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IDENTITIES LINKING VOLUMES OF
CONVEX HULLS

RICHARD COWAN,∗ University of Sydney

Abstract

Let n points be randomly and independently placed in R
d according to a common

probability law. It is known that the expected volume for the convex hull of these points,
in the cases where n − d ≥ 2 and even, is related linearly to expected volumes of the
convex hulls for j points, j < n. We show that similar identities for these volumes
hold almost surely—and in contexts where independence and communality of law do not
apply. New geometric and topological identities developed here provide a foundation for
this result.
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1. Recursive volume formulae

Consider the random experiment where points P1, P2, . . . , Pn are placed randomly and
independently in R

d (d ≥ 1) according to a common probability law given by the (induced)
probability measure µ defined on Bd , the Borel sets of R

d . Let the convex hull of the first
j points placed be denoted by Hj , j = 1, 2, . . . , n. The d-dimensional volume measure is
denoted by V , so the volume of Hj is V (Hj ), which we usually abbreviate to Vj .

In the important special case of points uniformly distributed on a bounded convex subset K of
R
d , our experiment takes the familiar form studied extensively over the last 140 years since the

famous four-point problem of Sylvester was first posed. Within this context, and with d = 2,
Affentranger [1] discovered a linear recursive link between E(Vn) and the expected volumes
E(Vn−1),E(Vn−2), . . . ,E(V3) when n is even. When d = 3, he proved a similar recursive link
for n odd. Using an analytic contribution by Badertscher [4], Affentranger’s recursion can be
written

E(Vn) =
(n−d)/2∑
j=1

(
n

2j − 1

)
B2j

(22j − 1)

j
E(Vn+1−2j ), (n− d) ≥ 2 and even, (1)

whereBr is the rth Bernoulli number. Buchta [6] extended this result by proving (1) for general
measureµ and all dimensions d . He also noted the following alternative form of Affentranger’s
recursion:

E(Vn) = 1

2

n−d−1∑
j=1

(−1)j−1
(
n

j

)
E(Vn−j ), (n− d) ≥ 2 and even. (2)
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Algebraic manipulation of (2), eliminating the terms where (n−j−d) is even by the sequential
use of (2) itself, leads to (1), meaning that the two formulae are closely related.

In this paper we focus on (2), strengthening Buchta’s result significantly through the follow-
ing theorem.

Theorem 1. For any placement method of the points P1, P2, . . . , Pn in R
d , either random or

not,

Vn = 1

2

n−d−1∑
j=1

(−1)j−1
∑
s∈Sn−j

V (H(s)), (n− d) ≥ 2 and even, (3)

where Sj is the set of j -subsets of the points P1, P2, . . . , Pn and, for s ∈ Sj , H(s) is defined as
the convex hull of s. We can write this as

Vn = 1

2

n−d−1∑
j=1

(−1)j−1
(
n

j

)
V
(n)

n−j , (n− d) ≥ 2 and even, (4)

where V
(n)

j is defined as the average volumes for all
(
n
j

)
j -hulls of P1, P2, . . . , Pn. So Buchta’s

formula, (2), holds in any random context where E(V
(n)

j ) = E(Vj ) for all j < n.

This purely geometric result adds considerable insight to the random situation described
above, whilst also facilitating analyses of random-geometric applications where independence
and/or communality of distribution have been dropped.

2. Applications of a wider nature

We can now deal, for example, with the situation wheren points are placed exchangeably. By
this we mean that a probability measure, µn say, on (Rd)n endowed with the usual σ -algebra
generated by product Borel sets, has the following property: µn(D1 × D2 × · · · × Dn) =
µn(Dρ(1) ×Dρ(2) × · · · ×Dρ(n)) for any D1,D2, . . . , Dn ∈ Bd and any permutation ρ. We
retain the notation µ as µ(D) := µn(D× R

d × · · · × R
d) for allD ∈ Bd . Exchangeability of

the first n placements means that the first j points are placed exchangeably for all 2 ≤ j < n.
Importantly, exchangeability for the locations of P1, P2, . . . , Pn implies that the volumes

of all
(
n
j

)
convex hulls derived from j -subsets of the points P1, P2, . . . , Pn are identically dis-

tributed, with each distributed as V (Hj ) and having common expectation E(Vj ). So E(V
(n)

j ) =
E(Vj ), satisfying the condition, stated in Theorem 1, for (2) to hold.

Example 1. Let {Q1,Q2, . . . ,Qm}, m ≥ n, be an arbitrary set of points in R
d—we call it the

base layout. Sample Pi, i = 1, 2, . . . , n, points randomly without replacement from this set
(with uniform distribution from those still available for selection). The Pi are exchangeable
and µ has probability measure 1/m at each point in the base layout.

Example 2. Let m = 7 in Example 1, with six of the points Qi being placed at the vertices of
a regular hexagon in R

2 (of unit area) and the seventh in the hexagon’s centre. When n = 6, we
can see that H6 is a random set. With probability 1

7 it is the regular hexagon; it is a pentagon of
area 5

6 with probability 6
7 .

All of the column headings in Table 1 are random variables, being functionals of the random
set H6, but we see that (4) holds for each random version of H6. Formula (2) also holds.
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Table 1.

V
(6)
1 V

(6)
2 V

(6)
3 V

(6)
4 V

(6)
5

∑
i (−1)i−1

(
n
i

)
V
(6)
i 2V6

Hexagon 0 0 6
20

9
15

5
6 2 2

Pentagon 0 0 13
60

13
30

23
36

5
3

5
3

Example 3. The n points might be placed exchangeably using Strauss’ model [9]—or one
of the more elaborate ‘interacting-points’ models that have developed from it; for example,
area-interaction models [3] and nearest-neighbour Markov models [2].

Example 4. The points P1, P2, . . . , Pn are placed sequentially in R
d according to independent

sampling ofµ, except that the j th point (j ≥ 2) must be resampled until its location is not within
a distance r of Pj−1. This sequential Markovian dependence does not create exchangeability.

Other point-construction methods which illustrate the widened repertoire of applications are
easily imagined.

Example 5. Place I points randomly within the subset A ⊂ R
d according to measure µA, and

J randomly within the subset B ⊂ R
d according to µB , I + J = n. For example, let A be the

interior of a set K and B be K’s boundary. Miles [8] studied this case when K is a ball and both
measures are uniform within their domains.

Example 6. The points can be constructed from more elaborate random-geometric objects.
For example, let K be a bounded convex set in R

2 and draw k isotropic uniformly random
secants. The intersection of these secants with the boundary of K create n = 2k points and
hence a hull, H2k . The secant-secant intersections within K constitute another collection of
points, but as their number is random, not fixed in advance, they do not fit our theory.

3. A topological identity for convex hulls

Behind Theorem 1 lies a beautiful identity of a topological character. Place n points
P1, P2, . . . , Pn, n ≥ 1 in R

d . The locations of these points are arbitrary; we allow points
to be collinear, coplanar, or coincident with each other. We even permit the convex hull Hn
of all n points to lie in a flat of dimension less than d, an arrangement that we call completely
aligned. To take account of such an alignment, however, we introduce the dimension of Hn and
denote it by h. Effectively the action takes place in dimension h, so if h < d we tacitly identify
the h-flat in R

d which contains Hn with the space R
h. Naturally 1 ≤ h ≤ min (d, n− 1).

Later in the paper, when we discuss the random context, the experiment is set in R
d but the

arrangement of points may, by chance, have lower-dimensional convex hull; then h is a random
variable with range 1 ≤ h ≤ min (d, n− 1). The distinction between d and h is a necessary
one.

If n > d , there may be no examples of j points being contained in a (j − 2)-flat (for any
j ≤ n); the placement of points is then called completely unaligned (the usual geometer’s
phrase ‘in general position’ being unsuitable for an arrangement which is less general than the
‘arbitrary’ premises just stated).

Theorem 2. P1, P2, . . . , Pn, n ≥ 1, are points in R
d whose convex hull has dimension h ≤

min(d, n− 1). For any reference point P ∈ Hn, define cj (P ) as the number of sub-collections
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P3 P6

Figure 1: (a) A completely unaligned layout of seven points in R
2. So h = d = 2. H7 is shown along

with all the 2-hulls, one of which (derived from P3 and P6) is marked. (b) Some collinearities exist, so
this layout is not completely unaligned. Once again h = d = 2. Suppose also that there are coincident

points at some of the nine black dots A–H , say three at G and two at B. Therefore, n = 12.

of j points taken from {P1, P2, . . . , Pn} whose convex hull contains P . Then,

�(P ) := c1(P )− c2(P )+ · · · + (−1)n−1cn(P ) = (−1)h for almost all P ∈
◦
Hn,

= 0 P ∈ ∂Hn,

where ∂Hn and
◦
Hn respectively denote the boundary and interior of Hn, treated for topological

purposes as a set in the identified space R
h. Trivially, �(P ) = 0 if we consider P /∈ Hn.

Remark 1. The case in which h = 0 is covered by Theorem 2. Recall that the interior and
boundary of R

0 are equal to R
0 and ∅, respectively. Also, d = 0 is permitted. The simple form

of the theorem hides considerable counting complexity. As an exercise, suppose thatP is placed
in the interior of the shaded zone of Figure 1(a). Then�(P ) = 0−0+12−26+21−7+1 = 1.
If P is located at H in Figure 1(b), then �(P ) = 1 − 16 + 114 − · · · + 782 − 494 + (12

9

) −(12
10

) + (12
11

) − 1, but filling in the three missing terms, c4(P ), c5(P ), and c6(P ), is a challenge
to human counting skills.

I have not found this topological identity, which has a superficial appearance reminiscent
of functionals which appear in Euler’s formula or in the definitions of the Euler Characteristic,
within the topological literature. It has apparently been overlooked, perhaps because a mathe-
matical structure composed of these many convex hulls does not fit naturally into the framework
of CW-complexes, the versatile and commonly studied cellular system of modern topology. In
the random-geometry literature the identity has not been recognised either, although the trivial
case in which n = h+2 and h = d is stated as a lemma by Miles [8, p. 372] and used implicitly
by Buchta in [5].

Clearly, Theorem 2 (which we prove in Section 4) has the following corollary, which in turn
proves Theorem 1.
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Corollary 1. Let ν be a σ -finite measure on (Rh,Bh). For 1 ≤ j ≤ n, define ν(n)j as the

average of ν measures over the
(
n
j

)
convex hulls formed from all j -subsets of P1, P2, . . . , Pn.

Then

n−1∑
j=1

(−1)j−1ν
(n)
n−j = 2ν(

◦
Hn)+ ν(∂Hn), n− h ≥ 2 and even, (5)

= ν(∂Hn), n− h ≥ 3 and odd. (6)

When ν is absolutely continuous with respect to the h-dimensional Lebesgue measure, we have

1

2

n−h−1∑
j=1

(−1)j−1ν
(n)
n−j = ν(Hn) ≡ ν(n)n , n− h ≥ 2 and even, (7)

= 0, n− h ≥ 3 and odd. (8)

Proof. For P ∈ R
h and H ⊂ R

h let 1H(·) be defined as the indicator function of the domain
H, namely 1H(P ) = 1 if P ∈ H and 0 otherwise. Clearly,

∫
Rh

1H(P )ν(dP) = ν(H).

The entity cj in Theorem 2 is the sum of the indicator functions of the j -subset convex hulls. So,

∫
Rh

cj (P )ν(dP) =
(
n

j

)
ν
(n)
j .

Therefore, (5) and (6) follow from an integration of the identity in Theorem 2. With n ≥ h+ 1,
we have the following: ∫

Rh

�(P )ν(dP) =
∫

◦
Hn
(−1)hν(dP).

Therefore,
(
n
1

)
ν
(n)
1 − (

n
2

)
ν
(n)
2 + · · · + (−1)n−1

(
n
n

)
ν
(n)
n = (−1)hν(

◦
Hn), and so,

n−1∑
j=1

(−1)j−1
(
n

i

)
ν
(n)
j + (−1)n−1ν(∂Hn) = ((−1)h − (−1)n−1)ν(

◦
Hn)

= 2(−1)nν(
◦
Hn) when (n− h) is even.

Therefore,
n−1∑
j=1

(−1)j−1
(
n

i

)
ν
(n)
n−j = 2ν(

◦
Hn)+ ν(∂Hn) when (n− h) is even,

= ν(∂Hn) when (n− h) is odd.

We have used the obvious fact that ν(n)n = ν(Hn). Identity (7) follows as an example of (5), in
which absolute continuity allows us to ignore ν(∂Hn) and also to set ν(n)j = 0 for all j ≤ h.
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Remark 2. Mainly we shall use (5) and (7) in the sequel. It turns out that (6) and (8) are
somewhat redundant to our needs because (5) implies (6) and (7) implies (8).

The first use of (7) is, of course, the immediate proof of Theorem 1 by setting ν equal to the
d-dimensional measure V (restricted to the h-dimensional flat which contains Hn, if h < d).

Proof of Theorem 1. If h = d , then (3) follows immediately from (7). The elimination of
summation terms, (n−d) ≤ j ≤ (n−1), follows because Sn−j contains only sets of dimension
less than d for that range of j . If h < d, then Vn and each V (H(s)) in (3) equal 0, so (3) is
true in a degenerate way. Thus, (3) is true for all positions of P1, P2, . . . , Pn regardless of the
variable h. Formula (4) and the last remark of Theorem 1 follow trivially.

In the random setting, we define ηx := P{h = x}, 0 ≤ x ≤ d. Sometimes ηj can be
calculated easily; for example, in the seven-point base layout used in Example 2, η2 = 1 for
4 ≤ n ≤ 7, but if n = 3 then η1 = 3

35 and η2 = 32
35 .

Example 7. In R
2, consider independent placement withµ totally concentrated on three points

whose convex hull is a triangle with area a > 0. The probability weights are p1, p2, and p3. It
is readily shown that Vn = a with probability

1 + pn1 + pn2 + pn3 − (1 − p1)
n − (1 − p2)

n − (1 − p3)
n

(an entity which is 0 for n < 3), and Vn = 0 otherwise. So η0 = pn1 + pn2 + pn3 and

η1 = (1 − p1)
n + (1 − p2)

n + (1 − p3)
n − 2pn1 − 2pn2 − 2pn3 ,

whilst η2 = P{Vn = a}.
Other elementary calculations confirm Buchta’s identity, (2). The right-hand side of (2),

when n ≥ 4 and even, equals

a

2

n−3∑
j=1

(−1)j−1
(
n

j

)[
1 +

3∑
i=1

p
n−j
i −

3∑
i=1

(1 − pi)
n−j

]

= a

2

[(
2 + 1

2
n(n− 1)− n− (1 − 1)n

)

+
3∑
i=1

(
1 + pni + 1

2
n(n− 1)p2

i − npi − (1 − pi)
n

)

−
3∑
i=1

(
1 + (1 − pi)

n + 1

2
n(n− 1)(1 − pi)

2 − n(1 − pi)− pni

)]

= a

2

[
2 − n(n− 1)+ 2n+ 2

3∑
i=1

(
pni + 1

2
n(n− 1)pi − npi − (1 − pi)

n

)]

= a

[
1 +

3∑
i=1

(pni − (1 − pi)
n)

]

= left-hand side.
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4. Proof of Theorem 2

We turn to the proof of Theorem 2, but before commencing formalities, we discuss the basic
geometry of convex hulls (aided by visual assistance when d = 2, 3 from Figures 1 and 2,
respectively).

• Hn is an h-polytope, with faces of dimensions 0, 1, . . . , (h − 1) on its boundary. In
general, its facets, that is the (h − 1)-faces, are (h − 1)-polytopes. In the completely
unaligned case, however, these facets are (h−1)-simplices as there will be no occurrence
of more than h points lying in any (h− 1)-flat. By contrast, note in Figure 1(b) the four
points lying in the 1-flat which contains CD, one of the sides of Hn.

• Recall that an h-object is an object of h-dimensions (where ‘object’ can be polytope,
flat, simplex, face, etc.); see [7]. One exception in this paper is the j -hull which is
generated from j ≥ 1 points and may be an object of any dimension less than or equal
to min(h, j − 1) if the points are in R

h.

• Let U be defined as the union of all h-hulls. Here U , seen as a network of line-segments
in Figure 1, partitions Hn into a tessellation. That is, Hn \ U is a collection of disjoint,
open, connected subsets (called ‘zones’) whose closures cover Hn. Each zone Z is the
interior of an h-polytope. One such zone is shaded in each part of Figure 1. We define
an i-face of a zone Z as the interior of the corresponding i-face of Z’s closure; this is an
open set when i > 0.

• Let Z be a zone. For all P ∈ Z, cj (P ) is a constant; in particular, cj (P ) = 0 for
1 ≤ j ≤ h, P ∈ Z.

• Figure 2(a) shows the polyhedron (3-polytope) H7 which arose from seven uniformly
random points inside the unit cube. Only three facets are seen from the viewing point.
When the two most prominent facets and all structure above the line z = 2

5 are removed
(as in Figure 2(b)), we see some of the architecture of U . In Figure 2(c), the union of
two hulls is shown as a ‘net’ of

(7
2

)
line segments in R

3. Some edges (1-faces) of zones

(a) (b) (c)

Figure 2: (a) A view of one realisation of H7 in R
3, with only three facets visible. (b) Two of these three

facets have been removed, as has all structure above z = 2
5 , rendering some of the 3-hulls more visible.

(c) The net of 2-hulls, with blacker shading indicating closeness to the viewing point.
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A

B

Figure 3: Here n = 10, with seven points lying on the 2-flat in which this page of the journal lies and
the three others in R

3, not on the page. The thick grey lines are the intersection of various 3-hulls with
the page. See text for further detail.

lie in this net, but some do not (just as in Figure 1, some of the 0-faces of zones lie in the
set of 1-hulls but some, indeed most, do not).

• In the completely unaligned case, any h-hull is an (h − 1)-simplex. The (h − 1)-flat
containing this h-hull does not contain any Pi other than the h which generated the
hull. In general, there may be many h-hulls lying in one (h − 1)-flat. For example,
in Figure 1(b) the line (1-flat) containing AB contains

(
f
2

)
2-hulls, where f equals the

number of points on that flat (i.e. f = c1(A) + c1(I ) + c1(H) + c1(B) = 5). For a
more complicated example, consider that the seven points in Figure 1(a) lie on a common
2-flat in R

3. There are
(7

3

)
3-hulls lying within that flat. Their union is the convex hull of

the seven points. Note, however, that the structure on this 2-flat is further complicated
by the other 3-hulls constructed using points which do not lie on the flat. The thick grey
lines in Figure 3 illustrate this complication for the case in which n = 10, where there
are two points (P5 and P9, say) above the flat, one point (P2, say) below the flat, and the
remaining seven points on the flat. A and B are the points where the 2-hulls P2P5 and
P2P9 intersect the flat.

• More formally, the relationship ‘lies in a common (h−1)-flat’ is an equivalence relation-
ship on the set of h-hulls. So this set can be partitioned into equivalence classes. Now
U can be represented as ⋃

F∈Fh

conv(Pi : Pi ∈ F),

where Fk is the class of all (h − 1)-flats which contain at least k points from
{P1, P2, . . . , Pn}. Thus, in Figure 1(b), U , which is defined as the union of all 2-hulls,
can be represented asAB ∪FC∪CD∪{24 other letter pairs}, a saving on the

(12
2

) = 66
point-pairs.

The following lemma captures one of the essential notions in the proof of Theorem 2.
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Lemma 1. With the action taking place in h ≥ 1 dimensions, let exactly f points from
{P1, P2, . . . , Pn} lie on some (h − 1)-flat called F. Here 0 ≤ f < n. The flat F divides
the space R

h into two open half-spaces, called F+ and F− say. Denote the numbers of points
from {P1, P2, . . . , Pn} lying in F+ or in F− by n+ or n−, respectively. Here f +n+ +n− = n.
For a reference point P ∈ F, define

c+j (P ) := number of j -hulls covering P and intersecting F+ but not F−,

c−j (P ) := number of j -hulls covering P and intersecting F− but not F+,

c±j (P ) := number of j -hulls covering P and intersecting both F+ and F−,

c
∅

j (P ) := number of j -hulls covering P and intersecting neither F+ or F−

(i.e. hull ∩(F+ ∪ F−) = ∅).

If ��(P ) := ∑n
j=1(−1)j−1c�j (P ) for any symbol �, then

�+(P ) = −�∅(P ) provided n+ > 0, (9)

�−(P ) = −�∅(P ) provided n− > 0, (10)

�(P ) = �±(P )−�∅(P ) provided n+ > 0 and n− > 0. (11)

Also �+(P ) = 0 if n+ = 0, �−(P ) = 0 if n− = 0, and �(P ) = 0 if min (n+, n−) = 0.

Proof. Obviously

cj (P ) = c
∅

j (P )+ c+j (P )+ c−j (P )+ c±j (P ) (12)

and, so, we address the terms on the right-hand side, c+j (P ), first. By combining selections of j
points, some in F+ and the rest in F with convex hull coveringP , we obtain, for 2 ≤ j ≤ n++f ,

c+j (P ) =
(
n+

1

)(
c

∅

j−1(P )

1

)
+

(
n+

2

)(
c

∅

j−2(P )

1

)
+ · · · +

(
n+

n+

)(
c

∅

j−n+(P )

1

)

=
n+∑
i=1

(
n+

i

)
c

∅

j−i (P ),

whilst c+j (P ) = 0 when j = 1 or j > n+ + f . There might be 0 terms in this expression,

because c∅

j−i (P ) = 0 if j − i > f or j − i ≤ 0. Therefore,

�+(P ) =
n++f∑
j=2

(−1)j−1c+j (P ) since c+j (P ) = 0 when j > n+ + f

=
n++f∑
j=2

(−1)j−1
n+∑
i=1

(
n+

i

)
c

∅

j−i (P )

=
n+∑
i=1

(
n+

i

) n++f∑
j=2

(−1)j−1c
∅

j−i (P )

=
n+∑
i=1

(
n+

i

) n++f∑
j=i+1

(−1)j−1c
∅

j−i (P ) since c∅

j−i (P ) = 0 when j < i + 1
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=
n+∑
i=1

(
n+

i

)
(−1)i

n++f−i∑
t=1

(−1)t−1c
∅

t (P ) where t := j − i

=
n+∑
i=1

(
n+

i

)
(−1)i

f∑
t=1

(−1)t−1c
∅

t (P ) since c∅

t (P ) = 0 when t > f

= ((1 − 1)n
+ − 1)�∅(P )

= −�∅(P ), n+ > 0.

Likewise, �−(P ) = −�∅(P ) provided n− > 0, so, we have established (9) and (10). From
these new findings and (12), with min (n+, n−) > 0, we have

�(P ) = �∅(P )+�+(P )+�−(P )+�±(P )
= �∅(P )−�∅(P )−�∅(P )+�±(P )
= �±(P )−�∅(P ),

confirming (11). When n+ = 0, �+(P ) = �±(P ) = 0, �−(P ) = −�∅(P ), so �(P ) = 0
(and likewise if n− = 0). Finally we note that, if f = 0, the arguments and conclusions above
are valid; also, �∅(P ) = 0, reducing (9)–(11) to obvious truths.

Remark 3. There is little prospect of finding an expression for c±j (P ) for general h, f, n+, and
n− and general point-locations. P -covering j -hulls which intersect both F+ and F− include
those where

(a) none of the j points lie in F or

(b) P is not in the convex hull of those that do lie in F.

In Figure 1(b), examples of (a) based on F ⊃ AB and P ∈ F in the neighbourhood of I are:
3-hulls EDF,ECF,GCF, and EDG; 4-hulls ECFG and EDFG. Examples of (b) for the same
F and P are: 3-hulls EDA,EHF, and EBF; 4-hulls EBFH,GHDF, and GBFH. Multiplicities
in these lists also occur because of the coincidences at B and G. In general, these types of
P -coverings are very difficult to count.

Lemma 2. Using the premises of Lemma 1, define fj (F) as the number of j -hulls which
intersect with the flat F. Then

fj (F) =
(
n

j

)
−

(
n+

j

)
−

(
n−

j

)
. (13)

Proof. This trivial expression is the total number of j -hulls minus those that do not inter-
sect F.

Proof of Theorem 2 for h ≤ 1. The case in whichh = 0 is trivial, so we consider onlyh = 1.

For all P and j , cj (P ) = fj (F), based on a 0-flat F located at P . This equals
(
n
j

)−(
n+
j

)−(
n−
j

)
,

from (13). Alternatively, a derivation of this comes from

cj (P ) = c+j (P )+ c−j (P )+ c±j (P )+ c
∅

j (P ),
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Figure 4: This drawing, which is an enlargement of part of Figure 1(b), illustrates Lemma 3.

where all terms, including c±j (P ), are easily derived when h = 1,

c+j (P ) =
(
n+ + f

j

)
−

(
n+

j

)
−

(
f

j

)
,

c−j (P ) =
(
n− + f

j

)
−

(
n−

j

)
−

(
f

j

)
,

c±j (P ) =
(
n

j

)
−

(
n+ + f

j

)
−

(
n− + f

j

)
+

(
f

j

)
,

c
∅

j (P ) =
(
f

j

)
.

When P ∈
◦
Hn (which is equivalent to min(n+, n−) > 0),

�(P ) =
n∑
j=1

(−1)j−1
[(
n

j

)
−

(
n+

j

)
−

(
n−

j

)]

= [1 − (1 − 1)n] − [1 − (1 − 1)n
+] − [1 − (1 − 1)n

−]
= −1,

with appropriate adjustment if P ∈ ∂Hn (equivalent to min(n+, n−) = 0). So, summation of
cj (P ) yields Theorem 2 for h = 1 for all P (not just ‘almost all’).

Lemma 3. Let the premises be the same as in Lemma 1, but now with min (n+, n−) > 0.
Additionally, let Z+ ⊂ F+ and Z− ⊂ F− be two zones adjacent in the sense that a facet W
of Z+ is a subset of F and is also a facet of Z−. If P ∈ W then �(P ) = �(Q+) = �(Q−),
where Q+ is any point in Z+ and Q− is any point in Z−.

If the case in which n− = 0 is also considered, then Z− and Q− are not defined, but
�+(P ) = �(Q+) still.

This lemma is illustrated for h = 2 in Figure 4. The darkly-shaded region is the open zone
Z+, with the lightly-shaded region beingZ−. The 1-flat F is the line containing AB, whilstW is
the open line-segment (open 1-polytope) which separates the two shaded zones. The reference
point P ∈ W . In Figure 3, the open shaded region is an example of W .

Proof of Lemma 3. Clearly cj (Q+) = c+j (P ) + c±j (P ) for any j . Therefore, �(Q+) =
�+(P )+�±(P ) and, so, using (9), �(Q+) = �±(P )−�∅(P ). By a similar argument and

https://doi.org/10.1239/aap/1189518631 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518631


Identities linking volumes of convex hulls SGSA • 641

(10),�(Q−) = �±(P )−�∅(P ). Both entities equal�(P ), when min (n+, n−) > 0, because
of (11). When n− = 0, the use of (9) combined with the obvious �±(P ) = 0, establishes the
stated results.

Proof of Theorem 2 for P ∈ ∂Hn. We consider a facet of Hn, called T, and place an (h−1)-
flat F ⊃ T. If we arbitrarily declare F+ to be the half-space which intersects Hn, then n+ > 0
and n− = 0. Thus, from Lemma 1, �(P ) = 0, P ∈ T. This argument can be applied to all
facets, and so, to the whole boundary of Hn.

Proof of Theorem 2 for almost all P ∈
◦
Hn. We prove that Theorem 2 is true for all h and n

when P lies in a ‘restricted region’—namely, within any zone or in any zone’s facet which is a

subset of
◦
Hn. An induction is used.

Suppose that Theorem 2 is true in dimension (h − 1) for P in the ‘restricted region’. This
means that when the action is taking place in dimension h, the theorem can be applied on the
boundary of Hn, in particular, within any (h − 1)-polytope T which is a facet of Hn. Thus,
in the h-dimensional context, �∅(P ) = (−1)h−1 for any P lying in the ‘restricted region’ of
T—a region containing many facets of zones within Hn.

If P ∈ T lies in a facet of such a zone (obviously a zone of Hn adjacent to T), then Lemma 3
proves that �+(P ) = �(Q+) for every point Q+ in that zone. Because Lemma 1 shows that
�+(P ) = −�∅(P ), we have �(Q+) = −�∅(P ) = (−1)h.

A clear consequence of Lemma 3 is that�(·) is a constant, ψ say, within the union of all the
zones. If �(P ) = ψ for P in one zone, then the same is true in adjacent zones, their adjacent
zones and so on. Lemma 3 also shows that �(·) = ψ on all zone facets—and therefore within
all of our ‘restricted region’ of Hn. We readily see that the constant ψ equals the�(Q+) in our
previous paragraph; so ψ = (−1)h.

The inductive argument is completed by noting that we have already proved the result
for h = 1.

Remark 4. In this proof of Theorem 2 we have gone further than required, as noted earlier
when h ≤ 1 (by replacing ‘almost all’ with ‘all’), but also when h ≥ 2. In this latter case the set

of positions for P ∈
◦
H not covered by our proof, namely those positions which lie on a zonal

i-face, where 0 ≤ i ≤ (h− 2), is of dimension (h− 2), two dimensions lower than the space
where the action takes place.

For some of the 0-faces, we have an added result.

Lemma 4. Suppose that P ∈
◦
Hn is a zonal 0-face that coincides with a point Pi , which

without loss of generality we can call Pn (because points can be relabelled to suit our needs).
Define cj (P,m) as the number of P -covering j -hulls taken only from {P1, P2, . . . , Pm}, where
1 ≤ m ≤ n, and let �(P,m) := ∑m

j=1(−1)j−1cj (P,m). Then, for n ≥ 2,

�(Pn) ≡ �(Pn, n) = �(Pn, n− 1).

Proof. We can write

cj (Pn) ≡ cj (Pn, n) = cj (Pn, n− 1)+
(
n− 1

j − 1

)
,
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where the second term captures the idea that all (j−1)-subsets from {P1, P2, . . . , Pn−1}, when
augmented with Pn, have convex hull covering Pn. Then

�(Pn) ≡ �(Pn, n) =
n∑
j=1

(−1)j−1
[
cj (Pn, n− 1)+

(
n− 1

j − 1

)]

= �(Pn, n− 1)+ (−1)n−1cn(Pn, n− 1)+ (1 − 1)n−1

= �(Pn, n− 1) if n ≥ 2,

since cn(Pn, n− 1) = 0.

5. Proof of the topological result for all positions of P when h = 2

We conjecture that the result in Theorem 2 is valid for all P ∈
◦
H, not just ‘almost all’, for

any dimension h > 1. We conclude the paper by establishing this conjecture for h = 2, using
Lemma 4 combined with other computations.

Theorem 3. When h = 2 (implying n ≥ 3), �(P ) = (−1)2 = 1 for all P ∈
◦
H.

Proof. The positions of P ∈
◦
Hn not included in Theorem 2 are at the corners (0-faces) of

zones. Most of these corners are located in the interior of some 2-hull, whilst the remaining

few are coincident with one of the points Pi ∈
◦
Hn (for example, pointG in Figure 2(b), a point

not in the interior of a 2-hull).

Suppose P ∈
◦
Hn lies in the interior of some 2-hull, which without loss of generality can

be the line-segment Pn−1Pn. Let F be the flat which covers this line-segment, with n+ and
n− being defined relative to F. We introduce the notation fj (F,m) as the number of F-
intersecting j -hulls taken only from {P1, P2, . . . , Pm}, where 1 ≤ m ≤ n. Then, we can write
c1(P ) = c1(P, n− 2) and, when j ≥ 2,

cj (P ) ≡ cj (P, n) = cj (P, n− 2)+ 2cj−1(P, n− 2)

+ [fj−1(F, n− 2)− cj−1(P, n− 2)] +
(
n− 2

j − 2

)
.

The second term captures the fact that any P -covering (j − 1)-hull taken only from
{P1, P2, . . . , Pn−2} can be augmented with either Pn−1 or Pn to give a P -covering j -hull. The
term in square-brackets counts the number of (j−1)-hulls taken only from {P1, P2, . . . , Pn−2}
which intersect F but do not cover P—and each of these makes a P -covering j -hull when
augmented with the appropriate point Pn−1 or Pn. The last term captures the idea that all
(j − 2)-subsets from {P1, P2, . . . , Pn−2}, when augmented with Pn−1 and Pn, have convex
hull which covers P . Thus, using Lemma 2 to evaluate fj−1(F, n− 2), we have

cj (P ) ≡ cj (P, n) = cj (P, n− 2)+ cj−1(P, n− 2)

+
(
n− 2

j − 1

)
−

(
n+

j − 1

)
−

(
n−

j − 1

)
+

(
n− 2

j − 2

)
.
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So, when the line-segment Pn−1Pn �⊂ ∂Hn (implying that n ≥ 4 and min(n+, n−) ≥ 1),

�(P ) ≡ �(P, n)

= �(P, n− 2)−�(P, n− 2)+ [(1 − 1)n−2 − 1] − [(1 − 1)n
+ − 1]

− [(1 − 1)n
− − 1] − (1 − 1)n−2

= 1. (14)

If the segment Pn−1Pn ⊂ ∂Hn, whereby n ≥ 3, n− = 0, and n+ ≥ 1, then a minor adjustment
to the calculation above shows that�(P ) = 0. Therefore, Theorem 3 is true when P is located
at a zonal corner which lies in the interior of a 2-hull. This leaves only some remaining positions

for P ∈
◦
Hn, where P = Pi , for some i. However, we note that there are no such positions in

HN , where, N := min(m : dim(Hm) = 2) ≥ 3. So, �(P,N) = 1 for all P ∈
◦
HN and, by

induction the theorem is proved—using Lemma 4 to cater for any positions of P not covered
by Theorem 2 and (14)—firstly forN+1 points, thenN+2 points and so on, until the theorem
is proved for n points.

Appendix A. Other identities involving volume moments

Some results for higher moments emerge from our almost-sure identity (4). For example,
consider n = d + 2, where Buchta’s result is E(Vd+2) = 1

2 (d + 2)E(Vd+1). This result
strengthens to

Vd+2 = 1
2 (d + 2)V

(d+2)
d+1 = 1

2 [V (d+2)
(1) + V

(d+2)
(2) + · · · + V

(d+2)
(d+2) ],

where V (n)(j) is the volume of the convex hull of all the n points except Pj . A consequence of
this breakdown of Vd+2 into the sum of (d + 2) exchangeable entities is a new relationship,

var(Vd+2) = 1
4 (d + 2)[var(Vd+1)+ (d + 1) cov(V (d+2)

(1) V
(d+2)
(2) )].

We also note other recursion formulae found from (2) by strategic ’manipulation’ of the
EVn−j terms on its right-hand side when the subscript has the right parity, that is, when
(n−j−d) ≥ 2 and even. Various such forms (details of proof omitted) follow. For (n−d) ≥ 2
and even,

E(Vn) =
n−d−1∑
j=1

(−1)j−1
(
n/2

j

)
E(Vn−j ),

=
((
n

d

)/(
(n+ d)/2

d

))

×
(n−d)/2∑
j=1

(−1)j−1
((
d + j

j

)(
(n+ d)/2

d + j

)/(
n− j

d

))
E(Vn−j )

=
n−d−1∑
j=1

(−1)j−1
(
n

j

)
E(Vn−j )
j + 1

.

The last of these three forms can also be derived from (8).
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