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Hyperplanes of the Form

fl(x,)/)zl +-- ﬁC(x7y)Zk+g(x7y)
Are Variables

Stéphane Vénéreau

Abstract. The Abhyankar—Sathaye Embedded Hyperplane Problem asks whether any hypersurface of
C" isomorphic to C"~! is rectifiable, i.e., equivalent to a linear hyperplane up to an automorphism
of C". Generalizing the approach adopted by Kaliman, Vénéreau, and Zaidenberg, which consists
in using almost nothing but the acyclicity of C"~!, we solve this problem for hypersurfaces given by
polynomials of C[x, y,zi, ..., z] as in the title.

The result announced in the title corresponds to the implication (iv) = (v) in the
Main Theorem below. Case k = 1 is a well-known result appearing in [Rus76, Sat76,
KZ99]; case k = 2 can be found in [KVZ04, Th.3.24] or in [KVZ01, Th.2.5]. Before
we state this theorem let us clarify the definitions:

* we choose to consider automorphisms as invertible endomorphisms of the C-alge-
bras of polynomials C[x, y, z1, . . ., zx], Clx, y], etc;

e an x-automorphism is an automorphism « such that a(x) = x;

* avariable, resp. an x-variable, is a polynomial v such that v = a(y) for a certain
automorphism, resp. x-automorphism, c.

Main Theorem Let p = p(x,y,2z) € C[x, y,z] = Clx, y,z1,...,z] be a polynomial
of degree one in z, i.e., p is of the form

px,y,2) = filx, y)z + - + flx, y)zi + g(x, ).
Let X C C2*%. be the hypersurface given by the equation p = 0. Then the five following

x.),2
assertions are equivalent:

(i) X is smooth, irreducible and acyclic, i.e., H,(X;7) = 0.
(ii) Up to an automorphism of C[x, y] (naturally extended to C[x, y,z]), p has the
form:
p=hxX)(filx,y)z1 + -+ filx, y)z) + g(x, y)

where ﬂf:l £71(0) is a finite subset of the parallel lines h~'(0) and
degy(g(x07y)) =1, Vx, € h1(0)

(where h=1(0) is first considered as a subset of (Ci_’y and, secondly, as a subset
of Cy).
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(iii) Up to an automorphism of C[x, y], p is an x-variable.
(iv) The polynomial p is a hyperplane or, equivalently, X is isomorphic to Ck1,
(v)  The polynomial p is a variable or, equivalently, X is rectifiable.

Remark 1 In the Main Theorem above, the notation C[x, y,z;,...,2] and the
assumption that p has degree one in Z imply that k > 1 and the f; are not all
zero. However it is worth noticing that whenever k = 0 or all the f; are zero, the
assertions (i), (iv) and (v) still make sense and are still equivalent, provided that
plx, y,z1,...,zk) = g(x,y) is irreducible (a usual precaution due to the fact that
¢ 1(0) can be irreducible while ¢ = K" is not, which turns out unnecessary in the
theorem since p = fiz; +- - - + fyzx + g is clearly not a power of another polynomial).
Indeed, in this special case the canonical projection X ~ C* x ¢=1(0) — ¢~1(0)
is clearly a homotopy equivalence. Hence X is smooth irreducible and acyclic if
and only if g71(0) is; it is a well-known result that g(x, y) is then a line and by
the Abhyankar—-Moh—Suzuki theorem [AM75, Sat76] g(x, y) is a variable(of C[x, y]),
Hence p(x, y,z1,...,2x) = g(x, y) is a variable (of C[x, y,z1, . . ., z]).

We now turn to the proof of the Main Theorem; the implications (iii) = (v) = (iv)
= (i) being obvious, the rest of the article is dedicated to the proof of (i) = (ii) =
(iii).

The injection:

W Clx, y] — CX] :(C[x,)/][Zh...,Zk]/ (hzi+- -+ fizk +8)

corresponds to a morphism o: X — C? with general fibers
o (xo, y0) = {z1, ..., &l filxo, yo)z1 + -+ + fulxo, yo)zk + g(x0, y0) = 0}

isomorphic to C*~! (dimX = k + 1). Clearly, we have an isomorphism, for all
i=1,...,ksuchthat f; # 0 (such an f; exists, as was noticed in Remark 1 above):

Clx, ylgla, ..., (k=11

aly (fizr 4+ fim +g) = €0y

Letting D := V(f1, ..., fy) C C*and D’ := 0~ !(D) C X, implies that the restriction
oxX\D’ " X\ D' — C*\D,

is locally trivial in the Zariski topology, i.e., a fiber bundle, with affine space fibers.

Observe that D’ ~ C x C* where C := V(fi,..., fi,g) = DN g~ '(0) C D. We

remark that C must be a finite set as soon as X is irreducible. Let h(x, y) be the
greatest common divisor of fi, ..., fi. One has

p=hfa++fizktg=h(fiz+ -+ frz) +¢
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where fi, ..., fy have no common divisor. Again we define:
b = nm%)c D
U U and D :=c'(D)~C x k.

(@3
|

bng'(0)c C

LetD=J.,Diand D' = U;’zl D be the decomposition into irreducible compo-
nents regarded as Cartier divisors. Letting

nl
(2) O'*(D,‘):ZmijD;, izl,...,l’l,
j=1

we consider the n x n’ multiplicity matrix M, = (m;;) with non-negative integer
entries. The first step in the proof of (i) = (ii) is the following generalization of
[KVZ04, Prop. 1.5(a)]:

Lemma 2 If X isasin (i), i.e., X is smooth, irreducible and acyclic, then n = n’ and
M, is unimodular.

Proof By [Fuj82, 1.18-1.20] (see also [Kal94, 3.2]) the algebra C[X] is a UFD and
its invertible elements are constants (and the same is true for C[x, y]). Hence there
are irreducible elements hy, ..., h, € Clx,y] and hy, ..., h, € C[X] such that D; =
h'(0),i =1,...,nand D]'- = h;_l(O), j=1,...,n'. Inview of the injection (1),
one can identify elements of C[x, y] and their images in C[X] and they then have two
different decompositions, as seen as in C[x, y] or as in C[X]. To sum up one has:

n n
D= UDi is given by h = th’ in C[x, y];
i=1 i=1

’
n

D' = U D’ is given by h = H h;af, in C[X]
i =
andVi=1,...,n,
n' n'
o*(D;) = Z m;;D} is given by h; = \; H hj’-m” in C[X]
i =
(where \; € C*).

There exists at least one f; coprime with /. Without loss of generality one can assume
that f; is so. Now we note that we have another injection,

(
(C[xa)/azza...,zk] — C[X] = C[x,y,22, alla] / (flzl +"'+kak+g)
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actually C[X] can be regarded as a simple birational extension (see [KVZ01, KVZ04])
of the algebra A := Clx, y, 2z, ..., z]:

(C[X]:( [x, v, 22, ’Zk][zl]/(f121+"'+f"zk+g)2A[ﬂ C A,

where

{q—fl—hﬂ,
r:h(fz22+'~szk)+g.

Here again, in view of the injection A — C[X], one can decompose g in A and then
in C[X]:

hfi :q:Hq?" :Hh?" H q; in (Clx,y] C)Awhereg; = h;, Vi=1,...,n
i=1

i=1 i=n+1

q:Hq/]‘j :Hh/jj H q/jj in C[X] whereq]{ :hJ’.7 Vi=1,...,n
= i

j=n'+1
and hence, for every i = 1,...,m, there exist non-negative integers #1;y, . .., My
such that
ml
m;;
(3) g=N][d7" e
j=1

The matrix M, is a submatrix of the m x m’ matrix M, := (m;;) , i.e.,

M, | *
Ml:[ *0 *}

Now, identifying C[X] and A[ 2] C A, one has
. ’ ’ Si
Vi=1,...,m, q]-:q—Nwrthsj €A, NeN
and, by (3),
o= I(2)"
i

Multiplying the last equality by a sufficiently large power of g, one obtains an equa-

lity in (C[x, y] C)A which implies that for every j = 1,...,m’, there exist integers
miy,...,mj, € Zsuch that
(4) ;= \][a" (e

i=1
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Let M{ be the m’ x m matrix M| := (mi’j). Plugging (3) into (4) and (4) into (3)
we obtain that M{M; = I, and MM, = I,, where L, denotes the identity matrix of
order w. Hence m = m’ and M, is unimodular.

Now let us look at the injection A — C[X] from the geometrical point of view;
it corresponds to a birational morphism p: X — C***~! with exceptional divisor
F':= p~Y(F) with F := g~'(0) C C?>**~1, the restriction

fx\F X \ F - (CZH(—] \F

being an isomorphism. Here again,

F= UFi is given by g = Hq?" in A;
i=1 i=1
F' = U F]’ is given by g = Hq;u; in C[X]
=1 j=1
andVi=1,...,m,
W (F;) = Z mijFJ’- is given by ; = \; H q;m” in C[X].

j=1 j=1
We have also that F’ ~ E x C where E := V(g,r) = FNr~'(0) C F. Observe also
that F is a cylinder above a curve, indeed, F = I' x C*~! where T is the curve in €
defined by g = 0 (with g seen as a polynomial in C[x, y]). Therefore, one can define

amorphism 7: E — T as the restriction to E C I" x C*~! of the canonical projection
I' x C*=! — T. Thus we have the following commutative diagram:

i
FI~ExC —TI'xCl~F

Lo

™

E—T

Remark that E, resp. I', must have the corresponding decomposition, ie., E =
UTZI:m Ejresp. T' = |JZ, T; with F] = E; x C, resp. F; = T'; x (G

Remark3  Clearly, mij > 0 < u(F)) C F; & E; C F; = Ti x ("' & w(E)) C
I < Ej - 7T71(F,‘).

Notice that for each j = 1,...,m there exists i € {1,...,m} such that 7(E;) C I'j,
and this index i = () is unique unless 7| E; = const.

We call an irreducible component E; of E vertical' if 7| g, = const (ie,
deg(r| ;) = 0) and non-vertical otherwise (thus the vertical components of E are
disjoint and each of them is isomorphic to C*~1),

This term comes from the picture obtained with (CfC y X C*=1 visualized as a horizontal plane R2 %
vertical line R,.
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Remark 4 The uniqueness of the index i = i(j) for a non-vertical component E;
and the unimodularity of M; imply that the jth column of the matrix M is the ith
vector of the standard basis (¢, ...¢,) in R", and two different non-vertical com-

ponents E; and E; of E project into two different irreducible components I'; and I';
of T. -

We remark that
UEJ = FE = V(q’r) = V(hﬁ,ﬁ22+"'+ﬁ<zk+g)
j=1
=V (hfi,h(fza+ -+ fize) +g)

=Vhgu |J E

j=n'+1

m
= é X (Ck71 U U Ej
j=n'+1
where C(C C) is a finite set of points {Py,..., Py} = C. Actually one has Vj =

1,...,n', m|g, = const = P; and thus those components E; = {P;} x C*1 are
vertical. Remember also that

COT=V(g=Vhf)=vuVv(f)=JDiu | I
i=1 i=n+1

In view of Remark 3, one can understand how E is positioned in I' x C*~! by looking
at the matrix M:

Py xCY oo P x CRY
[ [
E E, E, . - E,
D1 = Fl
M, *
D,=T,
Fn+1
. * *
|

Foreveryi € {1,...,m},
) =T x A 'NV(hz +-- -+ fize +8).

Hence

m(7 ') DT\ V(f, .-, fi)-
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Ifi >n+l,ie,T; ¢ h=1(0), thenT;\V(f, ..., fi) is a dense subset of I'; and hence
7~ }(T;) must contain at least one non-vertical component. By Remark 4, 7—!(T;)
contains exactly one non-vertical component E;; moreover j must be greater than n’,
since otherwise we would have:

mlj 0
M 0
My+1 j 0
1
L Mmj | L 0 ]
with
mlj 0
m,,j 0

being a column vector of M,, which is impossible, by definition of M,,. Since this is
true for every i > n + 1 and since, by Remark 3, for two distinct components I'; and
Ly, p~1(T;) and /fl(Fi) can not contain the same non-vertical component E;, we

have that m —n = m’ —n’ = m — n’ and, up to reordering E,,11, . . ., Ep:
M 0
M, = [ : ] .
* Im—n
Hence n = n’ and M,, is unimodular (because M, is so). [ |

As we have seen previously, we have a fiber bundle with affine space fibers:
(5) olxpr: X\ D' — C\D.

This will allow us to link homologies of D, D’ ~ C x C* and C. Actually we will
need to consider

* the one point compactification of C%: (2 = C? U {c0};
* the one point compactification of X: X = X U {oc};
¢ and the corresponding new sets:

D:=DU {xx} C
C:=CU{x} CD,
D' :=D"U{oo} C X.
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We are going to prove the following

Lemma5 If X isasin (i), then C and D have the same Euler characteristic and there
are isomorphisms between the reduced cohomology groups:

H*(D;7) ~ H*2(C; 7).

Proof The fiber bundle with affine space fibers (5) is between quasi-affine complex
varieties. Using the natural homeomorphism C? ~ R??, we obtain a fiber bundle
between quasi-affine real varieties but quasi-affine real varieties are actually all affine
varieties’. Then one can consider the coordinate ring R, resp. R’, of the real affine
variety homeomorphic to C* \ D, resp. X \ D’. In algebraic terms we have that R’ is
a locally polynomial R-algebra and by the main result of [BCW77] R’ is isomorphic
to the symmetric algebra of a finitely generated projective R-module. Geometrically,
it means that the fiber bundle o[\ p- is equivalent to a real vector bundle (by a mor-
phism between real varieties). But any real vector bundle is homotopy-equivalent to
its 0 section; hence X \ D’ and €2 \ D are homotopy-equivalent and consequently

(6) H.(X\D';Z) ~ H,(C*\ D; Z).

In particular e(X \ D’) = e(C? \ D) where e stands for the Euler characteristic, and,
by the additivity of the Euler characteristic (see [Dur87]), e(X) — e(D’) = e(C?) —
e(D). The hypersurface X and the affine plane C? being both acyclic, one has e(X) =
e(C?) = 1, hence e(D) = e(D'). Moreover C is isomorphic to C x (0, ...,0) which
is a deformation retract of C x Ck ~ D’. Hence ¢(D’) = e(C) = e(D).

Remark6 Wehave X\ D’ =X\ D’and C*\ D = C?\ D.

By [KVZ04, Proposition 1.12], X is a homology 2(k + 1)-sphere and Alexander
duality holds for X:

H*(X\D/,Z) ~ Hz(kﬂ)flf*(D/;Z)‘
Of course the same argument is valid for C*:
H,.(C \ D;7) ~ B> 125D 7).

Using isomorphism (6) and Remark 6 one obtains:

H.(X\ D7) ~ H.(X\D57Z) ~ HR¥DV=-1=%(D"7)
H,(C? I\ZD;Z) ~ H(C\D;7z) ~ H**'"*(D;7Z).
Hence
(7) A (D;7) ~ A 0(D; 7).
Rdfllndeed, REDV(p1(®), -, pnE\V(@1(R), -, 4u(®) = V(p1(R), .., pmn(R), 1-2 3 qi(®)*) C
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From D’ ~ C x C* one deduces that D’ is homeomorphic to C x R%* = C x §*
quotiented by C v $* := C x {00} U {o0} x §%, i.e,

'/NCXSZk )
b~ /CVSZk

By [Dol72, V.4.4],
H*(D';7) ~ H* (C x $*,C v $%%,2),

and using the Kiinneth Theorem for the Cohomology of Product Spaces [Mas80, VIII
11.2] one obtains
H*(D';7) ~ H*~(C;7)

which, together with (7), yields the conclusion of Lemma 5. |

Now we assume that (i) holds and prove (ii). From Lemma 5 one can deduce that
(8) H() (D, Z) =0

(using for example the universal coefficient theorem for cohomology groups, see
[Mas80, VII 4.3]). Recall that

CoO>D=V(h,..., ) =V(hf,....hfi) =V UV(f,.... fo),
D = DII Dg,.

where Dg, is a finite set and 11 stands for the disjoint union. We have
D= DII Dg,
where D := DU {00} is a connected subset of D. Hence
rank (HO(D; Z)) =1+#Dg, — 1
and, by (8), #Dg, =0, i.e., Dg, = @. We have proved that
(9) V(fi,..., i) Ch ' (0) =D =D.

We have also
nl
D=c"'D)=0""(D)=D" = UD; ~C x C*
j=1
and

C:CZV(hvg):{Pla"'vpn/}'

/

Reca)ll that D = |J_, D; and 0*(D;) = Z?zl m;iD}, i = 1,...,n, where M, =
(m;;).
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Remark7 m;; >0 < P; € D;.
By Lemma 2, n = n’ and, by Lemma 5, e(C) = e(D); hence
n = e(D).

Let cc(D) be the set of connected components in D. We have

n=-e(D) = Z 1— rank(Hl(A; Z)) < #cc(D) < n.
A€cc(D)

Hence every irreducible component D; is isolated and acyclic and by Remark 7

mlj 0
P,eD; & . = | mj;>0
m,,j 0

By Lemma 2, up to reordering, M, = I,,. It means that if h = [\, h; is the decom-
position of & into prime factors in C[x, y], then every h; is also prime in C[X]. In

h d
other words (C[X]/ ~ ((C[x>y]/ )[Z]
(hl) — (hzag)

is integral and hence D; = h;l (0) and g~ 1(0) meet only once and transversally.

If e(D) = n > 1 then, by [Zai85]?, up to an automorphism of C[x, y], h(x, y) is a
polynomial in x with #n roots.

If e(D) = n = 1 then D is an acyclic irreducible curve, i.e., D is homeomorphic
to C and, by [ZL83]?, up to an automorphism of C[x, y], h is a quasi-homogeneous
polynomial: h(x, y) = x* — y! with k and I coprime. The fact that #~'(0) and g 10)
meet only once and transversally implies that the equation g(¢/, t*) = 0 has a unique
solution fy, this solution being different from 0 ( (0, 0) is the singular point of xk —
y! = 0). We have g(¢',t*) = a(t — t,)%, which is possible only if k or [ is equal to 1
since otherwise the derivative of the left-hand side would vanish at + = 0. Finally h
is equivalent to x up to an automorphism of C[x, y]. We have proved that, up to an
automorphism, p has the form:

p=h@) (Al )z +- -+ filx, y)ze) +g(x, p).
The inclusion ﬂ:;l fi_l(O) C h~'(0) has already been proved in (9) and

deg, (g(x0,¥)) = 1, Vxo € h™1(0)

3Note that this result includes the classical Abhyankar-Moh-Suzuki theorem [AM75, Suz74].
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is just another way to say that every component x = x; of h~!(0), meets g~'(0)
only once and transversally. We have proved the implication (i) = (ii) in the Main
Theorem.

Now let us prove the implication (ii) = (iii).

Let p be a polynomial as in (ii). We prove that p is an x-variable by induction on,
say, “the total intersection number”:

v= il = dim S

First if ¢ = 0 then there exists k polynomials r1,...,r € C[x, y] such that firr +
-+ fyrr = 1 and, by the Quillen—Suslin}heorem4 there is a linear automorphism «
of Clx, y]lzi,...,z] such that a(z;) = fiz; + - - - + fyzx. By assumption on g in (ii),
one has

g(x, ) = go(x) + g1(0)y + hpeq (x) Zgi(x)yi with g; prime to h.

i>2
The polynomial
a”l(p) = h(x)z1 +g(x, y) = h(xX)z1 + go(x) + &1 (X)y + hrea (%) Y &%)’
i>2

is an x-variable by a result due to Russell [Rus76, 2.2] (see also [VnOl, 8.1] and
[EV99] for generalizations). Hence p is an x-variable.

Now suppose that ¢ > 1 and that the result is true for any total intersection num-
ber less than or equal to ¢ — 1. Let (xg, yo) be in V(fl, ceey fk). Up to a translation
one can assume that x, = 0. One has

A, )z + -+ [0, 9z = d)(fi(Dz + -+ fuly)z)

where d(y) is the greatest common divisor of f1(0,y),..., fi(0,y). Again by the
Quillen—SuslinVtheorem5 therevis a linear automorphism o of C[y][z1, .. ., z] such
that ag(z1) = i(y)z1 + - - - + fiu(y)z. Extending ap to Clx, y][z1, . . ., 2] one has

oy '(filx, 9z + -+ filx, y)zx) = d(y)z) mod (x)
that is to say
oy i, Mz + -+ file, y)z) = filx, )z + xh(x, 9)z + -+ xfillx, )z

and hence

(10) oy ' (p) = hx)(filx, y)z1 + xfa(x, p)za + - - + xfi(x, Y)zi) + g(x, y).

4 Actually here we need a weaker version of this theorem which was proved by Seshadri [Ses58].
>Here we only need the “easy” version over a PID (C[y]): Projective modules of finite type over a PID are
free, which is another formulation of the result we use here.
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Given by vy, or rather its Jacobi matrix, we have the equality of the ideals

(fiooees ) = Fraxfos oo x o),

hence

L(ﬁ,...,ﬁ):L(ﬁ,xf;,...,xﬁ).

Recall that we started with (xo, y0) = (0, yo) € V(fi,.... f) = V(fi.xh,....xf).
Hence f£1(0, o) = 0 and ¢(f;,x) > 1, whence we have the inequality

L(fl,fz,...,fk) <L(fl,xfz,...,xfk).

We can apply the induction hypothesis to the polynomial

P = h)(filx, )z + hlx, y)z + -+ fillx, Y)z) + gx, )

which is then an x-variable. By assumption,

P = 20(0) + g1 (0)y + x[g2(x, y) + h(x)(fi(x, )21 + frlx, )za + -+ + filx, y)zi)]

with ¢;(0) # 0. Let v be an x-automorphism such that v(y) = p, let 7o be the
automorphism of C[y][z] obtained by fixing x = 0 in v and let p be the affine auto-
morphism of C[y] defined by p(y) = £(0) + £1(0)y = v (y). Extending o and p to
C[x, y](z], one has

M p(y) =) = P
and, Vi = (1,)2,...,k
Yo (@) =11 (@) = zi + xrilx, y, 2).
Let o be the automorphism of C(x)[y][z] given by
o(z;)) =xz, Vi=2,...,k

Of course o is not an automorphism of C[x][y, ], but the composition oy, Ypo!

will be. Indeed, let us compute

o o () = oy, ' ply) = a(p)
= U(h(flzl +fzzz +~~~+szk) +g)
= h(ﬂzl +xf222 +~-+xszk) +g

= a5 (p) (see (10)),
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oY, po N z) = oy, (@)
andVi=2,...,k

-1
N 1 (% oY, P(zi)
Yo IPU 1(Zi) =07 lp(_l) = ——
x x
_o(zatanxy, 2,2, %)
N x
_xzi +xrix, ¥, 21, X2, - - - X21)
o x
=z +r1ix,¥,21,X22, . . ., XZk).
The images by afw(;lpa_l of all the coordinates y, zi, . .., z; are in C[x][y, Z] and

a similar computation would show the same for its inverse op~!vyy~!o~!. Hence
oY, ' po~ ! is an x-automorphism of C[x] [y, z]. Finally, the polynomial

oy, 'po T (y) = oy ' (p)
is an x-variable and so is p.

Acknowledgments The author thanks S. Kaliman and M. Zaidenberg whose tech-
niques and ideas are essential to this article. The author is also grateful to P. Russell
for useful discussions during this work.

References

[AM75] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane. J. Reine Angew. Math.
276(1975), 148-166.

[BCW77] H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras.
Invent. Math. 38(1976/77), 279-299.

[Dol72] A. Dold, Lectures on Algebraic Topology. Die Grundlehren der mathematischen
Wissenschaften 200, Springer-Verlag, New York, 1972.

[Dur87]  A.H. Durfee, Algebraic varieties which are a disjoint union of subvarieties. In: Geometry and
Topology, Lecture Notes in Pure and Appl. Math. 105, Dekker, New York, 1987, pp. 99-102.

[EV99] E. Edo and S. Vénéreau, Length 2 variables of A[x, y] and transfer. Ann. Polin. Math.
76(2001), 67-76.

[Fuj82] T. Fujita, On the topology of noncomplete algebraic surfaces. J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 29(1982), 503-566.

[Kal94] Sh. Kaliman, Exotic analytic structures and Eisenman intrinsic measures. Israel J. Math.
88(1994), 411-423.

[KVZ01]  Sh. Kaliman, S. Vénéreau, and M. Zaidenberg, Extensions birationnelles simples de 'anneau
de polynmes €. C. R. Acad. Sci. Paris Sér. I Math. 333(2001), 319-322.

, Simple birational extensions of the polynomial ring C1%], Trans. Amer. Math. Soc.
356(2004), 509-555.

[KZ99] Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very
transitive automorphism group. Transform. Groups 4(1999), 53-95.

[Mas80]  W. S. Massey, Singular Homology Theory. Graduate Texts in Mathematics 70,
Springer-Verlag, New York, 1980.

[Rus76] P. Russell, Simple birational extensions of two dimensional affine rational domains. Compositio
Math. 33(1976), 197-208.

[Sat76] A. Sathaye, On linear planes. Proc. Amer. Math. Soc. 56(1976), 1-7.

[KVZ04]

https://doi.org/10.4153/CMB-2005-058-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2005-058-7

Hyperplanes of the Form fi(x, y)z1 + - - - + fi(x, y)zi + g(x, y) Are Variables 635

[Ses58] C. S. Seshadri, Triviality of vector bundles over the affine space k*. Proc. Natl. Acad. Sci. U.S.A.
44(1958), 456-458.

[Suz74] M. Suzuki, Propriétés topologiques des polynomes de deux variables complexes, et
automorphismes algébriques de espace C?. J. Math. Soc. Japan 26(1974), 241-257.

[Vno1] S. Vénéreau, Automorphismes et variables de 'anneau de polynémes Aly, ..., yn]. Ph.D.
thesis, Université Grenoble I, Institut Fourier, 2001.

[Zai85] M. G. Zaidenberg, Rational actions of the group C* on C?, their quasi-invariants and algebraic
curves in C* with Euler characteristic 1. Dokl. Akad. Nauk SSSR 280(1985), 277-280,
(Russian), Soviet Math. Dokl. 31(1985), 57—60.

[ZL83] M. G. Zaidenberg and V. Ya. Lin, An irreducible, simply connected algebraic curve in C? is
equivalent to a quasihomogeneous curve. Dokl. Akad. Nauk SSSR 271(1983), 1048-1052,
(Russian), Soviet Math. Dokl. 28(1983), 200-204.

Mathematisches Institut

Universitiit Basel

Rheinsprung 21

4051 Basel

switzerland

e-mail: stephane.venereau@unibas.ch

https://doi.org/10.4153/CMB-2005-058-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2005-058-7

