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Let {ftn} be any sequence of real or complex numbers subject to the
sole restriction

Pn = Po+Pi + '--+Pn^0 (n = 0, 1, 2, • • •)•
And let

, Pn^ + Pn-l^ + PoSn
K- p

Yitn^ s as w -> oo, we say that the sequence {sn} is summable Norlund
or summable (N, -p) to s.

If tn->- s whenever sn -> s, we say that (N, f) is regular.
It is known [3] that the necessary and sufficient conditions for the

regularity of (N, p) are that, for any fixed k,

(1) Pn-, = 0(Pn)

as w -^ oo and that

(2) \

We shall say that the sequence {sn} is absolutely summable Norlund
or summable \N, ft\ to s if

(3) S l*«-*_il < «3,
n=0

where t_1 = 0, and

(4) tn -> s

as » ^ co.
If (3) and (4) hold whenever sn-> s and

oo

(5) 2 Kl < oo,

where a0 = s0, an = sn—sn_1 (n ^ 1), then we say that (N, p) is ab-
solutely regular.

The aim of this paper is to discuss the relation between regularity and
l
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absolute regularity of the Norlund Summability, and for this purpose we
require the following theorem.

THEOREM 1. In order that (N, p) should be absolutely regular it is necessary
and sufficient that

P P
-*• n—m M n—m—1(6) I

Pn-i
H,

where H is independent of m and P_1 = 0 and that (1) should hold.
For the proof of this theorem we require the following theorem on

general summation matrices (cnk), proved by F. M. Mears [1].

THEOREM. The necessary and sufficient conditions that 2SS=i \un\> where
un = Un—Un_lt Un = J£=1 cnksk, and sk = ao+ax+ • • • +ak, should
converge whenever 2^=i \an\ converges are

(A) 2 £ i cnh converges, for all n;
(B) 2^=i I2fc=m (cnk—cn-i,k)\ ^ H, for all m where H is a positive

constant.

PROOF OF THEOREM 11. The conditions are necessary. We suppose
(N, p) is absolutely regular and wish to prove (1) and (6) must then hold.
Since

, _ PnSp + Pn-lSl-l
V-

x n

ir n \ r w—l i i c u

n n n

we have

1 An alternative proof of this theorem is possible by appeal to a theorem of H. Hahn,
Monatshefte fur Math, und Phys. 32 (1922), 3 — 88. This theorem is quoted in Math. Rev. 9
(1948), 579, by R. P. Agnew in a review of a paper on absolute regularity by Z. Schurr. The
theorem of Hahn is as follows.

"Necessary and sufficient conditions that tn = 2 ^ L Q C»*5* should converge (as n ->• oo)
whenever sn converges absolutely are:

(i) cnt -» dk,

CO

(ii)

(iii) Yi cnk < b f°r a11 m an<^ * '

and then

where

This theorem was pointed out to me by the referee.

4 = 1

oo

s
k=m

> ds-\

s =

nk "

Cnk < A

oo

k=l

- lim 5n .
OO
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Cn,k =

Cn,k =

of the Norlund mean

Pn-k

Pn

0

(k == 0, •

(k

6

•••»),

> n).

Since (N, p) is absolutely regular Mears's theorem tells us that

is bounded. Putting in the cnlc appropriate to (N, p) we find that the above
sum is equal to

n—m n—m—1

Hence (6) holds.
Take sk= 1, sn = 0 (n ^ k). Then 2S=o an converges absolutely to

0 and hence, when k is fixed,
, Pn-k ft

as n -> 00. (1) is also necessary.
The conditions are sufficient. There are two things to be proved:
(i) that, if sn^ s absolutely, then tn -> s,
(ii) that tn converges absolutely, i.e. 2 ^ 0 \tn—tn-i\ < °°-
Since 2fc=o cnt is a terminating series for each n, it is convergent,

and Mears's condition (A) is fulfilled. And since, by the algebra above,

n — T O — 1

2 (Cnk—Cn-l.t

and the left side is bounded by (6), Mears's condition (B) is fulfilled. So
by Mears's theorem, 25£=o l^«~^«-il < °° a n ( i (n) is established.

To prove that (1) and (6) imply (i), suppose first that 2^=o an converges
absolutely to 0. Then we can choose k so that

*-1 <

(7) |<

and

(8)

Now, by partial summation,

V vi
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Since, for all m ^ n,

(9)

we have, by (7),

n /p p \
2 1 x r—m r—m~l V

, p I
r=m \ * r -̂  r—1 /

n—m

p
n

n

I
r=moo

<r V
r=m

P P
x r—m x r—m—l

P n-k

Pn
K + Pn-k-l

Pn

and, by partial summation,

+Pn-k+2Sk~2+Pn-k+lSk-l

• • • +Pn-k+2Sk-2

By (8) and (9),

n-k+l
V-ll < J

Since k is a constant, it follows from (1) that

for all sufficiently large n. Therefore

[4]

and hence, for sufficiently large n,

\K\ < e.
Thus tn -> 0 as n -> oo.

If 2^=o a« converges absolutely to s, which is not zero, then 2^U a'n>
where a'o = ao—s, a'n = an (n ̂  0), converges absolutely to 0 so that
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A-] \-j>0Sn

As n -*• oo. But, on substituting sn—s for s'n,

t'n = tn-S.
Hence tn—>s as n —>• oo.

If we take />2B = 1, />2re+1 = 0, we see that (1) and (2) are satisfied
but (6) is not when m is an odd integer. Hence a Norlund method can
be regular without being absolutely regular. The question naturally arises
as to whether it is true that an absolutely regular Norlund method is
necessarily regular. I have not been able to solve this problem. I have,
however, obtained the following two theorems.

THEOREM 2. / / (N, p) is absolutely regular and Pn is bounded, then
(N, p) is regular.

PROOF. It follows from the absolute regularity of (N, p) that

oo p p

(11) J
! -P n—1

is bounded and this implies that po/Pm is bounded, so that for all m

(12) \Pm\ ^ O 0,

where c is a constant.
Now the sum (11), which is equal to

IP p p pi
I-1 n—lx n—m M n—m—1 ^ n\>IP Pn=m l-^n^ n-1

is bounded. Since we are restricting ourselves to the case in which Pn is
bounded, \PnPn_1\ is also bounded so that the boundedness of (11) implies
the boundedness of

oo

2 1 p p p PI
I n—1 n—m M n—m—1 n\

n=m

= I \(Pn-pn)Pn-m-(Pn-m~P«-m)Pn\

= l \PnPn-m-pnPn-r,

2
n=0

Thus we have
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2 \Pn+mPn—pn+mPn\ =5 k.

Hence, for any fixed JV and all m,

\Pn+mPn~Pn+mPn\ ^ K
n=0

and hence

(13) 2l
n=0

2l
n=0

Take JV as fixed and make m -> oo, then

JV

n=0

because, by (1), pn = o(Pn) = o(l).
Since \Pn+m\ ^ c > 0, by (12), for all n, m, it follows from (13) that

£ k

2 0»l ^ -
n=0 ^

Hence

21^
converges.

Hence, by (12),

lM+l£il+---+!/>J = o(i) = o(Pj ,

and (JV, p) is regular.
THEOREM 3. / / (JV, p) is absolutely regular and Pn is not bounded, then

\P»\ -+ oo.

PROOF. If \Pn\ does not tend to infinity, we can find a positive number
G such that \Pn\ < G for arbitrarily large values of n. Also by Theorem 1,

(6)
P P

x n—m •*• n—m—1 H

for all m. Since Pn is unbounded, there is k such that \Pk\ > EG. Then
there is JV > k such that \PN\ < G. Let m = H—k, a positive integer. Then

• N-m

PN

Hence
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P P
x n—m x n—m—1

N
-m—1

n-1

N fP P -A
•^ i x n—m n—m—1 \

z , p~77
nc=m \ n 7i—1 'N-m

N

which is in contradiction to (6). Therefore \Pn\ -*• oo.
Using the above two theorems, we see that only the case in which

\Pn\ -*• oo is left to investigate.
It is worth remarking that it is possible for a Norlund method to be

absolutely conservative without being conservative. This will be shown
by an example.

We say that a Norlund method is conservative if sn -> s implies
tn->t.

If follows from Theorem 1 of Hardy's book [2] that necessary and
sufficient conditions for (N, j>) to be conservative are that (2) should hold
and that for some dm

as n -> oo.
A Norland method is said to be absolutely conservative if (3) holds

and tn-*t whenever sn-> s and (5) holds.
By Mears's Theorem, a necessary and sufficient condition that (2V, ft)

should be absolutely conservative is that (6) should hold.
We note that (6) does not imply (2). For if we take Pn = enie where

6 is any constant not a multiple of 2n, we see that (6) is satisfied but (10)
is not. Thus the remark is proved.

Finally I should like to express my thanks to the referee for some
useful suggestions and to Dr. B. Kuttner for help in writing this paper.
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