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Hyperplanes of the Form
f1(x, y)z1 + · · · + fk(x, y)zk + g(x, y)

Are Variables

Stéphane Vénéreau

Abstract. The Abhyankar–Sathaye Embedded Hyperplane Problem asks whether any hypersurface of

C
n isomorphic to C

n−1 is rectifiable, i.e., equivalent to a linear hyperplane up to an automorphism

of C
n. Generalizing the approach adopted by Kaliman, Vénéreau, and Zaidenberg, which consists

in using almost nothing but the acyclicity of C
n−1, we solve this problem for hypersurfaces given by

polynomials of C[x, y, z1, . . . , zk] as in the title.

The result announced in the title corresponds to the implication (iv) ⇒ (v) in the
Main Theorem below. Case k = 1 is a well-known result appearing in [Rus76, Sat76,
KZ99]; case k = 2 can be found in [KVZ04, Th.3.24] or in [KVZ01, Th.2.5]. Before
we state this theorem let us clarify the definitions:

• we choose to consider automorphisms as invertible endomorphisms of the C-alge-

bras of polynomials C[x, y, z1, . . . , zk], C[x, y], etc.;
• an x-automorphism is an automorphism α such that α(x) = x;
• a variable, resp. an x-variable, is a polynomial v such that v = α(y) for a certain

automorphism, resp. x-automorphism, α.

Main Theorem Let p = p(x, y, z̄) ∈ C[x, y, z̄] = C[x, y, z1, . . . , zk] be a polynomial

of degree one in z̄, i.e., p is of the form

p(x, y, z̄) = f1(x, y)z1 + · · · + fk(x, y)zk + g(x, y).

Let X ⊂ C
2+k
x,y,z̄ be the hypersurface given by the equation p = 0. Then the five following

assertions are equivalent:

(i) X is smooth, irreducible and acyclic, i.e., H̃∗(X; Z) = 0.

(ii) Up to an automorphism of C[x, y] (naturally extended to C[x, y, z̄]), p has the

form:

p = h(x)( f̃1(x, y)z1 + · · · + f̃k(x, y)zk) + g(x, y)

where
⋂k

i=1 f̃ −1
i (0) is a finite subset of the parallel lines h−1(0) and

deg y(g(x0, y)) = 1, ∀x0 ∈ h−1(0)

(where h−1(0) is first considered as a subset of C
2
x,y and, secondly, as a subset

of Cx).
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(iii) Up to an automorphism of C[x, y], p is an x-variable.

(iv) The polynomial p is a hyperplane or, equivalently, X is isomorphic to C
k+1.

(v) The polynomial p is a variable or, equivalently, X is rectifiable.

Remark 1 In the Main Theorem above, the notation C[x, y, z1, . . . , zk] and the

assumption that p has degree one in z̄ imply that k ≥ 1 and the fi are not all
zero. However it is worth noticing that whenever k = 0 or all the fi are zero, the
assertions (i), (iv) and (v) still make sense and are still equivalent, provided that
p(x, y, z1, . . . , zk) = g(x, y) is irreducible (a usual precaution due to the fact that

g−1(0) can be irreducible while g = hn is not, which turns out unnecessary in the
theorem since p = f1z1 + · · ·+ fkzk + g is clearly not a power of another polynomial).
Indeed, in this special case the canonical projection X ≃ C

k × g−1(0) → g−1(0)
is clearly a homotopy equivalence. Hence X is smooth irreducible and acyclic if

and only if g−1(0) is; it is a well-known result that g(x, y) is then a line and by
the Abhyankar–Moh–Suzuki theorem [AM75, Sat76] g(x, y) is a variable(of C[x, y]),
Hence p(x, y, z1, . . . , zk) = g(x, y) is a variable (of C[x, y, z1, . . . , zk]).

We now turn to the proof of the Main Theorem; the implications (iii) ⇒ (v) ⇒ (iv)
⇒ (i) being obvious, the rest of the article is dedicated to the proof of (i) ⇒ (ii) ⇒
(iii).

The injection:

(1) C[x, y] →֒ C[X] =
C[x, y][z1, . . . , zk] /

( f1z1 + · · · + fkzk + g)

corresponds to a morphism σ : X → C
2 with general fibers

σ−1(x0, y0) = {z1, . . . , zk| f1(x0, y0)z1 + · · · + fk(x0, y0)zk + g(x0, y0) = 0}

isomorphic to C
k−1 (dim X = k + 1). Clearly, we have an isomorphism, for all

i = 1, . . . , k such that fi 6= 0 (such an fi exists, as was noticed in Remark 1 above):

C[x, y] fi
[z1, . . . , zk] /

( f1z1 + · · · + fkzk + g)
≃ C[x, y] fi

[k−1]
.

Letting D := V ( f1, . . . , fk) ⊂ C
2 and D ′ := σ−1(D) ⊂ X, implies that the restriction

σ|X\D ′ : X \ D ′ → C
2 \ D,

is locally trivial in the Zariski topology, i.e., a fiber bundle, with affine space fibers.
Observe that D ′ ≃ C × C

k where C := V ( f1, . . . , fk, g) = D ∩ g−1(0) ⊂ D. We
remark that C must be a finite set as soon as X is irreducible. Let h(x, y) be the

greatest common divisor of f1, . . . , fk. One has

p = f1z1 + · · · + fkzk + g = h( f̃1z1 + · · · + f̃kzk) + g
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where f̃1, . . . , f̃k have no common divisor. Again we define:

D̂ := h−1(0) ⊂ D

⊂ ⊂

Ĉ := D̂ ∩ g−1(0) ⊂ C

and D̂ ′ := σ−1(D̂) ≃ Ĉ × C
k.

Let D̂ =
⋃n

i=1 Di and D̂ ′
=

⋃n ′

j=1 D ′
j be the decomposition into irreducible compo-

nents regarded as Cartier divisors. Letting

(2) σ∗(Di) =

n ′

∑

j=1

mi jD
′
j , i = 1, . . . , n,

we consider the n × n ′ multiplicity matrix Mσ = (mi j) with non-negative integer
entries. The first step in the proof of (i) ⇒ (ii) is the following generalization of

[KVZ04, Prop. 1.5(a)]:

Lemma 2 If X is as in (i), i.e., X is smooth, irreducible and acyclic, then n = n ′ and

Mσ is unimodular.

Proof By [Fuj82, 1.18–1.20] (see also [Kal94, 3.2]) the algebra C[X] is a UFD and
its invertible elements are constants (and the same is true for C[x, y]). Hence there
are irreducible elements h1, . . . , hn ∈ C[x, y] and h ′

1, . . . , h ′
n ∈ C[X] such that Di =

h−1
i (0), i = 1, . . . , n and D ′

j = h ′
j
−1

(0), j = 1, . . . , n ′. In view of the injection (1),
one can identify elements of C[x, y] and their images in C[X] and they then have two
different decompositions, as seen as in C[x, y] or as in C[X]. To sum up one has:

D̂ =

n
⋃

i=1

Di is given by h =

n
∏

i=1

hai

i in C[x, y];

D̂ ′
=

n ′

⋃

j=1

D ′
j is given by h =

n ′

∏

j=1

h ′
j
a ′

j in C[X]

and ∀i = 1, . . . , n,

σ∗(Di) =

n ′

∑

j=1

mi jD
′
j is given by hi = λi

n ′

∏

j=1

h ′
j
mi j in C[X]

(where λi ∈ C
∗).

There exists at least one f̃i coprime with h. Without loss of generality one can assume

that f̃1 is so. Now we note that we have another injection,

C[x, y, z2, . . . , zk] →֒ C[X] =
C[x, y, z2, . . . , zk][z1] /

( f1z1 + · · · + fkzk + g)
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actually C[X] can be regarded as a simple birational extension (see [KVZ01, KVZ04])
of the algebra A := C[x, y, z2, . . . , zk]:

C[X] =
C[x, y, z2, . . . , zk][z1] /

( f1z1 + · · · + fkzk + g)
≃ A

[ r

q

]

⊂ Aq

where
{

q = f1 = h f̃1,

r = h( f̃2z2 + · · · fkzk) + g.

Here again, in view of the injection A →֒ C[X], one can decompose q in A and then
in C[X]:

h f̃1 = q =

m
∏

i=1

qai

i =

n
∏

i=1

hai

i

m
∏

i=n+1

qai

i in (C[x, y] ⊂)A where qi = hi, ∀i = 1, . . . , n

q =

m ′

∏

j=1

q ′a
′

j

j =

n ′

∏

j=1

h ′a
′

j

j

m ′

∏

j=n ′+1

q ′a
′

j

j in C[X] where q ′
j = h ′

j , ∀ j = 1, . . . , n ′

and hence, for every i = 1, . . . , m, there exist non-negative integers mi1, . . . , mim ′

such that

(3) qi = λi

m ′

∏

j=1

q ′mi j

j (λi ∈ C
∗).

The matrix Mσ is a submatrix of the m × m ′ matrix M1 := (mi j) , i.e.,

M1 =

[

Mσ ∗
∗ ∗

]

.

Now, identifying C[X] and A
[

r
q

]

⊂ Aq one has

∀ j = 1, . . . , m ′, q ′
j =

s j

qN
with s j ∈ A, N ∈ N

and, by (3),

qi = λi

m ′

∏

j=1

( s j

qN

)mi j

.

Multiplying the last equality by a sufficiently large power of q, one obtains an equa-

lity in (C[x, y] ⊂)A which implies that for every j = 1, . . . , m ′, there exist integers
m ′

j1, . . . , m ′
jn ∈ Z such that

(4) q ′
j = λ ′

j

m
∏

i=1

q
m ′

ji

i (λ ′
j ∈ C

∗).
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Let M ′
1 be the m ′ × m matrix M ′

1 := (m ′
i j ). Plugging (3) into (4) and (4) into (3)

we obtain that M ′
1M1 = Im ′ and M1M ′

1 = Im where Iω denotes the identity matrix of

order ω. Hence m = m ′ and M1 is unimodular.
Now let us look at the injection A →֒ C[X] from the geometrical point of view;

it corresponds to a birational morphism µ : X → C
2+k−1 with exceptional divisor

F ′ := µ−1(F) with F := q−1(0) ⊂ C
2+k−1, the restriction

µ|X\F ′ : X \ F ′ → C
2+k−1 \ F

being an isomorphism. Here again,

F =

m
⋃

i=1

Fi is given by q =

m
∏

i=1

qai

i in A;

F ′
=

m ′

⋃

j=1

F ′
j is given by q =

m ′

∏

j=1

q ′
j
a ′

j in C[X]

and ∀i = 1, . . . , m,

µ∗(Fi) =

m ′

∑

j=1

mi jF
′
j is given by qi = λi

m ′

∏

j=1

q ′
j
mi j in C[X].

We have also that F ′ ≃ E × C where E := V (q, r) = F ∩ r−1(0) ⊂ F. Observe also
that F is a cylinder above a curve, indeed, F = Γ × C

k−1 where Γ is the curve in C
2

defined by q = 0 (with q seen as a polynomial in C[x, y]). Therefore, one can define
a morphism π : E → Γ as the restriction to E ⊂ Γ×C

k−1 of the canonical projection
Γ × C

k−1 → Γ. Thus we have the following commutative diagram:

F ′ ≃ E × C

µ
//

��

Γ × C
k−1 ≃ F

��

E
π

// Γ

Remark that E, resp. Γ, must have the corresponding decomposition, i.e., E =
⋃m ′

=m
j=1 E j , resp. Γ =

⋃m
i=1 Γi with F ′

j ≃ E j × C, resp. Fi = Γi × C
k−1.

Remark 3 Clearly, mi j > 0 ⇔ µ(F ′
j ) ⊂ Fi ⇔ E j ⊂ Fi = Γi × C

k−1 ⇔ π(E j) ⊂

Γi ⇔ E j ⊂ π−1(Γi).

Notice that for each j = 1, . . . , m there exists i ∈ {1, . . . , m} such that π(E j) ⊆ Γi ,
and this index i = i( j) is unique unless π|E j

= const.

We call an irreducible component E j of E vertical1 if π|E j
= const (i.e.,

deg(π|E j
) = 0) and non-vertical otherwise (thus the vertical components of E are

disjoint and each of them is isomorphic to C
k−1).

1This term comes from the picture obtained with C
2
x,y × C

k−1 visualized as a horizontal plane R
2
x,y×

vertical line Rz .
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Remark 4 The uniqueness of the index i = i( j) for a non-vertical component E j

and the unimodularity of M1 imply that the jth column of the matrix M1 is the ith

vector of the standard basis (ē1, . . . ēn) in R
n, and two different non-vertical com-

ponents E j and E j of E project into two different irreducible components Γi and Γi

of Γ.

We remark that

m
⋃

j=1

E j = E = V (q, r) = V (h f̃1, f2z2 + · · · + fkzk + g)

= V
(

h f̃1, h( f̃2z2 + · · · + f̃kzk) + g
)

= V (h, g) ∪

m
⋃

j=n ′+1

E j

= Ĉ × C
k−1 ∪

m
⋃

j=n ′+1

E j

where Ĉ(⊂ C) is a finite set of points {P1, . . . , Pn ′} := Ĉ . Actually one has ∀ j =

1, . . . , n ′, π|E j
= const = P j and thus those components E j = {P j} × C

k−1 are
vertical. Remember also that

C
2 ⊃ Γ = V (q) = V (h f̃1) = V (h) ∪V ( f̃1) =

n
⋃

i=1

Di ∪

m
⋃

i=n+1

Γi.

In view of Remark 3, one can understand how E is positioned in Γ×C
k−1 by looking

at the matrix M1:

P1 × C
k−1 · · · Pn ′ × C

k−1

= =

E1 · · · En ′ En ′+1 · · · Em

D1 = Γ1

...
Dn = Γn

Γn+1

...
Γm

















Mσ ∗

∗ ∗

















For every i ∈ {1, . . . , m},

π−1(Γi) = Γi × C
k−1 ∩V ( f2z2 + · · · + fkzk + g).

Hence
π
(

π−1(Γi)
)

⊃ Γi \V ( f2, . . . , fk).
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If i ≥ n+1, i.e., Γi 6⊂ h−1(0), then Γi \V ( f2, . . . , fk) is a dense subset of Γi and hence
π−1(Γi) must contain at least one non-vertical component. By Remark 4, π−1(Γi)

contains exactly one non-vertical component E j ; moreover j must be greater than n ′,
since otherwise we would have:































m1 j

...

mn j

mn+1 j

...
·
...

mm j































=































0
...

0

0
...
1
...

0































with






m1 j

...
mn j






=







0
...
0







being a column vector of Mσ which is impossible, by definition of Mσ . Since this is
true for every i ≥ n + 1 and since, by Remark 3, for two distinct components Γi and

Γi , µ−1(Γi) and µ−1(Γi) can not contain the same non-vertical component E j , we
have that m − n = m ′ − n ′

= m − n ′ and, up to reordering En+1, . . . , Em:

M1 =

[

Mσ 0

∗ Im−n

]

.

Hence n = n ′ and Mσ is unimodular (because M1 is so).

As we have seen previously, we have a fiber bundle with affine space fibers:

(5) σ|X\D ′ : X \ D ′ → C
2 \ D.

This will allow us to link homologies of D, D ′ ≃ C × C
k and C . Actually we will

need to consider

• the one point compactification of C
2: Ċ

2
= C

2 ∪ {∞};
• the one point compactification of X: Ẋ = X ∪ {∞};
• and the corresponding new sets:

Ḋ := D ∪ {∞} ⊂ Ċ
2,

Ċ := C ∪ {∞} ⊂ Ḋ,

Ḋ ′ := D ′ ∪ {∞} ⊂ Ẋ.
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We are going to prove the following

Lemma 5 If X is as in (i), then C and D have the same Euler characteristic and there

are isomorphisms between the reduced cohomology groups:

H̃∗(Ḋ; Z) ≃ H̃∗−2(Ċ ; Z).

Proof The fiber bundle with affine space fibers (5) is between quasi-affine complex
varieties. Using the natural homeomorphism C

d ≈ R
2d, we obtain a fiber bundle

between quasi-affine real varieties but quasi-affine real varieties are actually all affine
varieties2. Then one can consider the coordinate ring R, resp. R ′, of the real affine
variety homeomorphic to C

2 \ D, resp. X \ D ′. In algebraic terms we have that R ′ is
a locally polynomial R-algebra and by the main result of [BCW77] R ′ is isomorphic

to the symmetric algebra of a finitely generated projective R-module. Geometrically,
it means that the fiber bundle σ|X\D ′ is equivalent to a real vector bundle (by a mor-
phism between real varieties). But any real vector bundle is homotopy-equivalent to
its 0 section; hence X \ D ′ and C

2 \ D are homotopy-equivalent and consequently

(6) H∗(X \ D ′; Z) ≃ H∗(C
2 \ D; Z).

In particular e(X \ D ′) = e(C
2 \ D) where e stands for the Euler characteristic, and,

by the additivity of the Euler characteristic (see [Dur87]), e(X) − e(D ′) = e(C
2) −

e(D). The hypersurface X and the affine plane C
2 being both acyclic, one has e(X) =

e(C
2) = 1, hence e(D) = e(D ′). Moreover C is isomorphic to C × (0, . . . , 0) which

is a deformation retract of C × C
k ≃ D ′. Hence e(D ′) = e(C) = e(D).

Remark 6 We have Ẋ \ Ḋ ′
= X \ D ′ and Ċ

2 \ Ḋ = C
2 \ D.

By [KVZ04, Proposition 1.12], Ẋ is a homology 2(k + 1)-sphere and Alexander
duality holds for Ẋ:

H̃∗(Ẋ \ Ḋ ′; Z) ≃ H̃2(k+1)−1−∗(Ḋ ′; Z).

Of course the same argument is valid for C
2:

H̃∗(Ċ
2 \ Ḋ; Z) ≃ H̃2·2−1−∗(Ḋ; Z).

Using isomorphism (6) and Remark 6 one obtains:

H̃∗(X \ D ′; Z) ≃ H̃∗(Ẋ \ Ḋ ′; Z) ≃ H̃2(k+1)−1−∗(Ḋ ′; Z)

≃

H̃∗(C
2 \ D; Z) ≃ H̃∗(Ċ

2 \ Ḋ; Z) ≃ H̃2·2−1−∗(Ḋ; Z) .

Hence

(7) H̃∗(Ḋ; Z) ≃ H̃∗+2(k−1)(Ḋ ′; Z).

2Indeed, R
d
x̄ ⊃ V (p1(x̄), . . . , pm(x̄))\V (q1(x̄), . . . , qn(x̄)) ≃ V (p1(x̄), . . . , pm(x̄), 1−z

∑

qi (x̄)2) ⊂

R
d+1
x̄,z .
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From D ′ ≃ C × C
k one deduces that Ḋ ′ is homeomorphic to Ċ × ˙

R2k = Ċ × S
2k

quotiented by Ċ ∨ S
2k := Ċ × {∞} ∪ {∞} × S

2k, i.e.,

Ḋ ′ ≈ Ċ × S
2k

/

Ċ ∨ S
2k

By [Dol72, V.4.4],

H̃∗(Ḋ ′; Z) ≃ H∗(Ċ × S
2k, Ċ ∨ S

2k; Z),

and using the Künneth Theorem for the Cohomology of Product Spaces [Mas80, VIII
11.2] one obtains

H̃∗(Ḋ ′; Z) ≃ H̃∗−2k(Ċ ; Z)

which, together with (7), yields the conclusion of Lemma 5.

Now we assume that (i) holds and prove (ii). From Lemma 5 one can deduce that

(8) H̃0(Ḋ; Z) = 0

(using for example the universal coefficient theorem for cohomology groups, see

[Mas80, VII 4.3]). Recall that

C
2 ⊃ D = V ( f1, . . . , fk) = V (h f̃1, . . . , h f̃k) = V (h) ∪V ( f̃1, . . . , f̃k),

D = D̂ ∐ Dfin .

where Dfin is a finite set and ∐ stands for the disjoint union. We have

Ḋ =
˙̂D ∐ Dfin

where ˙̂D := D̂ ∪ {∞} is a connected subset of Ḋ. Hence

rank (H̃0(Ḋ; Z)) = 1 + #Dfin − 1

and, by (8), #Dfin=0, i.e., Dfin = ∅. We have proved that

(9) V ( f̃1, . . . , f̃k) ⊂ h−1(0) = D̂ = D.

We have also

D̂ ′
= σ−1(D̂) = σ−1(D) = D ′

=

n ′

⋃

j=1

D ′
j ≃ Ĉ × C

k

and
Ĉ = C = V (h, g) = {P1, . . . , Pn ′}.

Recall that D =
⋃n

i=1 Di and σ∗(Di) =
∑n ′

j=1 mi jD
′
j , i = 1, . . . , n, where Mσ =

(mi j ).
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Remark 7 mi j > 0 ⇔ P j ∈ Di .

By Lemma 2, n = n ′ and, by Lemma 5, e(C) = e(D); hence

n = e(D).

Let cc(D) be the set of connected components in D. We have

n = e(D) =

∑

∆∈cc(D)

1 − rank
(

H1(∆; Z)
)

≤ #cc(D) ≤ n.

Hence every irreducible component Di is isolated and acyclic and by Remark 7

P j ∈ Di ⇔

















m1 j

...
·
...

mn j

















=

















0
...

mi j > 0
...
0

















.

By Lemma 2, up to reordering, Mσ = In. It means that if h =
∏n

i=1 hi is the decom-

position of h into prime factors in C[x, y], then every hi is also prime in C[X]. In
other words

C[X] /

(hi)
≃

(

C[x, y] /

(hi , g)

)

[z̄]

is integral and hence Di = h−1
i (0) and g−1(0) meet only once and transversally.

If e(D) = n > 1 then, by [Zaı̆85]3, up to an automorphism of C[x, y], h(x, y) is a
polynomial in x with n roots.

If e(D) = n = 1 then D is an acyclic irreducible curve, i.e., D is homeomorphic

to C and, by [ZL83]3, up to an automorphism of C[x, y], h is a quasi-homogeneous
polynomial: h(x, y) = xk − yl with k and l coprime. The fact that h−1(0) and g−1(0)
meet only once and transversally implies that the equation g(t l, tk) = 0 has a unique

solution t0, this solution being different from 0 ( (0, 0) is the singular point of xk −
yl

= 0). We have g(t l, tk) = a(t − t0)d, which is possible only if k or l is equal to 1
since otherwise the derivative of the left-hand side would vanish at t = 0. Finally h

is equivalent to x up to an automorphism of C[x, y]. We have proved that, up to an

automorphism, p has the form:

p = h(x)( f̃1(x, y)z1 + · · · + f̃k(x, y)zk) + g(x, y).

The inclusion
⋂k

i=1 f̃ −1
i (0) ⊂ h−1(0) has already been proved in (9) and

deg y(g(x0, y)) = 1, ∀x0 ∈ h−1(0)

3Note that this result includes the classical Abhyankar–Moh–Suzuki theorem [AM75, Suz74].
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is just another way to say that every component x = x0 of h−1(0), meets g−1(0)
only once and transversally. We have proved the implication (i) ⇒ (ii) in the Main

Theorem.
Now let us prove the implication (ii) ⇒ (iii).
Let p be a polynomial as in (ii). We prove that p is an x-variable by induction on,

say, “the total intersection number”:

ι = ι( f̃1, . . . , f̃k) := dimC

C[x, y] /

( f̃1, . . . , f̃k)

First if ι = 0 then there exists k polynomials r1, . . . , rk ∈ C[x, y] such that f̃1r1 +

· · · + f̃krk = 1 and, by the Quillen–Suslin theorem4 there is a linear automorphism α

of C[x, y][z1, . . . , zk] such that α(z1) = f̃1z1 + · · · + f̃kzk. By assumption on g in (ii),
one has

g(x, y) = g0(x) + g1(x)y + hred(x)
∑

i≥2

g̃i(x)yi with g1 prime to h.

The polynomial

α−1(p) = h(x)z1 + g(x, y) = h(x)z1 + g0(x) + g1(x)y + hred(x)
∑

i≥2

g̃i(x)yi

is an x-variable by a result due to Russell [Rus76, 2.2] (see also [Vn01, 8.1] and
[EV99] for generalizations). Hence p is an x-variable.

Now suppose that ι ≥ 1 and that the result is true for any total intersection num-
ber less than or equal to ι − 1. Let (x0, y0) be in V ( f̃1, . . . , f̃k). Up to a translation
one can assume that x0 = 0. One has

f̃1(0, y)z1 + · · · + f̃k(0, y)zk = d(y)( f̌1(y)z1 + · · · + f̌k(y)zk)

where d(y) is the greatest common divisor of f̃1(0, y), . . . , f̃k(0, y). Again by the
Quillen–Suslin theorem5 there is a linear automorphism α0 of C[y][z1, . . . , zk] such
that α0(z1) = f̌1(y)z1 + · · · + f̌k(y)zk. Extending α0 to C[x, y][z1, . . . , zk] one has

α−1
0 ( f̃1(x, y)z1 + · · · + f̃k(x, y)zk) ≡ d(y)z1 mod (x)

that is to say

α−1
0 ( f̃1(x, y)z1 + · · · + f̃k(x, y)zk) = f̆1(x, y)z1 + x f̆2(x, y)z2 + · · · + x f̆k(x, y)zk

and hence

(10) α−1
0 (p) = h(x)( f̆1(x, y)z1 + x f̆2(x, y)z2 + · · · + x f̆k(x, y)zk) + g(x, y).

4Actually here we need a weaker version of this theorem which was proved by Seshadri [Ses58].
5Here we only need the “easy” version over a PID (C[y]): Projective modules of finite type over a PID are

free, which is another formulation of the result we use here.
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Given by α0, or rather its Jacobi matrix, we have the equality of the ideals

( f̃1, . . . , f̃k) = ( f̆1, x f̆2, . . . , x f̆k),

hence

ι( f̃1, . . . , f̃k) = ι( f̆1, x f̆2, . . . , x f̆k).

Recall that we started with (x0, y0) = (0, y0) ∈ V ( f̃1, . . . , f̃k) = V ( f̆1, x f̆2, . . . , x f̆k).
Hence f̆1(0, y0) = 0 and ι( f̆1, x) ≥ 1, whence we have the inequality

ι( f̆1, f̆2, . . . , f̆k) < ι( f̆1, x f̆2, . . . , x f̆k).

We can apply the induction hypothesis to the polynomial

p̆ := h(x)( f̆1(x, y)z1 + f̆2(x, y)z2 + · · · + f̆k(x, y)zk) + g(x, y)

which is then an x-variable. By assumption,

p̆ = g0(0) + g1(0)y + x[ġ2(x, y) + ḣ(x)( f̆1(x, y)z1 + f̆2(x, y)z2 + · · · + f̆k(x, y)zk)]

with g1(0) 6= 0. Let γ be an x-automorphism such that γ(y) = p̆, let γ0 be the
automorphism of C[y][z̄] obtained by fixing x = 0 in γ and let ρ be the affine auto-
morphism of C[y] defined by ρ(y) = g0(0) + g1(0)y = γ0(y). Extending γ0 and ρ to
C[x, y][z̄], one has

γγ−1
0 ρ(y) = γ(y) = p̆

and, ∀i = (1, )2, . . . , k

γγ−1
0 ρ(zi) = γγ−1

0 (zi) = zi + xri(x, y, z̄).

Let σ be the automorphism of C(x)[y][z̄] given by

σ(zi) = xzi , ∀i = 2, . . . , k.

Of course σ is not an automorphism of C[x][y, z̄], but the composition σγγ−1
0 ρσ−1

will be. Indeed, let us compute

σγγ−1
0 ρσ−1(y) = σγγ−1

0 ρ(y) = σ(p̆)

= σ(h( f̆1z1 + f̆2z2 + · · · + f̆kzk) + g)

= h( f̆1z1 + x f̆2z2 + · · · + x f̆kzk) + g

= α−1
0 (p) ( see (10)),
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σγγ−1
0 ρσ−1(z1) = σγγ−1

0 (z1)

and ∀i = 2, . . . , k

σγγ−1
0 ρσ−1(zi) = σγγ−1

0 ρ
( zi

x

)

=
σγγ−1

0 ρ(zi)

x

=
σ
(

zi + xri(x, y, z1, z2, . . . , zk)
)

x

=
xzi + xri(x, y, z1, xz2, . . . , xzk)

x

= zi + ri(x, y, z1, xz2, . . . , xzk).

The images by σγγ−1
0 ρσ−1 of all the coordinates y, z1, . . . , zk are in C[x][y, z̄] and

a similar computation would show the same for its inverse σρ−1γ0γ
−1σ−1. Hence

σγγ−1
0 ρσ−1 is an x-automorphism of C[x][y, z̄]. Finally, the polynomial

σγγ−1
0 ρσ−1(y) = α−1

0 (p)

is an x-variable and so is p.
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