Let (M, g, ,w) be as in Theorem 3.1 and M be connected. Then

HO, =3 =R, H},=H"cH.

4 Harmonic Spaces for a Weak Basic Flow
Let (F,w) be a flow on a compact Riemannian manifold (M, g) of dimension m =
1 + q. We define a subspace Q;’é (£ =0,1) of Q' by
O == {¢ € Q% | dpp = 0}
Qb= {¢ € QF | 650 = 0}.
An element in QE"[ is called a basic form for F. We note that (Q25°, dp) is nothing

but the ordinary basic complex (Q5(F), dg) with respect to the flow F (see [9], [16]).
Observe that L¢ = 0 for ¢ € Q3.

Now we choose an orientation on (M, g, ¥) as follows. In our situation, w is the
characteristic form for JF. Its transversal volume form is defined by v := *w. The
volume form on M is, by convention, given by y = v A w.

Let Ag be the basic Laplacian given in Section 3. Note that A (R0 ¢ QR We
start with the following observation.

Theorem 4.1 Let (F,w) be a flow on a Riemannian manifold (M, g) of dimension
m = 1+ q with transversal volume form v € Q%’O. If F is isoparametric, i.e., the mean
curvature 1-form . for F satisfies k € Qy°, then Ap: QE‘{ — QZ’(" is well-behaved for
¢=0,1.

Proof Let *p be the star operator on Q*° with respect to the horizontal metric gp.
Since v € Q%°, the restriction of g to Q" induces an isomorphism

wp s Q50— QIR0
It is obvious that for ¢ € Qll;’o
(4.1) xp =xpp Aw, *pd=(=1)T"x(pAw).
We introduce an auxiliary codifferential operator 67 on Q*° defined by

Op i= (=D)AL e e 5
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Ot can be extended to * by defining 67 = 1 ® id. From the construction it is clear
that
5r(Q5%) c k1L,

In addition, a direct computation similar as in [16] shows that on Qll;’o
(4.2) dp = Ot + L,

where N denotes the mean curvature vector field for F dual to . Indeed, by using a
Rummler’s formula

(4.3) dpw = —Kk A w,
we have from (4.1)
05 = (=1)" D x dy(xpd A w)

= (=) s (dpxp pAw+ (1) F xp ¢ A dpw)

= (=11 (spdy xp ¢ — *xpe(k) xp @),
which proves (4.2). The hypothesis « € Q};O implies
(4.4) 5p(Q50) c 10,
Therefore, we conclude that

Ag: Qg’o — Qg’o

is well-behaved.
Next, from dpdg + 0pdp = 0 it is easy to see that 63(92’1) C Qgﬁl’l. Moreover, if
we notice

(4.5) s Q' (resp. Q") — QF 7 (resp. Qf 1),

then (4.4) implies §gdpt) = *dgdp* 1) = 0for vy € Qﬁ’l. It follows that Ag: Q]l;’l —
Qg’l is also well-behaved. |

Remarks (a) The tenseness problem for foliations has been attacked by several
mathematicians: Given a foliation ¥ on a compact manifold M, is there a Rieman-
nian metric g with respect to which the mean curvature form « for F is basic? Re-
cently, it was answered in the affirmative when J is Riemannian [2], [5]. That is, if
F is a Riemannian foliation then there exists a bundle-like metric stisfying x € Q5°.
Thus a Riemannian flow satisfies two hypotheses, %, € Q5°, imposed on The-
orem 4.1. However, this problem is still open when F is a flow admitting basic
transversal volume form but is not Riemannian.
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For the contact flow case Theorem 4.1 was proved in [8]. Observe that a contact
flow (F, w) satisfies the hypotheses of Theorem 4.1.

(b) When p := dimE > 1, we replace the space Q' by Q. Then by a similar
way we can show that Ag: Q5" — Q3" is well-behaved for £ = 0, p.

In the sense of Theorem 4.1 we may define following harmonic spaces for an
isoparametric flow with basic transversal volume form. For simplicity, such a flow
is called a weak basic flow.

Definition Let (F,w) be a weak basic flow on a compact Riemannian manifold
(M,g). A form ¢ € Q;‘ﬁ (¢ = 0,1) is said to be basic harmonic if Agpp = 0. Let
H5' (£ = 0,1) be the space of all basic harmonic forms for (F, w).

Remark We observe that 3" is a new basic harmonic space for F, while 3 co-
incides with the ordinary basic harmonic space 3} (F) with respect to the flow J. It
was proved in [8] that in case of the contact flow there is a basic Hodge isomorphism
for any k

(4.6) 35" = HE(T),

where Hp(F) = % is the ordinary basic cohomology space of the basic complex

(Q3(9), dg) with respect to F. It is well-known that (4.6) holds for the case of Rie-
mannian foliations (see [3], [16]).

By a similar way as in the proof of Theorem 3.1, we have:

Theorem 4.2 Let (F,w) be a weak basic flow on a compact Riemannian manifold
(M, g) of dimension m = 1 + q. Then for any k

k — k—1,
g_(:k,() — j_CB;O N ]k, j‘fk L1 _ :}CB 1,1 N Ll:

Since *Apx = Ag, it holds a duality property from (4.5).
Corollary 4.3 Let (F,w) be as in Theorem 4.2. Then for any k

k0 _ qrq—k1
(k0 = g3kt

In the low degree case we easily verify from the definition:

Corollary 4.4 Let (M, g,F,w) be as in Theorem 4.2 and M be connected. Then
Hp' =H =R, H' =H" cH".

If, in particular, J is geodesic, we have further:

Corollary 4.5 Let (M, g,F,w) be as in Theorem 4.2. If, moreover, F is geodesic then

dim K2’ > 1.
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Proof It suffices to show dim U—C%l > 1. Indeed, the flow form w € Q%! satisfies
dw =0, dgw =0
since F is geodesic. That is, w € HY'. ]

Remarks (a) Corollary 4.4 is a special case of the following result in the cohomology
terminology: for any foliation F on a compact manifold the inclusion H}(F) — H!
is injective (say, see [16, 9.9]). Corollary 4.5 in the cohomology terminology is also
found in [16, 9.21]. Here H* denotes the k-th De Rham cohomology space on M.

(b) Carriere [1] gave an example of Riemannian flows on compact 3-dimensional
manifolds with H3(F) = 0. His example is not geodesic.

We abbreviate “geodesic weak basic flow” to “basic flow”. From Carriére’s example
it is natural to consider the problem when a basic flow achieves dim H%" = 1. A
characterization to this problem will be given in Section 5.

Now we investigate the relationship between the spaces 3§, 3k, and f]{g’/. In
case of the contact flow, the following result is found in [8]. Note that a contact flow
is a basic Hormander flow. We have:

Theorem 4.6 Let (J,w) be a weak basic Hormander flow on a compact Riemannian
manifold (M, g) of dimension m = 1 + q. Then for any k
96" = 90, 3G =0

Proof Ifaform ¢ € QF is H-harmonic, then t7¢ = 0 means that ¢ € Q*°, and so
d¢ = 01is equivalent to dg¢p = dp¢p = 0. Furthermore, we see from Lemma 2.4 that
8¢ = e(w)Ag = 0>~ 1¢, so that dz¢p = 0. Therefore ¢ € H:°, and vice versa.

If ¢ € Q! is H*-harmonic, then 1) € Q%! because e(w)y = 0. It follows that
d1p = 0 is equivalent to ztp = dptp = 0. Since dip = 1Ly = d*~ 14, we see that
dgp = 0. Thus ¢ € J-Cﬁ’l, and vice versa. [ |

5 Harmonic Spaces for an Isometric Flow

In this section, we are interested in the following question: when is the operator

e(w): Qﬁ’o — Q]l;’l well-behaved? This is related to the following question: when
does (le, dg) become a differential complex?

Lemma 5.1 Let (F,w) be a Riemannian flow on a Riemannian manifold (M, g) with
bundle-like metric. Then for any k we have an isomorphism

e(w): Q5 — le

with inverse L.

Proof For a Riemannian foliation, it is useful to take an basic adapted orthonormal
frame for a distinguished chart (U, (x, y)) of the foliation, say {w; = w,w,} with
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w, € Qll;’o (a =1,...,q) (see [4]). Then we can compute locally for ¢ € Q’;;O as
follows. Write ¢ = ¢4(y)wa. Then
Sp(ew)g) = (=)™ wdp* (ga(y)w Awy)
= (=)™ s dp(paly) ¥ wa)
= (="« (deda(y) A xpwa + dpa(y)dg xp wy) = 0.
This means that e(w): QZ’O — Qll‘;l is well-defined. Hence e(w) is injective by
Lemma 2.1.
Finally it is enough to show ¢t € QE’O for ¢ € le. Since 3 is Riemannian, 1)
can be written as ¢ = 14 (y)w A wa. Hence a similar way gives rise to
dp(tr) = dp(Ya(y)wa)
= dpa(y) ANwa +1Pa(y)dpwa
= O7

so that vryp € QIEO. ]

In order to develop a harmonic theory, we consider an isometric flow which is
generated by a nonsingular Killing vector field. It is well-known [1], [16] that an
isometric flow is equivalent to a geodesible Riemannian flow. Given an isometric
flow F on M, there exists a Riemannian metric g on M with respect to T defining F
is a unit Killing vector field. In this case, we have further relations.

Lemma 5.2 Let (F,w) be an isometric flow on a Riemannian manifold (M, g) gener-
ated by a unit Killing vector field T. Then

Lr = —de(w) — e(w)d.

In particular, if ¢ € Q" then Lrg = 0.

Proof It suffices to notice that
LT = *LT*

because T is Killing. Then Lemma 2.3 completes the proof. ]

A contact flow (5, w) is said to be R-contact if F is Riemannian. Observe that a R-
contact flow is an isometric flow. In the compact case we extend a result [8] obtained
for the case of a R-contact flow.

Theorem 5.3 Let (F,w) be an isometric flow on a compact Riemannian manifold
(M, g) of dimension m = 1+ q. Then for any k the operator e(w): 9{,];’0 — THII;’I

is an isomorphism with inverse L.
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Proof For ¢ € J{ﬁ", we see from Lemma 5.1 e(w)¢ € le. Since JF is geodesic,
Lemma 2.2 implies

(5.1) d(e(w)p) = dw A ¢ € Q0.

Thus dp ( e(w)gb) =0.
On the other hand, by Lemma 5.2 we have

(5.2) 5(elw)g) = —Lro — e(w)ds =0,

which implies &5 (e(w)¢) = 0. Hence e(w)¢ € TJ{E’I.
Now we show that ¢7: 9{@1 — }CE"O is also well-behaved. Indeed, for ¢ € }Cg’l a
similar way shows
d(ery) = Lryp — vrdyp = 0,
0(Lr)) = *de(w) * 1 = *(dw N x1)) € QF21
The last formula says that dg(¢17) = 0. Hence t71) € 9‘(2’0. [ |
Theorem 5.3, together with Theorem 4.2, yields a Poincare type duality on Hp as

follows.

Corollary 5.4 Under the same situation as in Theorem 5.3, we have an isomorphism
%= xoe(w): HE — I for any k.

In addition, the following result shows that H%" provides an obstruction for a
geodesible flow to be isometric.

Corollary 5.5 Let (F,w) be a basic flow on a compact connected Riemannian manifold
(M, g). Then dim HL® > 1. Furthermore, the following are equivalent.

(a) T isisometric with a bundle-like metric g,
(b) dimHE’ = 1.

Proof Notice that

HE' = H" =R
Thus Theorem 5.3 yields
(5.3) HL =HI =R
For the converse, refer to [6]. |

From Lemma 5.1 and Lemma 5.2 we can discuss the question when (QZ’I7 dg)
becomes a differential complex.

Theorem 5.6 Let (M, g,F,w) be as in Lemma 5.2. Then (Qg’l, dp) is a differential
complex.
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Proof First we claim that dp: Q' — Q5" is well-behaved for any k. Take an basic
adapted orthonormal frame {w; = w,w,} for a distinguished chart. By Lemma 5.2
we can write ¢ € le as Y = Ya(y)w A wy. Then Lemma 2.2 implies

p(dyth) = (—1)"* D s d ¢ (dpoa(y) A w Awa = Ya(yw A dpen)
= (1" dp (=1 (dpialy) Awa) + (=Da(y) o dyn

=0.

Thus dgy) € Q?l"l.
On the other hand, it follows from Lemma 2.2, Lemma 2.4 and Lemma 5.1 that

(5.4) AN = up(dw A1) € Q50

Now on Q* we get d% + dgd>~! + d>~'dr = 0 because d*> = 0. Thus (5.4) implies
dp = dpd 1 = 0,

which completes the proof. ]

Theorem 5.6 allows us to define a new cohomology space associated to the differ-
ential complex (Q5", dp)

(5.5) Hy' = H(Q', dp).

Recall that the cohomology space H;° of the differential complex (€27, dp) is noth-
ing but the ordinary basic cohomology space Hj;(J). Theorem 5.6, combined with
Lemma 5.1, says that:

Corollary 5.7 Let (M, g,J,w) be as in Lemma 5.2. Then we have a complex isomor-
phism
e(w): (Q5°,dp) — (', dp)

with inverse L.
Furthermore, we can show that e(w) induces a cohomology isomorphism.

Theorem 5.8 Let (M, g, F,w) be as in Theorem 5.3. Then
e(w): Hy’ — H"

is an isomorphism with inverse L.

Proof Take ¢ € Qll;’o with dg¢p = 0. Then by Lemma 2.2 and Lemma 5.1 we see that
e(w)p € le and dB(e(w)rj)) = 0. Thus e(w)[¢] := [e(w)¢] is well-defined.
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Suppose that [e(w)¢] = 0. Then there exists ¢ € Qll;_l’l such that e(w)¢ = dpv.
A direct computation by using Lemma 2.4 and Lemma 5.2 gives rise to

¢ = tre(w)¢ = vrdp = —duirp.

It follows that [¢] = 0, that is, e(w) is injective.
Now given [¢] € HE"I, take ¢ € Qll;’l with dgip) = 0. Then 117 € Qg’o and

dpirp = L) — 1pdyp = 0,

so that [v79] € HE’O. [ |

Corollary 5.9 Under the same situation as in Theorem 5.8, we have a basic Hodge
isomorphism

k1 k1
Hy = Hjg
for any k.

Corollary 5.9 can transfer previous results in terms of harmonic spaces into those
in the cohomology terminology under the situation of an isometric flow. For exam-
ple, Corollary 5.4 in the cohomology terminology is found in [16]. Corollary 5.5 in
the cohomology terminology is found in [16], [6]. In particular, (5.3) was obtained
in [12] by a different method, namely, by constructing the Gysin sequence for an
isometric flow.
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