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REMARKS TO THE UNIQUENESS PROBLEM OF
MEROMORPHIC MAPS INTO PY(C), 11

HIROTAKA FUJIMOTO

§1. Introduction
In [7], R. Nevanlinna gave the following uniqueness theorem of

meromorphic functions as an improvement of a result of G. Pélya ([8D).

THEOREM A. Let f,9 be non-constant meromorphic functions on C.
If there are five mutually distinct values a,, ---,a; such that f~'(a;) =
97 a;) A=1<5), then f=g.

The author attempted to generalize this to the case of meromorphic
maps of C" into P¥(C) and obtained some results in the previous papers
[4], [6] and [6]. One of them is the following;

THEOREM B. Let f and g be meromorphic maps of C* into P¥(C)
one of which 1is algebraically mnon-degenerate. If there are 2N + 3
hyperplanes H; 1 <1 < 2N + 3) in general position such that v(f, H;) =
v(g, H,) for pull-backs v(f,H;), «(g,H;) of the divisors (H;,) by f and
g respectively, then f = g.

Relating to this, the following theorem will be proved.

THEOREM 1. Let f,g be algebraically non-degenerate meromorphic
maps of C™ into PY¥(C). If there are hyperplanes H; in general position
such that

v(f, H) = w(g,H) =0,
nomely, fF(CY NH;=gC) NH;=¢ fori=12,---,N+ 1 and
min (u(f, H;), N) = min («(g, H,), N)
for =N+2,...,2N 4 3, then f =g.
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26 HIROTAKA FUJIMOTO

This will be given as a consequence of the following generalization
of a classical result of R. Nevanlinna ([7], Satz 7, p. 388).

THEOREM 1I. Let f,9 be algebraically non-degenerate meromorphic
maps of C™ into P¥(C). If there are N 4 2 hyperplanes in general
position such that

v(f, H) =v(g,H) =0
for i=1,2,.---,N + 1 and
min (V(f’ HN+2), N) = min (”(g: HN+2)9 N) ’

then f and g are related as L-g = f with a projective linear trans-
formation L of P¥(C) which permutes hyperplanes H,, ---,Hy,, and
leaves Hy ., fixed.

In §2, we shall give a combinatorial lemma which plays an essential
role in this paper. In §3, we shall recall some classical results in the
value distribution theory for holomorphic maps of C into P¥(C) and
obtain a mnew result from them. Theorems I and II are completely
proved in §4.

§2. Main Lemma

For later use, we shall give in this section a graph-theoretic com-
binatorial lemma. We consider a set A ={a;;;1 <1 n,1<7 < n}
consisting of 7? elements abstractly. Let non-empty subsets C of A and
I of C x C be given in some manner. For any a;y,a,, in C, we write

@9k, £), or (i,7) < (k,4)
if (@, ap) € Iy oOr (ayy, 0z, € " respectively. We assume that

(Ay) for any ay, a4 in C (4,7) < (@,7) and (3,7) < (k, £) whenever
(k, &) < (3, 7),

(A) if ayy, a4y, and a,,; are in A — C (1 =<4, 5,,%, 7, = n), then
aq,;, are also in A — C,

(A, for any a,; €C there exists some a,, € C such that (4, 7) « (%, 4),

Ay if a4y, 0, €C (1 <0 = s) satisfy the conditions
(@1, 71) <> (Ko, £,y (@ 72) > (Fyy £3), - - -, (85, §5) <> (Ess £5)

then {i,, 4, - - -, ,} = {1, K - - -, K5} occurs when and only when {j,, 5, - - -, 7.}
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= {4, 4y, - - -, £}, where some indices may appear repeatedly in {i,, - - -, %}
ete. and the equalities mean in this case that they appear the same
times in both sides.

In this situation, we give

MAIN LEMMA. By changing indices i and j of a;;’s individually, it
holds that
(i) there is a partition of indices

{1,2, ---,n}={1,2, "',ml} U {ml + 19 "'smz} u-.--u {mt—l + 1’ "',n}

such that a,;2C i¢f and only if © and j are in the same class
{m._,+1,---,m} for some t(1 <z <1), where my: =0, m,: =nandt=2,

(1) for any a;yar tn C, @,7) < (k,¢) if and only if i =4 and
j = k.

For the proof, we need some preparations.

LEMMA 2.1. For any t (1 <1 < n), there exist some 7, and 7, such
that a;;, and a;,; are in A — C.

Proof. Assume that a;;e€C for any j 1 <j < n). By the assump-
tion (A,), we can take some k;, ¢, such that (i,7) « (k;, ¢;) for each j.
Here, j #+ ¢;. In fact, if not, ¢ + k;, which contradicts the assumption
(Ay). And, i@ # k; by the same reason. Since {1,2,---,i— 1,7+ 1,..-,n}
cannot contain » distinct elements, we have indices 7/, 7/ such that k; =
ky» and j’ # j”. Then, for the relations

(i; .7/) <> (kj’} gj’); (kj”; Zj”) <> (’L; j”) ’

{t, k} = {k;, 2} but {7/, ¢;.} + {£;,7”}. This contradicts the assumption
(A;). Thus, there exists some 7, such that a;;, € C. The existence of 7,
with a;,; ¢ C is shown similarly.

We introduce here a provisional notation. For integers k,/¢ with
k < ¢, we denote by [k, /] the set of all integers ¢ with k < ¢ < /4.

By a suitable change of indices, we may assume a; ¢C for any
1e[l,m] and a;,eC for any jelm + 1,n], where 1=<m <n—1 by
Lemma 2.1. Then, as is easily seen by the assumption (A), if a;,,2C
for some k,c[2,n] and ¢ €[1,m], then a;,¢C for any ic[l,m] and
a;,€C for any je[m + 1,n]. By this reason, choosing indices suitably,
we may assume that a;,;¢C if te[l,m], jell,m'] and a;;eC if ie
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[m + 1,n], 7ell,m’], or ie[l,m], jelm’ 4+ 1,n], wherel < m’ < n — 1.
Moreover, it may be assumed that
(2.2) there are indices m,, ---,m,_, m}, -+, m,_, with
m=:m < m<..-<m_ <mg:=n

m=m <m<.-.<m_, <mj:=n

such that a;,;¢C if and only if ic[m., + 1,m] and je[m!_, + 1,m]
for some ze[1,t], where we put m, = m; = 0.

Later, m. = m. (1 £ = < t) will be shown. We assume m’ < m for
a while by exchanging the situations of indices ¢ and j of a,; if necessary.

For each j in [m’ + 1,n], we define an index I; as follows.

@.3) If 1,7) <« @, ¢) for any 2e[l,m] and £e[m’ + 1,n], we put
I, =1. Otherwise, choose indices 4,4, ---,%, in [1,m] and ¢,¢,,---,¢,
in [m’ + 1,n] such that

(19 J) > (iu Zl)’ (il’ j) > ('iz’ Zz)’ ) (ia-—u .7) <> (’iaa ea)

and (ig,7) <> (i, 4) for any ie[l,m], £e[m’ + 1,n]. And, put I,: = i,.

These choices are certainly possible. Indeed, if we cannot choose
the above %,, then there are infinitely many i,e[1,m], ¢,e[m’ + 1,n]
(B=1,2,.-.) such that (¢, 7) <> (4541, £5,). We have necessarily i, = i,
for some p,p with g + 2 < g’ and relations

Cigs ) <> Ggyas €515 @pins ) > Cpins £54)s -+ (e ) > gy £)
This contradicts the assumption (A;), because
@ - s tpoa} = {lpury - - "1:,9'}
but
{75+ b # {lpsrs - -5 4o} -

LEMMA 2.4. If there are indices k,c[m + 1,nl, 4, ¢, in [1,n] such
that

(%) (5, 9) <> (R, £0), (o, £0) <> Uy, 1)
then j = 7.

Proof. As in (2.8), we can take indices 4y, :--,%_1, %, +*-,%_; IN
[1,m] and &, -++,4q, €55+, £, in [m' + 1,7n] such that
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(1’ ]) <> (iu 51), (il’ .7) <> (iu Zz), tt (’ia—u .7) <> (119 ga)
(7:;’ Z;) <> (1’ j/)a (74;’ Z;) <> (Z;) j/)’ R (IJ’J Z{z’) <> (7;1,1’—1’ .7/) .

For the relations (x), and (x),, we see

(%),

. . o .
{ij ko, 1’ Ty sl lyy ',?‘;’—1’ Ij'}

={ko Iyt -y 8ayy L5y 1,00, « - -y}
So, by the assumption (A,)
{6,060, -+, 0, 80 -+, Gy = {60, 7', b1y -+ 5 Can 075 -+, '}
This implies 7 = j/ because J % £y, 41y + 5 £a, 7.

LEMMA 2.5. For any kelm + 1,n] there is one and only one
jelm’ + 1,n] such that (I;,7) < (k, %) for some ¢¢ell,n].

Proof. The uniqueness of the desired index is a result of Lemma
2.4. On the other hand, by the assumption (A,), there are indices
km’+u R} km gm'ﬂ, A} gn such that

(Im’+1; m’ + 1+ (km'+1’ gm'ﬂ), ctty (In’ n) < (km ﬂn) ’

where m + 1 < Epryys -+, by < n by the property (2.8) of I,’s. Then,
Kmyis - o+ k, are distinct with each other because of Lemma 2.4. There-
fore,

n—m<n—m

and so m <m/. Since m’ < m is assumed, we have m = m’ and
{Fmsy -+ by} ={m +1,...,m}. The index j with k, = k is the desired
one.

LEMMA 2.6. m.=m. (1 <7 < t) for the numbers defined as in (2.2).

Proof. As in the proof of Lemma 2.5, we have m (=m,) = m/ (=m)).
The same arguments are available for the other z. So, we obtain
Lemma 2.6.

LEMMA 2.7. For any ielm + 1,n] and je[l,m] there exist some
kel[l,m] and ¢e[m + 1,n] such that (i,7) < (k, £).

Proof. Assume the contrary. According to the assumtion (A,), we
choose indices k,, ¢, [1,n] such that

( t )i (@, 7) < (ky, 4y .
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By the assumption, m + 1< k, <n. On the other hand, there are
indices 7, 7; in [m + 1,n] and 45, ¢, in [1,7n] such that

( # )2 (IJO’ jo) <> (2’ ‘Z(/)), (ko, z(/)/) <> (Ij6, .7(;)

because of Lemma 2.5. Moreover, by the property (2.3) of I,’s, we have
(1: .70) <> (7:1, 51), (7:1, .'io) > (7:2, gz); trcy (ia—u jo) > (1109 Za,)

(7'{: Z{) (1, .7.(,))9 (i;’ Zg) <> (’L;’ j(,)), tt ity (Ijéy zla’) > (’i;:_l, .7(/))

for some il; ] ia—u "/;, Y 7:;'-1 € [1; m] and 41, ) ga’ Z{; Tty Z;' in
[m+1,n]. Observe the indices of the relations (#),, (#), and (#);. It is

easily seen that they contradict the assumption (A;). Thus, we have
Lemma 2.7.

(#)s

LEMMA 2.8. By a suitable change of indices i's of a;; among
1,2,...,m, there is some index ¢4, for each te[m + 1,n] and je[l,m]
such that (i,7) <> (7, ¢sy), where m + 1 < 4,5 < n.

Proof. We take k,,---,k, in [1,m] and 4, ---, ¢, in [m+1,n] such
that

(m + 1, 1)(_)(1019 Zl): c "(m + lym) (_’(kmd Z'm.)

by the use of Lemma 2.7. As is easily seen by the assumption (A,) and
(Ay), we have {k,, - -+, k,} = {1, ---,m}. By a change of indices, we may
assume that k%, =1,.--,k,=m. For any ie[m + 1,n], we choose
K, -, Kk, in [1,m] and 41, ---4,, in [m + 1,n] so that

(i; 1) <> (k{’ g{); D] (i, m) > (k:ru Z:n) .

By the same reason as the above, {ki,---,k,} ={1,2,---,m}. Assume
that & + j for some j and take the index j* with k), = j. We observe
the relations

@, 9) < (K}, £, (K}, £) < (m + LK), (m + 1,7) < (7, £, (7, ;) < G, 7)) .

As is easily seen by the facts j + ¢/, k), ¢;,7’, this contradicts the as-
sumption (A,). Therefore, k; = j for any j and we have Lemma 2.8.

LEMMA 2.9. After a suitable change of indices j’s of a;; among
m+1,.--,n, it holds that (i,7) <> (J,%) for any jelm + 1,n] and
7ell,m].

Proof. As a consequence of Lemma 2.8, we may assume that
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(m + 1, 1) <> (1, gm+1), Sty (’ﬂ, 1) <> (1: gn) ’

where {£,,1, -+, 4o} ={m + 1, ..-,n} by the assumption (A;). Changing
indices if necessary, we have (4,1) « (1,4) for any Ze[m + 1,n]. As-
sume that for some i, [1,m] and 7,e [m + 1,n] (5, 7,) <> (Jo, %). Then, by
Lemma 2.8, there is some 4,¢[m + 1, %] (5, %) <> (4, £,) such that £, # j,.
If we choose k,,,,, - -+, Kk, in [m + 1,%] such that (j,%,) < (i, k,) for each
jelm + 1,n], it is easily seen that {k,, .., -+, k,} = {m + 1, - - ., n}. There-
fore, there are an index k, such that (k,,7%,) <> (4, 7,), where k, # 7, by
the assumption. We observe the relations

(%o, p) < (jo, 1), (ks 1) <> (%, 505 (1, ko) < (Ko, ), (G, ) « (1, 79)

Obviously, these indices do not satisfy the assumption (A;). Thus, we
get Lemma 2.9.

Proof of Main Lemma. By Lemma 2.9, we may assume that (7,7)
<~ (j,7) for any ie[m + 1,n] and je[l,m]. The conclusion (i) of Main
Lemma is a direct result of Lemma 2.6 because Lemma 2.6 is available
for the above choice of indices. We shall prove the conclusion (ii).
There are indices %, ¢ with (¢, 7) < (k, ¢) for any 4,7 with a,;€ C by the
assumption (A,). So, we have only to show that k=j and /=1
whenever (¢,7) <> (k, 4). By virtue of the assumption (4,), it suffices to
study the following three cases.

1°) m4+1=<5isn, 15jsm,1sk<mand m+1=4=n.

2°) m+1<igsn, 15jsm m+1<k<nand 14 <n.

3 m+1=514,5,k, 4 < n.

Observe the relations

@Dk, 0),30,0 < @0, %k, 8 <, k), ¢,7) 3,0
for the case 1°) and
@Dk, 0,1,9) <0G, %, 1)<~ Q,k),

for the cases 2°) and 3°) respectively. In any case, indices in the rela-
tions do not satisfy the assumption (A,) except the case (k,4) = (7,17).
Thus, Main Lemma is completely proved.

§3. A result from the value distribution theory

We shall introduce some definitions and notations. For a domain
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D in the complex plane C, a divisor v(z) on D is defined as an integer-
valued function on D such that {zeD;u() % 0} has no accumulation
point in D. Let us take a divisor v on {zeC;|2|< R} 0 < R £ + o)
with »(0) = 0. We put

n(r,v):= 2, v(2)

lzl=sr

N(r,y):zf'Mdt= 57 u(@) log -7,
o ¢ M |2]
where 0 < r < R.

Let f be a non-constant meromorphic function on C. We define
vi@) =n,=0 and = —m if f(2) has a zero of order » at z = q, if
f(a) # 0 and if f(2) has a pole of order m at z = a, respectively. And,

put N(r, f) = N(r,v;). Then, the well-known Jensen’s formula is given
as follows.

(8.1) If f(0) # 0, co, then
2—171.[0 log | f(ret®)|df = N(r, ) + log | f(0)] (r>0).

Now, let us take a holomorphic map f of C into P¥(C). For an
arbitrarily fixed homogeneous coordinates w,:.--:wy,;, we can take
holomorphic functions fi, ---, fy, such that f=fi:--.: fy,, and f;
(1<%¢=< N + 1) have no common zeros. In the following, we shall call
such a representation of f a reduced representation. For a reduced
representation f = f,: f;: -+ fy., We put

u(z): = max log| fi(?)]
1SisSN+1
and, following H. Cartan [2], define the characteristic function of f as

T(r, f) = —2-1; w(re*)dd — u(o) ,

which is determined independently of any choice of a reduced representa-
tion of f.

Assume that f is non-degenerate, i.e., f(C) is not contained in any
hyperplane of P¥(C). For a hyperplane

H:ow, + dw, + -+ + a"'wy,, =0

https://doi.org/10.1017/50027763000021619 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021619

MEROMORPHIC MAPS 33

and a reduced representation f = f,:f,:.--:fy., We consider a holo-
morphic function

Fi=afi+df,+ - + 0"y,
and define v(f, H) := vp.
DEFINITION 3.2. For a positive integer p, we define

Np(/r’f,H):: N(Iry min (p’ V(fyH)))
N(’I',f,H)::N(’I',)J(f,H)) .

We can conclude from (3.1)
3.3) Ny, f,H) <N, f,H) < T, f) + K,

where K is a constant not depending on 7.

We recall here the second fundamental theorem in the value dis-
tribution theory given by H. Cartan in [2], which is essentially used
in the followings.

THEOREM 38.4. Let f be a non-degenerate holomorphic map of C
into PY(C) and H, (1 <1 < q) be hyperplanes in general position with
f(O) e U,H;. Then,

(¢ — N —-DT(, f) élé Ny(r, f,Hy) + S(r) ,
where
S(r) = O (log ) + O (log T(r, 1)) I

and “||” means that this holds outside an open set E in R such that

J‘ ﬂ< + oo,
E t

Remark. In Theorem 3.4, if f is rational, i.e., represented as
f=fi:f.: -+t fy. with polynomials f;, then S(r) = O(Q).

Now, let us consider two non-degenerate holomorphic maps f,g of
C into P¥(C) and N + 2 hyperplanes H,, ---,H,,, in general position.
We assume that

(3-5) ”(f’ Hi) = V(g’Hi) =0
ie., f(C) N H,=g¢g(C) N H;=¢ for 1=1,2,...,N + 1 and
3.6) min (f, Hy,), N) = min (u(9, Hy ), N) .
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We choose homogeneous coordinates w,: w,: --- : wy,, on P¥(C) such that
H, are represented as

H,:w;, =0 15igsN+1,
Hy,:w, +w, + - +wy,, =0.

In this situation, we can prove the following

PRrOPOSITION 3.7. Take reduced representations f = fi:f,: - fun
and g =¢,:0,: -+ :9ys- Then there exists some constants c,c,, ---,
Cxy Gy Ay -+, Ay yy SUCK that ¢, — d; = 0 for some i,j and
3.8 > (ei—dpfig;=0.

1<i,jEN+1

To prove this, we need some preparations. For brevity, we denote
Hy., by H and define

N,(T, f) = N(?", V(fy H) — min (D(f, H)) V(g’ H)))
N'(r,9) := N(r,v(9, H) — min (.(f, H), u(g, H)))

for each positive number 7.
LEMMA 3.9. It holds that

N'(r, /) + N'(r,9) < N(r, f, H) — Ny(r, f, H) + N(r,9,H) — Ny(r,9,H) .
Proof. According to the assumption (3.6), we see easily

o(f, H) — min («(f, H), (9, H))) + (9, H) — min (.(f, H), «(g, H)))
= [u(f, H) — (g, H)|
= W/, H) — min (S, H), N)| + |v(g, H) — min (.(f, H), N)|
= ((f, H) — min «(f, H), N)) + (9, H) — min («(g, H), N)) .

By linearlity and monotonicity of integrals, we can conclude Lemma 3.9.
LEMMA 3.10. It holds that
N'(r, f) + N'(r, 9) = O(og r) 4+ O(log (T'(r, /) + T(r,)) | .

Here, if f and g are both rational, the right hand side is replaced by
o).

Proof. Since Ny(r,f,H)=Nyr,9,H) =001 i< N + 1) by the
assumption (8.5), Theorem 3.4 implies that
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T(r, f) — Ny(r, f, H) = O(ogr) + Olog T'(r, 1)) |,
T(r,9) — Ny(r,9,H) = O(log r) + O(log T(r,9)) || .

Therefore, by (3.3), we see

N(r, f,H) — Ny(r, f, H) = O(og ) + OQog T(r, /) ||,
N(r,9,H) — Ny(r, f, H) = O(log ) + O(og T(r,9)) |l .

By virtue of Lemma 3.9, we can conclude

N'@r,f) + N'(r,9)
=< O(log ) + O(og T(t, NT(r, 9)) I
=< O(log7) + O(log (T(r, /) + T(r,9)) | .

The latter half of Lemma 3.10 is due to Remark to Theorem 3.4.

Proof of Proposition 3.7. We take a holomorphic function » on C
such that v, = min (u(f, H),v(9, H)). And, we consider a holomorphic
map @ of C into P**(C) defined as

(8.11) D=[1G:ff: - Symdi— St —gxf,

for some fixed homogeneous coordinates on P*¥(C), where f:=f, + - --
+fN+1/h' and g:: 9+ -+ + gN+1/h' Since fi and 9 (1 é ( éN + 1)
have no zeros and f and § have no common zeros, (8.11) is a reduced
representation of @. For the proof of Proposition 3.7, we have only
to show that @ is degenerate. In fact, in this case, there exist some
constants ¢, -+, ¢y, d,dy, -+ +,dy, at least one of which is not zero,
such that

20 Cfigi 4 o+ gyy) — Z di9;,(fi + -+ + fy) =0.

+1 1S7EN

1<iSN

Here, at least one of c¢;’s is not zero, because g is non-degenerate.
Putting dy,, = 0, we have the desired relation (3.8).
Now, let us assume that @ is non-degenerate. We denote by wu,:
Uyt v 2 Uy,, the above fixed homogeneous coordinates on P*¥(C) and
consider 2N + 2 hyperplanes
Hi:u;=0 1<i<2N+1,

~

H2N+2:u1 + U+ o F Uy =0

in P*¥(C), which are located in general position. Then,
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uD,H,;) = Vi = v(9, H) — min ((f, H), v(g, H)) ifl<i<N+1,
=vy; = o[, H) — min (f, H),(9,H)) i N+2=<i<2N+1.

Moreover, since Y. (§f: —fg) =0,

1S{SN+1
WD, Hyy o) = Yigyer — Y7 -

We apply here Theorem 3.4 to a holomorphic map @ of C into P?¥(C)
and hyperplanes H,,.--,H,y,,. We have

T, < 3. Nuy(r,0,H) + OQog rT(r, ) |
(3.12) 1Sj82N+2
SN + DWN'(r, f) + N'(r, 9) + OQog rT(r, D)) | .

Put

Uo 1= max (log | f,d], - - -, 10g | fy .0 |, 1og |9, f, - - -, log |gx S
uy = max (log| f|,10g | /2], - - -, 10g | fx 1))
%y := max (log|g,], - - -, ,10g|gy)) = max (log[g,], - - -,10g |gx.]) »

where we used a reduced representation of ¢ with gy,, = 1. Then,

u,(2) + log|d(2)|
u,(2) + log|f(2)| .

Taking the mean value of each term on {zeC;|2| =7}, we obtain by
3.1)

Up(2) = {

T, ®) + u(0)
- {T(T, ) + u(0) + N(r, 9) + log|g(0)|
~ T, 9) + u,0) + NG, f) + log| f(0)] .

Here, N(r,9) = N'(r, f) and N(r,f) = N'(r,9). So, by (8.12),

T(r, f) + T(r,9) < 2T(r,9) — N'(r, /) — N'(r, 9) + O(1)
= @N + DWN'(r, /) + N'(r, 9)) + O(Qog rT(r,®)) | .

On the other hand, since

max (/g - | fyaadls 195 ) -5 19x D S (N + 1)(miaxlgt|)><(mjaxlfjl)/lh| ’

(3.13)

we have
Up(2) < ug(2) + uy(2) — log|h| + log (N + 1)
and by (3.1)
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1 f" log [h(re?)| dd = N(r, k) + log |h(0)| .
2 Jo

Therefore,

Tr, @) <T@, f) + T(r,9) — N, h) + OQ)
<T@, f)+ T@r,9) + 0Q) .

By (8.13) and Lemma 3.10, we can conclude
T(r, f) + T(r,9) < O(ogr) + O(og (T(», f) + T(r,9)) | .

If f or g is transcendental, then

lim log 7 ~0.

e T, f) + T(r, 9)
Factoring each term of the above inequality by 7(r,f) + T(r,g9) and
tending » to the infinity, we have an absurd inequality. In the case
that f and g are both rational, the remaining terms of the obtained
inequalities in the above arguments can be replaced by O(1). We have
a contradiction in this case too. Therefore, @ is degenerate and hence
Proposition 3.7 is completely proved.

§4. The Proofs of Theorems I and 1I

We shall prove first Theorem II stated in §1 for the case n = 1.
Let f,g be algebraically non-degenerate holomorphic maps of C into
PY(C) such that there are hyperplanes H; (1 <7< N + 2) in general
position satisfying the condition v(f,H;) =uv(g,H;) =01 <i<N + 1)
and

min (V(f’ HN+2), N) = min (V(gs HN+2), N) .
As was shown in §3, if we choose homogeneous coordinates such that

H:w,=0 1<i<N+1

“.1)
Hy iw, + -0 + Wy =0

and reduced representations f = fi:f.: - fnery 9 =91:02% ¢ 9ners
we have the relation (3.8) for some constants ¢, and d;, where f; and
g; have no zeros.

We put a;; = f;9; and consider the set

A:i={0;;;1<4,]=<N+1}.
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And, we define subsets C of A and I" of C X C as

C:={a;;eA;c; — d; + 0 for constants c;,d; as in (3.8)},
I':= {(@5, a1 ; @45/az, is of constant and (¢,7) # (k, )}

respectively. For these sets, we shall show that the assumption (A,)
~(A;) in §2 are all satisfied. The assumption (A, is obviously valid.
If ¢, —d;, =0, ¢, —d;;,=0and ¢, —d;,, =0 A =14,%,5,: =N+ 1),
then

Ci, — djz =(c;,—dy) +(d;, —¢c;) + (¢, —dy) =0,

whence (A) is satisfied.
The assumption (A,) can be easily seen by the relation (3.8) and
the following classical theorem of E. Borel,

THEOREM 4.2 ([1]). Let hy,hy ---,h, be mowhere vanishing holo-
morphic functions on C satisfying the relation

By hy+ oo +h,=0.

Then, there is a partition of the set of indices I:= {1,2, -..,p} into the
disjoint union of subsets

I=LU-..-UI
such that for any i,je€l, hy/h; = const. and

SThe=0 (A=<k<h.

1€l

Particularly, for any ¢ =1, .--,p, there is some j such that © + j and
h;/h; = const.

To verify the assumption (A;), we take a;,;, and a;, 1 =0 < 5s)
in C satisfying the condition

(s 51 < (B, £0), (g, 5) <> (s £), - -+, (45, 1) <> (Bgy 45)
namely, f:.9;,/f%.9:, = const. (1 < ¢ < s). This implies that

JoJo o J1,.91,91, 0 95 = CTuSu, 0 T1,9090 * 9u
for some constant c¢. If {3, ---,%} = {k, -+, &k}, we have a relation

95,913,935, = €909, "+ Gy, -

On the other hand, there is no algebraic relation among g, - -, 9y
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because g is assumed to be algebraically non-degenerate. We can con-
clude {1,725 - sdst = {b1, 4y +++,4;}. Similarly, {j, ---,5 = {6, -, 45}
implies {¢,, ---,%} = {ky, - - -, ks}. This shows that the assumption (A,) is
also satisfied.

By virtue of Main Lemma, we can conclude that, after a suitable
change of indices ¢ and j of f; and g, individually,

J19;/7 9, = const.

if and only if (7,7) = (4, k) for any (¢,7) and (k, ¢) with ¢; — d; + 0 and
¢, — d, + 0. Moreover, by the relation (3.8) and Theorem 4.2, we have

Ji9;, —f19: =0
for any ¢, with a,;€C. In particular, as a result of (i) of Main
Lemma,
Ji9; = f194

if m+1<i<N+1L1<j<m or 15ism,m+1Zj<N+ 1.
Easily we see

9 9 Iner

Going back to the original indices, this shows that there is a permuta-
tion 7 = (1’2’ N+ 1) such that

Ty Ty * s TN 41

= TS = s

9y Yu Gever

Therefore, f and g are related as L-g = f with a projective transform-
ation

L:w, = w,, 1<i<N+1.

Let us prove Theorem II for the general case. Let f,g be mero-
morphic maps which satisfy the conditions as in Theorem II, where
we assume f(0),9(0)¢ Hy,,. Choosing homogeneous coordinates as in

(4.1), we take representations f = fi: fy: - i fypnand g =¢,:9,: -+ 1Oy
with nowhere zero holomorphic functions fi, /% -« s et G192 ** *s Iwrsre
For any a = (e, a, « - -, 0y, € CV* — {0}, we consider a holomorphic map

fo of Cinto P¥(C) defined as
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JuB) = faz): f@r): -+t fyu(az) (2e€C)

where az = (0,2, @,2, - -+, @y4,2). And, we define a map g,:C — P¥(C)
similarly by ¢g. Then, the following fact is valid.

LEMMA 4.3. Let E be the set of all a € C™ — {0} such that v(fo, Hy,2)(2)
# WS Hy)(@2) or w(gay Hy,)(2) # (9, Hy,)(az) for some z. Then, for
the canonical mep @: (2, --+,2,) €C* — {0} > 2,: .- 12, € P»}(C), the set
@(E) is nowhere dense in P*~(C).

For the proof, see e.g., [3], Proposition 2.7, p. 275.

Let Sy,, be the set of all permutations of indices 1,2,..--,N + 1.
By L, we denote the projective linear transformation of P¥(C) defined
as

L. :w, = ws, 1I£iEN+1)

for each 7 = (1’2’ N+ 1) € Sy,.. For anyain C* — (E U {0}), since

Tis Mgy * * *y Wy
Jo. and g, satisfy the assumptions of Theorem II as holomorphic maps
of C into P¥(C), applying Theorem II for the case # = 1, we can con-
clude that L,.g, = f, for some we Sy,,. Let F, be the set of all points
ain C"— (E U {0}) such that L,- g, = f,. Then, C" — (E U {0) = U.csys, Fr
Each F, is an analytic subset of C* — (E U {0}). In this situation, it
can be easily seen that F. = C" — (£ U {0}) for some =z,. This shows
that Theorem II is also true for the case n = 2.

We shall prove next Theorem I. Let f,g be algebraically non-
degenerate meromorphic maps of C” into P¥(C) such that v(f,H, =
wg,H) =0 for t=1,---,N + 1 and

min (V(f, Hj)’ N) = min (V(g’ Hj); N)

for j=N+2,..--,2N + 3. Apply Theorem II to N 4 2 hyperplanes
H,H, - ---,Hy,, and H, for each i=N +2,...,2N 4+ 3. There is a
projective linear transformation L; such that L;-g = f and L, permutes
hyperplanes H,,---,Hy,, and fixes H;., By the assumption of non-
degeneracy, we have easily L:= Ly,, = ++- = L,y,;. This implies that
L fixes N + 2 hyperplanes Hy,,, - -+, H,y,, in general position. It follows
that L = identity and so f = g, which completes the proof of Theorem
I
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