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THE n-TH DERIVATIVE CHARACTERISATION OF
MOBIUS INVARIANT DIRICHLET SPACE

RAUNO AULASKARI, MARIA NOWAK AND RUHAN ZHAO

In this paper we give the n-th derivative criterion for functions belonging to re-
cently defined function spaces @, and Q. For a special parameter value p = 1
this criterion is applied to BMOA and VMOA, and for p > 1 it is applied to
the Bloch space B and the little Bloch space By. Further, a Carleson measure
characterisation is given to @, , and in the last section the multiplier space from
H? into @), is considered.

1. INTRODUCTION AND SOME AUXILIARY RESULTS

Let D = {z : |z| < 1} be the unit disk in the complex plane. Let p,(z) =
(a — 2z)/(1 —az) be a Mobius transformation of D. An analytic function f is said to
be a Bloch function, denoted by f € B (see [1]), if

sup (1 - |z|2) |£(2)] < oo.
z€D
For 0 < p < 00, we say that f € @, if f is analytic and

(1) sup //lf’(Z)lzg"(z,a) do, < oo,
D

where ¢(z,a) is the Green’s function log|(l — @z)/(z — a)| with logarithmic singularity
at a € D and do, is the usual area measure dz dy on D. These spaces were introduced
by the first author and his collaborators and have been studied in [4], [6] and elsewhere.
For 1 < p < co the spaces @, are all the same and equal to the Bloch space B (see
(4, Theorem 1] and also [15, Corollary 2.4]). If p = 1, we know by definition that
@;: = BMOA (the space of analytic functions of bounded mean oscillation) [8]. For
0<p1 <p2 £1 we have Q,, C Qp, C BMOA (see [6, Theorem 2]). An important
property that is common to these spaces @, is that they are all invariant under M&bius
transformations, that is, if f € Qp, then fo¢, € @,. This is well known in case
of B and BMOA (see [2]). We note that in [10] a characterisation of boundary values
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for functions in @, (0 < p < 1) is given. In this paper we shall derive a criterion for
functions in @, and @, o in terms of their n-th derivatives. Further, we give a criterion
for functions f to belong to Qp and @0 by p-Carleson measures. Also a sufficient
condition for a function f to belong to the multiplier space (H?,Q,) is obtained. This
last result should be compared with [11, Proposition 1 and Theorem 1]. First we need
the following lemma:

LEMMA 1. Let f be an analytic function in D. Then there exist positive con-
stants cy, ¢z such that

(2) cl(lf(n)(o)l2 + // ‘f(n+1)(z)
D
< [[lr™e@
D

< (lf(”)(0)|2 4 / / [0 s (1= )+ daz)
D

2
(1- |zl)°’+2 da,)

2 o
(1—12))% do,

for 0 < a < 0.

o0 [o)
PROOF: Setting f(™(z) = 3 apz™ we have f(*t1)(z) = 3 na,z""!. Using
n=0 n=1
Parseval’s formula we get

(3) Ji@F @ =1e)° o
D

= 27| f™(0)|°B(2,a + 1)+ 27 Y |an|* B(2n + 2,0 + 1),

n=1

where we have the beta function B(2n +2,a+1) = fol $27+1(1 — ¢) dt. On the other
hand,

n=1

(4) //lf(n+l)(z)|2(1 _ |z|)a+2 do, = 271'2712 Ian|2 B(2n,a + 3).
D

By Stirling’s formula B(2n+2,0+1) = (I'2n+2)[(a+1))/(T(@2n+a+3)) =
1/(n'*®) and B(2n,a +3) & 1/(n®*®). In the above, we use the notation a ~ b
to denote comparability of the quantities, that is, there are absolute positive constants
1, ¢z satisfying ¢1b < @ < cab. Thus the assertion follows from (3) and (4). 1]

We note that in the definition (1) of the space @, the Green’s function g(z,a) can
be replaced by 1 — I(pa(z)|2 . Further, by [14, Lemma 3] we know that f € B if and
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only if
(5) M7 = sup (1 - |z|2) If(“)(z)‘ < oo.
z€D

Using (2) and (5) and replacing f(z) in (2) by fo(z) = f(pa(z)) — f(a) we get a

criterion for functions in Q,:

PROPOSITION. If f is a Bloch function, then f € Q, if and only if

(6) sup lfin)(2)|2(1 _ |ZI)P+2(n—1) do, < oo
i

a€D
for 0 < p < oo.

2. THE n-TH DERIVATIVE CRITERIA FOR Qp AND Qp¢

In this section we shall obtain the n-th derivative criteria for @, and Qpo. In
case of the Bloch space B and the little Bloch space By corresponding criteria have
been obtained by Axler [7] and Stroethoff [14]. Our results will generalise these to
some other function spaces and, for example, for p = 1 we have got the n-th derivative
criterion for BMOA (= Q1) and VMOA (= Q; ). The main result of this section is
the following

THEOREM 1. Let n > 1 and let 0 < p < co. Then, for an analytic function f
in D, the following conditions are equivalent:

(i) f€Qy,
(i) sap l/ PP (1= leal)*) (1 = 12" dors < o,

(i) sup 4 17 (eata)
(iv) sup //lf(")(z)lzg”(z,a)(l —12[*)** " do, < 0.

a€D
D

2
et ()" (1 = 121*)7 """ do < oo,

PROOF: By change of variables we have
2 P n—
(7 JMl1@@] (1= lea@P) (= 123" do
D

B //lf(n)(%(z))|2‘90Z(z)|2n(1 ) e,
D

and thus (ii) is equivalent to (iii). Next we shall prove (i) is equivalent to (ii).
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(i) = (ii). We first consider the case 1 < p < 2. Constants appearing in the
proofs denoted by M are not always the same in each occurrence. Let f € @, = B.
Then, by (5),

F™ (a(2)) Jea(2)|" (1 = 121°)" < M7}

(1- lpa(2)[*)" =

| £ (0a(2))

and thus

[l o[- ey
D

< ap)" [[ Q=1 don = M < oo
D

for 1 < p < co. By (7) the assertion is true.
(ii) = (i). By [14, Theorem 1(D)] we know that

()  feBesup //|f<"> (1-lea(@)") (1 = e1%)>" " dov < oo,

Thus, by (8), we have settled the case 1 <p < 2.
Next we suppose 2 < p < oco. By using (5) and [18, Lemma 4.2.2] the implication
(i) = (ii) is trivial for these values of p. In the opposite direction the assertion is true

since we have (1 — ]cpa z)] ) (1-r )p for z € D(a,r), and thus

o0 > sup //lf(") 1— I‘Pa |2>p(1 — |z|2)2n_2 do,
1—7‘2) sup //lf(")(z)’ (1- 2" 24 dos.

D(a r)

Hence, by [14, Theorem 1], f € B = @, if (ii) is satisfied.

Finally we consider the case 0 < p < 1. For n =1 (i) = (ii) is true by [6,
Proposition 1].

Suppose now that (i) = (ii) holds for some fixed n. We know that if g is an
analytic function in D then, by (2) in Lemma 1,

©) JJleer =) < [[lor 0= ) o
D
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for 0 < a < co. If we apply (9) to the function g(z) = f(™(z)/(1 —@z)? and a =
2n — 2 + p and multiply both sides of the inequality (9) by (1 — |a|2)p we obtain

e PP lal )
(10) //(l az| * [1 —'Ez]z”""zI
+9Re paf(n+1)(z)f(")(z) )(1 _ |Z|2)2n+p(1 _ |a|2)p do,

(1 —az2)"(1 —az)*™!

2\P 2\p+2n-2
< M//|f(n)(z)|2 (1 —la[")" (1 — I") do.

|1 —az|?
2n—2
—M//lf(”) (1=leaa)) (1= |o*) " do.

By the assumption we know that in (10) the supremum of the upper bound is finite.
Since f € B, we get by using (5) and [18, Lemma 4.2.2]

n (n )
/ |f( ) f +1 )l (1 _ 'z|2)2n+p(1 _ la|2)P dG’z

—2pH1
—az|*?t

(1-12>)" 7 (1 = |a*)?
M"'“// || ( Ial) do, < M <

az|2p+]

for all a € D. Moreover,

f(n) n
// 11— l a 2p+2 (1- |2|2)2 +p(1 — la|*)? do

2\p+2n-2 2\?P
< 4//“‘(71)(2.)'2 (1 — Iz' ) (1 = la| ) do,

|1 —az|??
—4//|f<n>(z (1= leal2)) (1 = 121" do

and again the upper bound is finite. Hence, in view of (10), if f € Q, (even, in fact, if

f € B) then
s [[ 726 (
D

1- Igoa(z)|2)p(1 - |z|2)2n—2 do, < 00
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implies
Slelg // If(""'l)(z)l2 (1 - lgoa(z)lz)p(l - |z|2)2ﬂ do; < co.
D

Thus, by induction on n, (i) implies (ii) for all n > 1.

(i1) = (i). In this case we shall also proceed by induction. If (ii) holds for
0 < p £ 1, then by [14, Theorem 1] f € B. For n = 1 the implication is true by [6,
Proposition 1]. Suppose now that (ii) = (i) is true for some fixed n. By Lemma 1
we have for an analytic function ¢ in D,

a [l (- 6) do <u (o + [[Ig@ P (1) dn.),
D D

where 0 < a < co. Assume that
2n
sup // |f("+1) 1 —|¢a(2) |2)p(1 - |z|2) do, < oo.
a€D

In (11) we substitute g(z) = (f(™(z))/(1-@z)?, & = 2n — 2+ p and multiply both
sides of (11) by (1 — |a|2)p. Then we get

/ [l @] (1= leeP) (1= 12P) " o
- [
<M(|f‘">(0)l (1 - laf? //

= u(|0f @~ lapy
-y
(If("’ )|*(1 = 1al®)? + // lf(m)( — 2))*" (1 = |a*)? do,
+2% ol / [ "_(23,,'“ (1= 1) (1= laf') d.

(n+1)( ) F(7) (5 i
+zp|a|/ |f LN 1 oy (1~ o) do ).

— 12" (1- |af*) do,

(n) 2 n
d f az;p (1 |z|2)2 +p(1—|a|2)pda'z)

(1 ~ )P (1 - |a|2)”d"=>

— 2p+1
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Since f € B, we have |f(")(0)|2 (1 - |a|2)p < (M}‘)2 By assumption,
(n+l) n
[ ey
e

The other terms involving integra.ls can be estimated as follows (see [18, Lemma 4.2.2]):

// I |f(’f 2p+2 1 - |Z|2)2n+p (1 - |a|2)pd‘7z
— 2 P
< )’ (1-1a?)” [ é%_lll—),udo
D

M(M?)2(1 - |a|2)Pm <M

P 2n
1 — |<p,, |2) (1 — |z|2) do, < M < 0.

and

("+1) (") 2n+p P
[y
< Mpaze // e

11— az 2p+1 z

< MMpMpH (1 - |a|2)p;” <M
(1= 1aP)
By assumption we have f € @, and thus, by induction, we have proved (ii) => (i).
(iv) = (ii1). This is obvious from the inequality 1 — |L,oa(z)|2 £ 2¢(z,a) for all
z,a€D.
(ii) = (iv). Let

// lf(n)
// lf(")(z) (= 0)(1- |z|2)2"_2 do,

D(a,1/4)

2
+ / / | (2)
D\D(a,1/4)

n—2

gP(z,a) (1 - |z|2)2 do,

gP(z,a)(l - |z|2)2"'2 do, = I(a) + Ix(a),
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where D(a,1/4) = {2z €D I lpa(z)| < 1/4}. Since

) > logd > 1, z € D(a,1/4),
g(z,a) = log T——

e | <4(1-|pa(2)), 2 € D\ D(a,1/9),
we obtain, for pp = max (p,2), that

Ii(a) < //

D(a,1/4)

f(")(z){2 g7 (z,a) (1 - lz|2) e do,

and
- lee) (1= 1) don

I(a) < 4

D\D(a,1/4)

FM(z)

Since we have proved that (ii) implies f € Q, C B, we get that (5) is satisfied, and so,
from po 2 2, we get

-2
sup I;(a) € (M}‘)2 sup // gP%(2,a) (1 - ]z]z) do,
a€D a€D

D(a,1/4)

) [ (o5 )" (1= 1) " dow < oo

D(0,1/4)

By (ii), sup l2(a) < oo. Thus

a€D
sup I(a) = sup(I1(a) + L2(a)) < oo,
a€D a€D
or (iv) is satisfied. The proof is completed. g

Contained in the Bloch space is the little Bloch space Bg, which is by definition
the set of all analytic functions f in D for which (1 - ‘z|2)|f’(z)| — 0 as |z| = 1.
For 0 < p < o0, we say that f € @, if f is analytic and

tim [[ 17 o0 do. =0,
D

laj—1

By [4, Corollary 2] we know that Qp0 = By for 1 < p < oo (see also [16]). On the
other hand, if p = 1 we have that @, 0= VMOA (the space of analytic functions of
vanishing mean oscillation) [12]. If 0 < p; < pp <1, then Q,, 0 C @p,,0 (see [6]). By
the above proof, Theorem 2 and [14, Lemma 4] we get the corresponding theorem in

the limit case:
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THEOREM 2. Let n > 1 and let 0 < p < co. Then, for an analytic function f
in D, the following condmons are equivalent:

(1) f € Qp,O;

G é [ @f (1= leaa)?) (1= 1282) " o =0,

i) Jim, [[]7e@)] e@ (1= 1) o =0,
D
(iv) Jim, 4/|f(")(z)|2gp(z,a)(l -1z|2)2"_2 do, =0.

3. @p AND ENTIRE FUNCTIONS

In this section we shall generalise Theorem 1 by replacing the weight factor by an
infinite series of weight factors. For 1 < p < o0 and n = 1 this case was considered in
[3] when criteria for the Bloch space were established.

THEOREM 3. Let 0 < p < 00, let n > 1 be an integer, and let E(p Z bip*
be an entire function with by > 0 and by > 0. If

(12) im &k Vb < 2e,
k—o00

then, for an analytic function f in D, the following conditions are equivalent:

(i) f€Q, s
(i1) :lelg // ‘f(") 1—-— 2] ) g”(z,a)E(g(z,a)) do, < 00,

_1—|z|2) i (1_|¢a z)|) 9(z,0)) do, < co.

0 syl
D

PROOF: (i) = (ii). Let E;(p) = E(p) —bo = _ bkp*. Since f € Q,, we get by
k=1
Theorem 1,

(13) bo sup // |f(")(z)‘2 (1 _ |z|2)2n_2g"(z,a) do, < co.

a€D

Since f € @, C B, we have by (5),

n
(1 — |z|2) < oo.

M} = sup |£)(2)
z€D
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Thus
sup //If( () (1= ] ) "%z, 0)Ex (g(2, ) do
[e o]
< Zbk (]M?)2 sug//(l - |z|2)_2gk+”(z,a) do,
k=1 e€

=§:lb (M7)* // ~ wl?) (logﬁ)kﬂ’daw

Ekak+P),

k=1
where J(k +p) = ff(l -~ |w|2)_2 (log1/ |w|)k+p doy . By [17, Lemma 3.3] we see that

(12) implies E brJ(k + p) < co. Thus

(14) sup / / ISE

Combining (13) and (14) we see that (ii) is true.
(ii) = (iii). This is obvious by 1— |p4(2)[* € 2¢(z,a) for z, a € D.
(iiif) = (i). Since by > 0 we get from (iii) that

bo igg/flf(") (= "'2(1 ~|pa(a)")" dos < o0

9 2n—-2
— |2 ) 9*(z,a) E4 (g(z,a)) do, < co.

and so, by Theorem 1, we see that f € Q,. 0
Theorem 3 is critical in the following sense:
o
THEOREM 4. Let 0 <p < co, let n > 1 be an integer, and let E(p) = 3 bxp*
k=0

be an entire function with by 2 0 and by > 0. Suppose that
Iim & \k/ b > 2e,
k— o0
and for an analytic function f on D, one of the following conditions is satisfied:

(1) f‘ég // f(") 1— |2| ) n_2g"(z,a)E(g(z,a)) do, < >,

(i1) Sup // |f(")(z .|z|2)2n—2 (1- Icpa(z)|2)PE(g(z,a)) do, < 0o.
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Then f is a polynomial, whose degree is less than n, or a constant.

We need the following lemma which can be proved in much the same way as in
{17, Lemma 2.9].

LEMMA 2. Let 0<p< co,let 0 <r <1,andlet n> 1 be an integer. Then,
for an analytic function f on D and a€D,

70| (1= )" < ey // @f (- 1) e de

where ¢(n) is a constant depending only on n.

By means of Lemma 2, the proof of Theorem 4 is same as in [17, Theorem 3.10].
We omit it here.

4. Q, AND CARLESON MEASURE

Let I be a subarc on the unit circle and let
={s: 2/l el 1|1 <2l <1},
where |I| denotes the arc length of I. A positive measure ¢ on D is a bounded
p-Carleson measure, 0 < p < o0, if

(15) u(S(D) = O(I1P).
If the right-hand side of (15) is o(II |p) then we say that p is a compact p-Carleson
measure.

It has been proved by Stegenga [13] (see also [9] for the case of the unit ball in
C") that, for 1 < p < o0, g is a bounded p—Carleson measure if and only if

a)  [fr@rae <o ([[Irar (- ee) . +l5of)

for all analytic functions f on D for which the integral on the right-hand side of the
inequality (16) is finite.

If 0 < p <1 and inequality (16) holds then x is a bounded p-Carleson measure.
However, in this case the implication in the opposite direction is not true [13].

In view of [5, Lemma 2.1} Theorems 1 and 2 give immediately

THEOREM 5. Let n > 1 be a natural integer and let 0 < p < oco. Then, for an
analytic function f in D, we have

) 2 2n—2+
() f€Q, ifand only if du = |f<">(z) (1 - |z|2) " do,

is a bounded p-Carleson measure,

2 2n—2+4+
(i1) f € Qpo if and only if du = ‘f(")(z) (1 _ |2|2) Pdo,

is a compact p-Carleson measure.
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5. A SUFFICIENT CONDITION FOR MULTIPLIERS FROM HY INTO Q,

For 0 < g < oo, by H? we denote the space of functions f, analytic in D, for
which

2w
My =5 [ G

or

Moo(r, f) = o T |£(re'?)|

remains bounded as r — 1.

Let A and B be two vector spaces of sequences. A sequence A = {\,} is said
to be a multiplier from A to B if {)\,a,} € B whenever {a,} € A. The set of all
multipliers from A to B will be denoted by (A, B). In this section we regard spaces of
analytic functions in D as sequence spaces by identifying a function with its sequence
of Taylor coefficients.

From [11, Proposition 1| we get the following result:

THEOREM MP. If 1 < p < 2 then a necessary and sufficient condition that g €
(H?,BMOA) is that
My(r,g) <c¢/(1-71), 0< T <1,

where 1/p+1/g=1 and (HI,BMOA) =B.
We shall need the multiplier transformation D°g of g, g(z) = § g(n)z", which
is defined by "=
D?g(z) = f: (n +1)°g(n)z", s any real number.
n=0

Now we are ready to prove

THEOREM 6. If 1 € ¢ < 2, 0< p <1 then a sufficient condition that g €
(H?,Qp) is that

1 2w ql l/ql c
n o_ il 1 16 -_—
M‘I'(rag )= (27!’/0 Ig (7‘6 )| da) S (1- ,,.)(1+P)/2’
where 1/q+1/q' = 1. In particular, g€ (H',Q,) if

[

Mo(g',7) = mla-XIQ(Z)I TEsCoE

PROOF: Let f € H? and let

h(z) = frglz) =Y fln
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Then
1 2

27
= 1 6\ pl i(t—8)
271_/0 D f('re )D g(re )dG

c
< Mg;(r,g')MZ(r,f’) < (1__7,)_1+;_1M3(T’fl)'

|r2D2h(r2eit)|2 —

Hence, by [11, Lemma 1],
(1 —r)?*PMZ (r?, h") < (1 — r)M2(r, f')

and, by Lemma HL1 in [11],

1 1
/0 (1—r)**PM2 (2, h") dr < c/o (1 —r)MZ(r, f')dr < co.

We shall show that if .
/ (1- r)2+”M§°(r2,h”) dr < oo
o

then h € Q,.
By [6, Lemma 4}, we have

sup dt <

a€D

/’” (1-1a)’

Il —areit|??

and thus

7 2 2\Pt32 (1 B |a|2)p
su h"(z (1 — |z ) -~ < do,
aEI’;/‘I:)l ( )l I [1 —Ziz|2p

2\ P
1 2 (1 = |a| )
< sup/ (1—r)2+pMZ°(r,h")/ —~— < dtdr
0

a€D o |1 —areit]*?
< c/l (1 =7)**P M2 (r,h") dr < oo
0
which, by our Theorem 1, implies h € @, for n = 2.
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